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In turbulent flow, the normal procedure has been seeking means u of the
fluid velocity u rather than the velocity itself. In large eddy simulation,
we use an averaging operator which allows for the separation of large-
and small-length scales in the flow field. The filtered field u denotes the
eddies of size O(δ) and larger. Applying local spatial averaging opera-
tor with averaging radius δ to the Navier-Stokes equations gives a new
system of equations governing the large scales. However, it has the well-
known problem of closure. One approach to the closure problem which
arises from averaging the nonlinear term is the use of a scale similarity
hypothesis. We consider one such scale similarity model. We prove the
existence of weak solutions for the resulting system.

1. Introduction

The turbulent flow of an incompressible fluid is modelled by solution
(u,p) of the incompressible Navier-Stokes equations

ut +∇ · (uu)−Re−1∆u+∇p = f in Ω, for 0 < t ≤ T,
∇ ·u = 0 in Ω, for 0 < t ≤ T,

u(x,0) = u0(x) in Ω, u = 0 on ∂Ω, for 0 < t ≤ T,∫
Ω
pdx = 0,

(1.1)

where Ω ⊂ R
d (d = 2 or 3), u : Ω× [0,T]→ R

d is the fluid velocity, p : Ω→
R is the fluid pressure, f(x,t) is the (known) body force, u0(x) is the
initial flow field, and Re is the Reynolds number. There are numerous
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approaches to the simulation of turbulent flows in practical settings. One
of the most promising current approaches is large eddy simulation (LES)
in which approximations to local spatial averages of u are calculated. In
LES, the filtered quantities and fluctuations are defined as

u(x,t) = gδ ∗u =
∫

R3
gδ(x−x′)u(x′, t)dx′,

u′ = u−u,
(1.2)

where

gδ = δ−3g

(
x

δ

)
(1.3)

and g is the filter function of characteristic width δ. Applying the filter-
ing operator to the Navier-Stokes equations gives

ut +∇ · (uu)−Re−1∆u+∇p = f, ∇ ·u = 0, in Ω× (0,T]. (1.4)

The governing equation (1.4) may be rewritten as

ut +∇ · (uu)−Re−1∆u+∇p+∇T = f, ∇ ·u = 0, in Ω× (0,T], (1.5)

where T denotes the subgrid tensor defined as

T := uu−uu (1.6)

which must be modelled. In general, the approach to closure in LES,
based on the scale similarity hypothesis, was introduced in 1980 by Bar-
dina et al. [1]. The idea of scale similarity can be thought of as a sort
of extrapolation from the resolved scales to the unresolved scales. The
original Bardina model is given by

uu−uu ∼= uu−uu. (1.7)

This model has proved to be highly consistent [11, 12], but stability prob-
lems have been reported in various tests of the Bardina model. These
have led to various extensions of Bardina model such as the Layton
model proposed in [8], the Liu-Meneveau-Katz model [10], Horiuti’s fil-
tered Bardina model [4], and many “mixed” models. In this paper, we
consider a model proposed in [8], which is another realization of the
idea of scale similarity seeking a clear kinetic energy balance. The model
is based on the following three modelling steps and the nonlinear term
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is written as [9]

uu = uu+uu′ +u′u+u′u′. (1.8)

Step 1. The cross terms are modelled by scale similarity:

uu′ +u′u = u(u−u) + (u−u)u ∼ u(u−u)+ (
u−u)u. (1.9)

Step 2. The resolved term uu is modelled with a Boussinesq-type as-
sumption

uu ∼ uu+dissipative mechanism on O(δ) scales, (1.10)

where

∇ · (uu) ∼ ∇ · (uu)−A(δ)u. (1.11)

The operator A(δ)w takes the general form A(δ)w = R∗∇ · TF(Rw),
where R is a restriction operator to the finest resolved scales. It is de-
fined by the use of its variational representation

−(A(δ)w,v
)
=
(
νF(δ)D(w −w),D(v −v)), (1.12)

where νF(δ) is the fine scale fluctuation coefficient. This is simplified to

A(δ)w ∼ ∇ · (νF(δ)D(w −w)− (
w −w))

, (1.13)

where D(w) := (1/2)(∇w +∇wt).
Step 3. The u′u′ term is modelled by a Boussinesq hypothesis that

u′u′ ∼ −νT(δ,u)
(∇u+∇ut), (1.14)

where νT(δ,u) is called turbulent viscosity coefficient. Using (1.9), (1.11),
and (1.14) in (1.4), the model is written with respect to (w,q) which de-
notes the resulting approximation to (u,p),

wt +∇ · (ww) +∇ · (w(w −w) + (w −w)w
)−∇ · (νT(δ,w)

