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ABSTRACT. It is shown in this paper that if BG is the Stone-ech compactification of a

group G, and G satisfying a certain condition, then there is a weakly recurrent point

in BG which is not almost periodic, and if another condition will be added, then there

is a recurrent point in 8G which is not almost periodic point.
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I. INTRODUCTION.

Let G be infinite group denoted by B(G) the spaces of all bounded real-valued

functions with the usual sup norm, and by B(G)* it’s conjugate. An g-mean is a function

’eB(G)* such that ’ I, ’(u) where u is the unit function, i.e. u(g) for

all geG., ’(f) ’(f) for all feB(G) where f(s) f(gs), seG, and ’(f) 0 ifg g
f 0. If such g-mean exists we call G amenable group.

If G is amenable group with the discrete topology, G be discrete set, as completely

regular topological space G has a Stone-ech Compactification 8G. In W. Rudin [I] the

space of real-valued continuous functions on BG and the space of bounded real-valued

functions on G with the usual sup norm are isomorphic as Banach spaces. Any g-mean

as a functional on C(BG) is represented by Riesz representation theorem as a measure

defined on the Borel sets of BG. The correspondence being characterized by

’(f) f dBG
For any geG we have a continuous mapping R of G into 8G defined by R(gl) =ggl’

gl eG, R has a unique continuous extension to BG, the extension mapping will also be

dnrted by R. If A subset of G is any subset denote by the open-closed subset of

G\G obtained as GnU, where is the closure of A in G. If G is infinite left

cancellation semigroup, then for seG and B subset of G, B (sB) Chou [2], R is a

homeomorphism of the compact Hausdorff space G onto itself denote by MR the set of all

R-invariant probability measures on G, and the upper density of a subset A of G by

d~ (A) sup {(A)
g

2. THIN AND STRONGLY DISCRETE POINT.

DEFINITION 2.1. A subset A of G is said to be thin if glAg2A is finite subset of

G for each pair of distinct elements gl’ g2 e G.
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DEFINITION 2.2. meBG\G is said to be discrete if the orbit of m, 0(m) {gm geG}

is discrete with respect to the relative topology that is if and only if there exists a

neighborhood U of m such that gmU if g # e. Denote by D
G

the set of all discrete

points in G.

DEFINITION 2.3. meG is said to be strongly discrete if there exists a neighborhood

Denote by SD
G

the set of all stronglyUof m such that glUg2U if gl g2"
discrete points in G.

REMARK. SD
G

is a subset of DG. For take gl e the unit element in G, g2 g e

so meSD
G

implies there exists a neighborhood U of m such that UngU implies gmU

D
G

implies we

DEFINITION 2.4. A point meBG\G= is said to be almost periodic if for every

neighborhood U of m there is a subset A of which satisfy: (i) Am is a subset of U,

(ii) there exists a finite subset K of G such that G KA or equivalently for each

neighborhood U of m the set A {geG:gmeU} is relatively dense, in the sense there

exists gl’ g2 gn eG such that glAug2Au UgnA G. Denote by A
G

the set of all

almost periodic points in BG.
PROPOSITION 2.5. DGrAG
PROOF. If reeDG, then there is a neighborhood V of in BG such thatVn o(m)=

hencemisnot almost periodic point, otherwise there exists a subset Aof Gsuch that Am is a

subset of V which is a contradiction to the conclusion Vno(m) {m}. Then mAG
and so

DGnAG .
REMARK. If A is a subset of C, is empty if and only if A is finite, also

g (gA) for geG.

THEOREM 2.6. (I) If A is a thin subset of the group G then (A) O. (2) SD
G

U{:A is a thin subset of G}.

PROOF. (i) Suppose that A is thin so glAog2A is finite for each distinct pair of

elements gl’ g2 G. But

cl(glAng2A)nG (ClglAClg2A)o (clgA0) n (clg2An)
(glA) n (g2A)^ glng2A.

If A is thin and eM the set of all invariant probability measures on . So

() I, hence for any distinct elements gl’ g2 gnpC’ glA, g2A gn are

distinct and
n n

$() >- 0(0 (gi)) I (gi) n () implies
i=l i=l

() S ! for all n --> () 0 which implies (A) 0
n

(2) SD
G

{meG:There^ exists neighborhood U of m, glUng2^ for gl g2
{meG:There exists neighborhood of m, glUng2U for gl g2
U{clAO: glng2O 0 for all distinct pair of elements gl’ g2 e G}

U{clAn: glAng2A is finite}

U{:A is a thin subset of G}.

