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ABSTRACT. Chung and Liu have defined the d-chromatic Ramsey number as follows.

Let l<d<c and let t (). Let 1,2 t be the ordered subsets of d colors chosen

from c distinct colors. Let GI,G2,...,Gt
be graphs. The d-chromatic Ramsey number

c
denoted by rd(Gi,G2

Gt) is defined as the least number p such that, if the edges

of the complete graph K are colored in any fashion with c colors, then for some i,
P

the subgraph whose edges are colored in the ith subset of colors contains a G.. In
l 33

this paper it is shown that r2(Pi,Pj,Fk) [(4k+2j+i-2)/6] where i<_j<_k<r(Pi,Pj) r
2

stands for a generalized Ramsey number on a 2-colored graph and P. is a path of order i.
l
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I. INTRODUCTION AND NOTATION.

Chung and Liu [I] have defined the d-chromatic Ramsey number as follows. Let

l<d<c and let t (). Let 1,2 t be the ordered subsets of d colors chosen from

c distinct colors. Let GI,G2, Gtbe graphs. The d-chromatic Ramsey number de-oted

r(GI,G2_
Gt) is defined as the least number p such that, if the edges of theby

complete graph K are colored in any fashion with c colors, then for some i, the sub-
P

graph whose edges are colored in the ith subset of colors contains a Gi. In this

the value of r(Pi,Pj,Pk)_ is found. Let Pi(r,s) and Ci(r,s) respectively denotepaper

a path or a cycle connecting i nodes whose edges are colored in color r or color s.

Let di(x) denote the degree of node x in color i. Let INi(x)UNi(Y) denote the num-

ber of vertices adjacent to x or y in color i, and r(Pi,Pj) be the least number p

such that when the edges of the full graph K are colored in colors and 2 contains
P

or P It is assumed throughout that 2<i<j<k. Let [i] and {i} respec-a Pi(1) j(2)"
tively denote the largest integer less than or equal to i and the smallest integer

greater than or equal to i. A colored graph G is a complete graph whose edges are

colored in colors I, 2, or 3. V(G) and E(G) denote the set of nodes and edges of G

and E. is the set of edges in color i.
1

2. MAIN RESULT.

First a series of Lemmas are presented which is followed by a bounding theorem

for r3(Pi,PjPk)z and finally, an example shows that the bound is tight.
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Lemma
3

,pj r(P ,Pj) when i<3r2(Pi ’Pk i (2.1)

Proof: It is well known that

r(Pi,Pj) j+[i/2] when j>i>2. (2.2)

In [I] it is shown that

3
r2(Gi,Oj,Gk)<_r(Gi,Gj), for i<j<k, (2.3)

and the equality holds if k>r(Gi,Gj).
Lemma 2

3
,Pj Pk)<[(4k+2j+i-2)/6]r2(P i (2.4)

when i=4 and k<r(Pi,Pj).

Proof- From (2.2)and (2.3), k=j and [(4k+2j+i-2)/6]=j+[(i-2)/6]. Let j=4 and G be a

colored K
4

with no P4(1,2) as a subgraph which implies that 3 a xeV(G)- d3(x)_>2.
If y 4nd z are adjacent to x is color 3 then G has a P4(1,3) or P4(2,3)" Assume that

3
r2(P4,Pj_I,Pj_ 1) j-I for all j>4. (2.5)

Let G be a colored Kj with no P4(1,2) as a subgraph. If --- a xeV(G)- d3(x)>j-3_ then

by (2.5)G-x contains a P[j-I](I,3) or P[j-I](2,3) and so G contains a Pj(I,3) or

Pj(2,3)" Hence, let d(x) _> 3 xeN(G), which implies that G contains a P4(1,2)’
a contradiction.

(l, z)

Lemma 3: Let k>3 and k-2[(k+4)/6]. Then

3
r2(pj ,Pj ,Pk <_k-l.

Proof: Let s be the least non-negative integer -) s k(mod 6).

It is easily shown that

r(Pj,Pj) j+[j/2]-I K-l-[s/2].

From (2.3) and (2.6) the lemma follows.

(2.6)

Lemma 4: Let k>_3 and k+[(k-2)/6]. Let G be a colored K. If G contains a

C[k_l](l,2), C[k_l](l,3), or C[k_i](2,3), then G contains a Pk(l,2)’ Pk(l,3)’ or

Pk(2,3)’ respectively.

Proof: Without loss of generality assume that G contains a C[k_i](2,3) but not

Pk(2,3) which implies that the [(k+4)/6] vertices of G not in C[k_i](2,3) are

adjacent in color to Ck_ I. By Lemma 3, the subgraph generated by nodes of Ck_
contains a Pj(I,2) or Pj(I,3) where j k-2[(k+4)/6]. Without loss of generality

assume that Pj(I,2) is present and let x be one of its end vertices. Consider the

remaining 2[(k+4)/6]-i vertices of Ck_ I. Since there exists [(k+4)/6] vertices not

in Ck_ I, but adjacent to every vertex of Ck_ in color I, there exists a path P with

2[(k+4)/6] vertices in color I, vertex disjoint from Pj(I,2) referred above.
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This path P has an end vertex adjacent to x in color and hence G contains P

as a subgraph.
k(1,2)

Theorem I:

3
r2(Pi,Pj,Pk) < [(4k+2j+i-2)/6] (2.7)

when k<j+[i/2]-I r(Pi,Pj).