(∇w +∇wt))
−∇q−Re−1∆w −A(δ)w = f, ∇ ·w = 0, in Ω× (0,T],

(1.15)
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where w,f : Ω× [0,T]→ R
d, q : Ω→ R. Boundary and zero mean condi-

tions must be imposed on (1.15). There are several possibilities for the
turbulent viscosity coefficient. The most common ones used in computa-
tional practice are a bulk viscosity νT = νT (δ), the viscosity of [5], νT =
(0.17)δ|w −w|, and the Smagorinsky model, see [2, 6, 7, 13],

νT(δ,w) =
(
csδ

)2∣∣∇w +∇wt
∣∣. (1.16)

We will assume that νT = 0, namely, there is no extra viscosity terms.
With (1.16) or νT = νT(δ), our results can be easily extended. Before start-
ing to prove the existence of weak solution for the model, we will give
a proof that the model, given by (1.15), is Galilean invariant. It has been
shown that the filtered form of Navier-Stokes equation is Galilean in-
variant [14]. Thus, it is enough to show that

∇ · (T̃(w +W)
)
=∇ · T̃(w) (1.17)

for any constant vectorW . To this end we will give the following lemma.

Lemma 1.1. Consider the model of the subgrid tensor

T = uu−uu ∼ww +w(w −w) + (w −w)w

− (
csδ

)2∣∣∇w +∇wt
∣∣(∇w +∇wt)

− νF(δ)D(w −w)− (
w −w)−ww

= T̃(w),

(1.18)

then ∇ · T̃(w +W) =∇ · T̃(w) for any constant vector W .

Proof. First we consider

T̃(w +W) =
(
w +W

)(
w +W

)
+
(
w +W

)(
w +W − (

w +W
))

+
(
w +W − (

w +W
))(

w +W
)

− (
csδ

)2∣∣∇(w +W) +∇(w +W)t
∣∣(∇(w +W) +∇(w +W)t

)
−
(
νF(δ)D

(
w +W − (

w +W
))−(

w +W −w +W
))

− (w +W)(w +W).
(1.19)
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Since W is a constant vector, W =W , W =W , Ww =Ww, and wW =
wW . Thus,

T̃(w +W) =ww +w(w −w) + (w −w)w

− (
csδ

)2∣∣∇w +∇wt
∣∣(∇w +∇wt)

− νF(δ)D(w −w)− (
w −w)

−ww + (w −w)W +W(w −w)

+W(w −w) + (w −w)W.

(1.20)

Hence, we have

∇ · T̃(w +W) =∇ · T̃(w) +∇ · (w −w)W +∇ · (W(w −w)
)

+∇ · ((w −w)
W

)
+∇ · (W(

w −w))
.

(1.21)

Since the averaging preserves incompressibility [14], that is, ∇ ·w =
∇ ·w = 0, so we have

∇ · T̃(w +W) =∇ · T̃(w). (1.22)

This completes the proof. �

2. Existence of solutions

In this section, we consider the question of the existence of weak solu-
tions to the following systems. Thus, we seek (w,q) satisfying

wt +∇ · (ww) +∇ · (w(w −w) + (w −w)w
)−∇q−Re−1∆w

−A(δ)w = f, ∇ ·w = 0, in Ω× (0,T],
(2.1)

w(x,0) = gδ ∗u0(x) in Ω, (2.2)

w
(
xj +L,t

)
=w

(
xj, t

)
,∫

Ω
u0dx = 0,

∫
Ω
f dx = 0,

∫
Ω
qdx = 0.

(2.3)

We will begin by giving the definition of weak solution. Let D(Ω) =
{ψ ∈ C∞

0 (Ω) : ∇ · ψ = 0 in Ω}, let H(Ω) be the completion of D(Ω) in
L2(Ω), let H1(Ω) be the completion of D(Ω) in W1,2(Ω), and let ψ ∈
D(Ω).

Definition 2.1. Let u0 ∈H(Ω) and f ∈ L2(ΩT). A measurable function w :
ΩT → R

n is a weak solution of the problem (2.1) and (2.2) in ΩT if
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(a) w ∈ VT = L2(0,T ;H1)∩L∞(0,T ;H);
(b) w verifies

∫ t

0

[−Re−1(∇w,∇ψ) + (ww,∇ψ) + (
w(w −w) + (w −w)w,∇ψ)

− νF(δ)
(
D(w −w),D(ψ −ψ))]ds

= −
∫ t

0

(
f,ψ

)
ds+

(
w(t),ψ

)− (
w0,ψ

)
,

(2.4)

where, for T ∈ (0,∞), ΩT = Ω× [0,T].