3. WEAKLY RECURRENT AND RECURRENT POINTS.

DEFINITION 3.1. meG is said to be -recurrent point if, for each neighborhood V

of m the set {ieN:meV} is infinite. Denote by R the set of all -recurrent points,

and by R
G

the complement of D
G

in
,

to be the set of all recurrent points. So

R
G

_m UgeG R’-
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DEFINITION 3.2. Denote by WR
G

the set of all weakly recurrent points in
,

it is

the complement of SD
G

in .
Since DGoAG proposition 2.5 which implies AGc_RGcmRG’_
DEFINITION 3.3. We call a subset A, a C-subset of G provided that

(i) d(A) 0

(ii) (K-IA) < for every finite subset K of G. equivalently.

(ii)’ For every finite number k, d(AUglAU...ugk_lA) < I.

REMARK. C stands for Chou. Denote by AC the class of all amenable semigroup which

has a C-subset. This class contains the semigroup N of positive integers, the group Z

of integers, all countably infinite locally finite groups, all infinite abelian

cancellation semigroups, and all infinite solvable groups, with the discrete topology

for more details see Fairchild [3].

One reason for studying the C-subset is the following result

PROPOSITION 3.4. Suppose G contains a C-subset A then

A n A
G

ATPROOF. Suppose An # say eAA
G

since is open subset contains m.

Let B {geG:gmeA} so there exists a finite subset K of G such that G K IB, Bm is a

subset of
,

hence o(m) {gm:geG} Gc_K-I (K-IA) implies A (m) c(K-IA) But

O(m) is closed invariant set implies there exists a probability measure such that

(K-IA)supp implies ’(IK-IA) which contradicts the definition of C-subset.

Then,

0AG .
REMARK. If A is a subset of G, I

A denote the function on A and 0 otherwise

THEOREM 3.5. If GeAC then there exists a weakly recurrent point in BG which is not

almost periodic in other words AGc wRG
PROOF. Theorem 2.6 shows that SD

G U{:A is a thin subset of GU{:(A) 0},

but (A) > 0 where Aois a C-subset of G, then A is not thin subset implies_SDG, so

nWRG . In Proposition 3.4 we proved that if A is a C-subset then nAG , hence

we get AGwRG. So there exists a weakly recurrent point in BG which is not almost

periodic. Moreover AGsDG # ;.
The only known method to find -recurrent points is to apply Zorn’s lemma to find

a -minimal set K, then show that each meK is -almost periodic and therefore

-recurrent.
In theorem 3.8 we are going to produce many other -recurrent points for a reason-

able class of semigroups.

Chou [4] has proved that

THEOREM (Chou): Let be a homemorphism of a compact Hausdorff space X onto itself.

Suppose that TI=T2... is a sequence of non-empty closed subsets of X such that a

ko< k
2

< can be found to satisfy Tn+iCTnsequence of positive integers k

Then n=1Tn contains a -recurrent point.

LEMMA 3.6. Suppose that A is a subset of G, d (A) 0, and neN. Then there exists

a subset of B of A, seN, s>n such that (B) 0 and SBc_A.
PROOF. By definition of upper -density, there exists eMg

such that ( )>0. If

for each s_->n, (A-s) 0. Then
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. (i-in) -in i)=I( u g
i=O i=O

This contradicts the fact that is a Z-variant ((k) (-ink)).
-sk 0 But sinc.e A (gA) soTherefore there exists s=>n such that (A )>

(kn-Sk) kn(g-SA) (Ang-SA) Take B A n(g SA) then H(B) > 0 and gaBs_A, but EMg

so d ~(B) > O.
g

DEFINITION 3.7. The group G is said to be nontorsion group if G contains an element

of infinite order.

THEOREM 3.8. If G is nontorsion group, GeAC, then there is a recurrent point in 8G
not almost periodic. In other words ASRG.which is

PROOF. Since G has a C-subset we may assume that A to be a C-subset hence by

ATproposition 3.4 Ao $. Therefore it remains to produce a recurrent point in A.
< s < and A A

i^_
A
2

By lemma 3.6 it is easy to construct s
2 inductively,

i- 1Ai Aisuch that d (Ai) > 0 and I’ i 2,3 therefore A contains a recurrent

point by applying Chou’s theorem to the case $ , X G, k
i

s
i

and T A notingn n
that g is an element of G of infinite order, so the function is nonperiodic and

hence there is a recurrent point which is not almost periodic, and since AGc RG_ we get

AGcRG. In fact R
G

is much bigger than A
G

The above theorem tells us that AGuDG # G, this answers the question raised by

Nilsen [5].

CONJECTURE. If G is amenable group then there is a recurrent point in 8G which is

periodic point. In otherwords: ASRG"not almost
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