Proof: If i<4, the theorem follows from Lemma 2. The rest of the proof is divided

into three main cases. Assume that the theorem holds when i’<i,j’<j or k’<k where

i>5. Define [(4k+2j+i-2)/6]. Let G be a colored KE.
Case I: Let i k. Without loss of generality let xleV(G be -)

n d l(x l)>di(x) (2.8)

For i 2,3 and xV(G) and 2 < n.

Consider G-x I. By the induction hypothesis,

3
r2 (el_2, Pi_2, Pi)<i-2+[ (i+4)/6]

which implies that G-x contains a P[i-2](1,2)’ P[i-2](1,3) or Pi(2,3)"

Without loss of generality assume that G-x has P

P (y z).
[i-2] (1,2)

and denote this path by

Case I.I: Let (x l,y)eE and (x l,z)eE3, since otherwise the proof follows from

Lemma 4. If (Xl,U)eE-E(P) and (Xl,U)eE then G has a Pi(l,2)" Thus X is adjacent

to n vertices of V(P) in color I. Let v # y be -) (Xl,V)eE and veV(P). Let u be

adjacent to v in P on the segment from v to y. Let (y,u)E3. Then the existence of

cycle (xl,y u,z V,Xl), by Lemma 4 implies the existence of Pi(l,2) completing

the proof.

Suppose we let (z,u)eE3. Let fe V(G)-V(P). If (z,f)eEiUE2, then G has a Pi(l,2) and

hence let (z,f)eE3 for all f. Since V(G)-V(P) [(i+4)/6]+1, d3(z)>[(i+4)/6]+l+n-l.
Since d3(z)<_n, [(i+4)/6] 0 contradicting i>5.

Case 1.2: Let (xl,Y) and (Xl,Z) be in E3. Let x be adjacent to n vertices of V(P)

and n
2
vertices of V(G)-V(P) in color where nl,n2>_O. Let vU(P) be such that

(Xl,V)eE 1. Let u be a vertex adjacent to v on the segment (y ,v). By an argument

similar to that used in Case ioi, it can be shown that if (z,u)E
3

the proof follows

from Lemma 3. For the other case, let z be adjacent to at least n vertices of V(P)

in color 3. For weV(G)-V(P) if (x,w)eE and (z,w)eEiUE2 the theorem follows. So z

is adjacent to at least n
2
vertices of V(G)-V(P) in color 3. So d3(z)>_nl+n2+l,

contradicting (2.8).

Case 2: Let i j < k. If x is -) dl(Xl) > di(x for i 1,2,3 and xeV(G) then

r2(Pi_2,3 Pi-2’Pk < E-I and Case applies. Hence, without loss of generality assume

that d2(x2) > di(x) for i 1,2,3 and xeV(G). Consider G-x2. By induction hypothesis

r2(Pi_23’ej’Pk-l) < E-I and hence G-x
2

contains P[i-2](1,2)’ Pj(I,3) or P[k-l](2,3)"
If P[i-2](1,2) is present the proof is similar to Case I. Let G-x

2
contain

P[k-l](2,3)" If z is an end vertex of this path then by arguments similar to Case
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a contradiction, d1(z) d2(x2) is derived thus proving the theorem. The theorem

again follows if Pj(I,3) is a subgraph of G-x2.

Case 3: Let i < < k < j+[i/2]-l. Let xeV(G) be such that d&(x)+d2(x < dl(Y)+d2(Y
3

for yeV(G). By induction hypothesis r2(Pi,Pj_l,Pk_l) < E-I, G-x contains a Pi(l,2)’
P[j-I](I,3) or P[k-l](2,3)" The case is not obvious, if one of the latter two paths

is present. If dl(X)+d2(x) < [j/2], then d3(x > {k/2} so that x is adjacent to more

than half the vertices of the graph and hence of the path under consideratioin

color 3. Therefore, G contains a Pj(I,3) or Pk(2,3)" If dl(X)+d2(x) > {j/2} and if

<EIUE2 > is connected, it is a standard result that G contains a PE(I,2)’ > 2{j/2}

and hence G has a Pi(l,2). However, if <EIUE2 > is disconnected, it contains at least

two components, each of which is of order {j/2} or greater and hence G contains a

Pj(3)"

Theorem 2:

3
,pj, > [(4k+2j+i-2)/6]-l.r2(P i Pk

Proof: Let G kE_ I, where E [(4k+2j+i-2)/6]. Let X, Y, Z be pairwise disjoint

subg’raphs of G such that IXl {(2k+j-i-l)/B},IYl [(2j-2K+i-2)/6] and

IZI [(k-j+i-2)/3]. It can be verified that V(G) IXI + IYI + IZI. Color the

edges of G as follows. Color the edges of X using color 3, edges of Y using color I,

edges of Z using color 2, edges between X and Y using color I, edges between X and Z

using color 2, and edges between Y and Z using color I. It can be shown that

IXl + IZl k-i which rules out the existence of Pk(2,3)" Similarly 21Y + IXl < j-I

ruling out PO(I,3) and 21YI+21Zl+l<i-1 ruling out ei(l,2)"

Theorem 3:

and

r2(Pi,Pj,Pk) [(4k+2j+i-2)/6] when k < r(Pi,Pj) j +

r2(Pi,Pj,Pk) r(Pi,Pj) when k > r(Pi,Pj) j + -I.

Proof:Follows from (2.3) and Theorems and 2.
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