Before we prove the existence of weak solutions of (2.1), (2.2), and
(2.3), we give the following lemma which is proved in [8]. Here, we will
give this proof briefly.

Lemma 2.2. Let b(u,v,w) denote the (nonstandard) trilinear form

b(u,v,w) :=
∫
Ω
uv : ∇w +

[
u(v −v) + (u−u)v] : ∇wdx. (2.5)

Suppose that the averaging used in L2(Ω) is selfadjoint and commutes with
differentiation, w ∈ L2(Ω) and ∇w ∈ L2(Ω) are periodic with zero mean. Then

I =
∫
Ω
∇ · [ww +w(w −w) + (w −w)w

] ·wdx = 0. (2.6)

Proof. Integration by parts and using the properties of the averaging op-
erator yield

I =
∫
Ω

[
ww +w(w −w) + (w −w)w

]
: ∇wdx

=
∫
Ω

[
ww : ∇w +ww : ∇w −ww : ∇w +ww : ∇w −ww : ∇w]

dx.

(2.7)

An easy index calculation shows that

∫
Ω
uv : ∇wdx =

∫
Ω
u · (∇w)vdx, (2.8)
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which is the more familiar trilinear form. Making this change gives

I =
∫
Ω

[
w · (∇w)w +w · (∇w)w +w · (∇w)w − 2w · (∇w)w

]
dx. (2.9)

Since ∇ ·w = 0, the third term vanishes. By the assumption on the aver-
aging process, ∇ ·w = 0, the last term vanishes. We use the usual skew-
symmetry property to obtain∫

Ω
w · (∇w)w +w · (∇w)w = 0. (2.10)

Thus I = 0. �

Theorem 2.3. Let T > 0 and let Ω be any domain in R
d. Then, for any given

u0 ∈ L2(Ω) and f ∈ L2(ΩT), there exists at least one weak solution to (2.1),
(2.2), and (2.3) in ΩT .

Proof. We will use the Faedo-Galerkin method following the presenta-
tion of Galdi in the Navier-Stokes case [3]. Let D(Ω) =: {ψ ∈ C∞

0 : ∇ ·ψ =
0 in Ω}, let H(Ω) be the completion of D(Ω) in L2(Ω), let H1(Ω) be the
completion of D(Ω) in W1,2(Ω), and let {ψr} ⊂D(Ω) be the orthonormal
basis of H(Ω). We will look for approximating solutions vk of problem
(2.1), (2.2), and (2.3), which have the form

vk(x,t) =
k∑
r=1

ckr(t)ψr(x), k ∈ N. (2.11)

In (2.1), we set w = vk; multiply by ψr and integrate over Ω to obtain

d

dt

(
vk,ψr

)− (
vkvk,∇ψr

)
+Re−1 (∇vk,∇ψr)

+ νF(δ)
(
D
(
vk −vk),D(

ψr −ψr
))

− (
vk

(
vk −vk)+ (

vk −vk)vk,∇ψr)
=
(
f,ψr

)
.

(2.12)

Note that since ∇ ·u = 0, it follows that ∆u = 2∇ ·D(u). The symmetry of
deformation tensor yields

1
2
(∇u,∇v) = (

D(u),D(v)
)
. (2.13)
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Thus, we obtain the following equality:

d

dt

(
vk,ψr

)− (
vkvk,∇ψr

)
+Re−1 (∇vk,∇ψr)

+
νF(δ)

2
(∇(

vk −vk),∇(
ψr −ψr

))
− (

vk
(
vk −vk)+ (

vk −vk)vk,∇ψr)
=
(
f,ψr

)
.

