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ABSTRACT. Let ¢ be a continuous positive increasing function defined on [0,0) such

that ¢(x + y) < ¢(x) +¢(y) and ¢(0) = 0. The Hardy-Orlicz space generated by ¢
is denoted by H(¢). In this paper, we prove that for ¢ #y, if H(¢) = Hy) as
sets, then H(¢) = H(y) as topological vector spaces. Some other results are given.
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1. INTRODUCTION.

Let ¢:[0,) —> [0,<) be a continuous increasing function such that ¢(x + y) <
¢(x) + ¢(y) and ¢(0) = 0. Let T be the unit circle, and m be the Lebesgue measure
on T. A complex valued measurable function f defined on T is called ¢-integrable
if &¢|f(t)[dm(t) < o, The space of all ¢-integrable functions on T will be denoted
by L(¢). This space was first introduced by Orlicz, [8]. Subsequent papers were
written to study different aspects of L(¢). Examples of these papers are Cater, [4],
Gramsch, [5] and Pallashke [9].

In [6] and [7], Lesniewicz introduced the so called Hardy-Orlicz spaces H(¢) for
a given such function ¢ . The space H(¢) was defined to be the space of all functions
f e L(4) such that f is the radial limit of some function g analytic in the open
unit disc and belongs to the Nevalinna class N. The relation between different H(¢)-
spaces was studied by Deeb, Khalil and Marzug {3]. In this paper, we show that the
inclusion map between two H(¢)-spaces is always continuous. Some other results are
given. It should be remarked that in the work of Lesniewicz, [6], [7] and many other

authors, ¢ is assumed to be a ¢-convex function. In this paper it is not assumed so.

2. PRELIMINARIES AND NOTATIONS.
A function ¢:[0,»)

> [0,) 1is called a modulus function if
(1) ¢ is continuous and increasing
(ii) ¢(x) = 0 if and only if x =0
(i11)  o(x +y) < o(x) + ¢(¥).
The functions ¢(x) = xp, 0<p<1l and ¢(x) = In(l + x) are examples of modulus

functions. Further, if ¢l and ¢2 are modulus functions, then ¢yt s and ¢y ° %,
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(2
1+ ¢

are modulus functions. Further, = = is a modulus function if ¢ is.

Let T = {z: |z| = 1}, A = {z: |z| < 1}. The space of analytic functions on a
is denoted by H(A). Let H#(A) = {f e H(A): %iT f(rele) exists a.e.0} . We will
consider H+(A) as a space of functions on T. For a given modulus function ¢ , we

define:

n

2w . 27 .
H($) = {f e H'(8): sup L) ¢|f(rele)]de L) ¢]f(ele)|de < ®}.

0 <r <1

The function d: H($) x H(¢) —> [0,=), d(f,g) lfv¢|f(ei°) - g(e'®) |de defines

a metric on H(¢), under which H(¢) becomes a topological vector space. If one
assumes that ¢lu| is subharmonic for u e H(A), then H7¢) turns out to be complete
[2]. For f € H(4), we write ]|f”¢ = fT ¢|f(eie)|de. If ¢(x) =xP, o0 < p <1,
then H(¢) = HP’ and for ¢(x) = In(l + x), H(¢) = N = {f e N: In(1+ |f]) <=},

where N 1is the Nevalinna class.

T

3. I: Hl —> H(¢) IS CONTINUOUS.

~In [2], it was shown that H1 < H(¢) for all modulus functions ¢ . The authors
in [3] were not able to show that the inclusion map 1I: H1 — H(¢) 1s continuous.
In this section we prove that I: H1 —> H(¢) 1is continuous. Some other related

questions are discussed.

THEOREM 2.1. Let ¢ and ¢ be two modulus functions such that 1im %%ﬁl = )

. X
exists. Then:

(1) H(¢) = H(y) if 2 # 0 and A is finite
(ii) H(#) € H(W) if r=0
(iii) H@) <« H(e) if A

®,

PROOF. (i) Let X # 0 be finite. Then there exists a , b b, e [0,=) such

IY
that
0(x) < ap(x) for x e [a,®) -++ (¥)

v(x) iblqb(x) for x e [bz’m) cee (**).

Let f e H(y). Set E(az) = {teT: If(t)]i_az}. Then

Il

f o] f(e*®) |ds + f o) £(et®) |do
E(82) Ec(az)
<apllEll, + eap <=
Hence f e H(¢) and H(y) £ H(¢). Similarly we show H(¢) < H(y). Consequently,
H(¢) = H(y). Case (1i) and (iii) are proved similarly and details are omitted. This

ends the proof.

THEOREM 2.2. Let 1lim ¢ (x) = X > 0. Then the inclusion ma I: H(¢) — H(y) 1is
p

continuous.
PROOF. From the proof of Theorem 2.1, there exists a,b > 0 such that ||f”uli
yv(a) + b ||fHu‘for all f e H(¢).
Let fn — 0 in H(¢). Thus the sequence (fn) is bounded in the metric of H(#¥)

and consequently bounded in H(y). If possible let there exist a subsequence (fn )
IN
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— 0, (fn ) has a subsequence which

¢ K
converges pointwise to the zero function. With no loss of generality, we can assume

such that || || >« > 0. Since ||f_|
g "k

that fn — 0 a.e. Another application of the proof of Theorem 2.1, yields y(x) <
¥(a) + b ¢|x] for all x e [0,«). Hence
vIf (0] <w@ +b-olf (O] .
k k
The sequence of functions g = y(a) + b ¢|fn | converges a.e. to y(a) and
k
f £, (t)dt — y(a).
T "k
Consequently, by the generalized Lebesgue convergence theorem, [10], we have
r
1im v|f (£ ]dt = Llim ylf_ (t)|dt = 0.
Tk Jr Tk o ™

This is a contradiction. Thus, the point w = 0 is the only limit point of the
bounded sequence (llfnllw)' Consequently, [11], the sequence an|]wconverges to

zero. Hence I: H(¢) — H(¥) 1is continuous. This ends the proof.

COROLLARY 2.3. If 1lim $E§§ A €(0,=), then H(¢) = H(y) as topological vector
X

spaces.

PROOF. By Theorem 2.1, H(¢) = H(y) as sets. Theorem 2.2 implies that I: H(¢) —

H(y) 1is an isomorphism. This ends the proof.

A linear map A: H(¢) —> H(y) is called metrically bounded if |[Af“w < >\||f||¢
for all f e H(¢) and some X > 0. Clearly every metrically bounded map is continuous.

The converse need not be true. However, for the inclusion map, we have the following:

THEOREM 2.4. Let ¢ be any modulus function. Then there exists A > 0 such that
1
for all f eH’, [|f|l, > 1, ”f||¢ _<_>\”f||1.

PROOF. It is know, [2] (and easy to show) that Hl < H(¢) for all modulus func-
tions ¢. If feH' and I[£l; =1, then using the argument in Theorem 2.1, we
have (12, < Ml -

Let f e Hl,[|f[|1 > 1. Then there exists 0 <a <1 such that [laf||, = 1.

Since o < 1, there exists a natural number n such that — < a < % Hence
loflly < lleflly = rafl£]]
But ||;—%—T f”¢ < Haf”¢ , and || % f“¢ > %(—”f“¢ for any modulus function ¢ . It

follows that:

1
n+1

A
Hell, < r-allfll, <2 Uel,

and consequently

e, <» 2= el < il

This ends the proof.

THEOREM 2.5. Let ¢ be a given modulus function such that Hl = H(¢). If metric
and topological bounded sets coincide in H(¢), then ||f|]1 i*]lf”A for all f e H(¢),
Hf”¢ <1 for some A > 0.
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PROOF. Applying Corollary 2.3, 1: H(¢) ~ H1 is an isomorphism of topological
vector spaces. If possible, let | f "1 <x|f ”¢ be not true on the unit sphere of

H(¢) . Then, for each n , there exists fn € H(¢9), an H¢ = 1 such that

be I, 2nlie I, =n

f
Consider the sequence 7? =8, - By the assumption on bounded sets of H(¢) , we
have, [12], g, + 0 in H(¢) . But "gn ”l = ”-ﬁlul >1 for all n . This contradicts
the continuity of the identity map I: H(¢) - H . Hence there exists X > 0
such that:
Pelly <xlely -

for all f € H(¢), “f”¢=1.

Let f € H(¢), | ||¢ <1 . Consider the map K: [0,=) > [0,®), K(t) = || tf ]}Q.
It can be easily seen that K 1is continuous. Hence there exists a > 1 such that
K(a) = 1. Thus for every f € H(¢), || f H¢ <1, we can find a > 1 such that

||af H¢ = 1 . Hence, from equation (*) , we get:
lafll, <rlafll, <2axll£ll, -

Consequently, | f ”1 <2a £ H¢ . This end the proof.

4. FURTHER RESULTS
The concept of metrically bounded linear operator was introduced in Section 3.
A linear map A: H(¢) -~ H(y) 1is called metrically bounded if there exists
X € (0,») such that [|Af ”w <A|f ”¢ . In general, a continuous linear map need not
be metrically bounded. In this section we prove a result which is a generalization

of Theorem 3.1 in [3].

THEOREM 4.1. Let ¢ and ¢ be any two modules functions. Then the following

are equivalent:

() Hmee) o Lins(

x>0 y(x) X

= ¢, for some ¢€,8 € (0,)

(i1) H(¢4) = H(y), and the identity map I is metrically bounded.

PROOF. (i) - (ii) . From the assumption in (i) , one can choose a and b

in (0,») such that

¥(x)
o(x) .
v - on  (b,%)
for some 71,s € (0,») . Theorem 3.2 implies that H(¢) = H(y)

Let f € H(¢) . Consider the following sets:
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E(a) ={t: 0 < [¢(T)] <a}
Eb) ={t: | £ED)] > b
E(a,b) = {t: ac< [£6') < b) .

Then:

belly = [ wlgeSie - |
E(a) E(

1 it 1
< =|| f + =
= rll ”¢ fE(a,b)w'f& )Idt + sllf,,¢ .

it i
L ICR L [

a,

On the closed interval [a,b], the continuity of e(x) implies the existence of

v (x)
A > 0 such that y(x) < 2¢(x) . Hence
it
[ wreere < dyey,
E(a.b) i
Thus, |[£]| <8 |[£]l. where B = max(%;é;%ﬂ . In a similar way one can show that

“f”¢ < Y,lfll¢ for all f € H(¢) = H(y) . Hence the identity map is metrically
‘bounded.
Conversely, (ii) » (i) . Assume H(¢) = H(y) and 1: H(¢) <> H(y) is
metrically bounded. Then there exists « and B8 in (0,) such that

Iely <oliel, < Nell,

I
Hence < — ¢ <a for all f € H(¢) = H(y) . Consider the function f(z) = x

IR
it Y
for z = e -, x € (0,o) . Then

™R

-
Z

€l = 660 ana £ )], = w00

Consequently %—f_ﬁ%%%—j_a . Since o,B € (0,») , (i) then follows. This end the
proof.
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