(2.14)

If we write (2.11) in (2.14), this represents a system of ordinary differen-
tial equations of the form

d

dt
ckr(t)−

k∑
i,j=1

ckickj
((
gδ ∗ψi

)(
gδ ∗ψj

)
,∇ψr

)
+Re−1

k∑
i=1

cki
(∇ψi,∇ψr)

+
νF(δ)

2

k∑
j=1

ckj
(∇(

ψj − gδ ∗ψj
)
,∇(

ψr − gδ ∗ψr
))

−
k∑
i=1

ckickj
[(
gδ ∗ψi

)(
ψj − gδ ∗ψj

)
+
(
ψj − gδ ∗ψj

)(
gδ ∗ψi

)
,∇(

gδ ∗ψr
)]

=
(
f,ψr

)
= fr, r = 1, . . . ,k,

(2.15)

with the initial condition

ckr(0) = c0r =
(
v0,ψr

)
. (2.16)

Since fr ∈ L2(0,T) for all r = 1, . . . ,k, from the elementary theory of or-
dinary differential equations, we know that the problem which is given
by (2.15) and (2.16) admits a unique solution ckr ∈W1,2(0,Tk), where
Tk ≤ T .

Multiplying (2.15) by ckr and summing over r from 1 to k, we get

1
2
d

dt

∥∥vkt ∥∥2
2 −

(
vkvk,∇vk)+ νF(δ)

2
∥∥∇(

vk −vk)∥∥2
2

− (
vk

(
vk −vk)+ (

vk −vk)vk,∇vk)+Re−1∥∥∇vk∥∥2
2

=
(
f,vk

)
.

(2.17)
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We integrate this equality to obtain

∥∥vk∥∥2
2 + 2Re−1

∫ t

0

∥∥∇vk∥∥2
2ds− 2

∫ t

0

(
vkvk,∇vk)ds

+ νF(δ)
∫ t

0

∥∥∇(
vk −vk)∥∥2

2ds

− 2
∫ t

0

(
vk

(
vk −vk)+ (

vk −vk)vk,∇vk)ds
= 2

∫ t

0

(
f,vk

)
ds+

∥∥v0k
∥∥2

2

(2.18)

with v0k = vk(0). We consider the third and last terms in the left-hand
side of (2.18). We write these two terms in nonstandard trilinear form:

b
(
vk,vk,vk

)
= −2

∫
Ω

[
vk · ∇vkvk +vk · ∇vkvk −vk · ∇vkvk

+vk · ∇vkvk −vk · ∇vkvk]dx. (2.19)

From Lemma 2.2, I = b(vk,vk,vk) = 0. In the last equality, we use I = 0,
Schwarz inequality, and Poincaré-Friedrichs inequality, and since ‖v0k‖ ≤
‖v0‖, we obtain

∥∥vk∥∥2
2 +Re−1

∫ t

0

∥∥∇vk∥∥2
2ds+ νF(δ)

∫ t

0

∥∥∇(
vk −vk)∥∥2

2ds

≤ CRe
∫ t

0

∥∥f∥∥2
2ds+

∥∥v0
∥∥2

2,

(2.20)

where C is a constant. Then we easily deduce the following bound:

∥∥vk∥∥2
2 +Re−1

∫ t

0

∥∥∇vk2∥∥2
2ds ≤M ∀t ∈ [0,T], (2.21)

with M independent of t and k. We will now investigate the properties
of convergence of the sequence {vk} when k→∞. To this end we begin
to show that, for any fixed r ∈ N, the sequence of functions

Gr
k(t) ≡

(
vk(x,t),ψr

)
(2.22)

is uniformly bounded and uniformly continuous in t ∈ [0,T]. The uni-
form boundness follows at once from (2.21). To show the uniform conti-
nuity, integrating (2.14) with respect to t from s to t and using Schwarz
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inequality, we obtain∣∣Gr
k(t)−Gr

k(s)
∣∣

=
∣∣(vk(x,t)−vk(x,s),ψr)∣∣

≤
∫ t

s

∣∣b(vk,vk,ψr)∣∣dτ + νF(δ)2

∫ t

s

∥∥∇(
vk −vk)∥∥∥∥∇(

ψr −ψr
)∥∥dτ

+Re−1
∫ t

s

∥∥∇vk∥∥∥∥∇ψr∥∥dτ +∫ t

s

∥∥f∥∥∥∥ψr∥∥dτ.
(2.23)

On the other hand, an easy index calculation shows that∫
Ω
uv : ∇wdx =

∫
Ω
u · (∇w)vdx, (2.24)

which is a more familiar trilinear form. Making this change in the for-
mula

b
(
vk,vk,ψr

)
:=

∫
Ω

(
vkvk : ∇ψr +

(
vk

(
vk −vk)+ (

vk −vk)vk) : ∇ψr
)
dx

(2.25)

gives

b
(
vk,vk,ψr

)
=
∫
Ω
vk · ∇ψrvk +vk · ∇ψrvk +vk · ∇ψrvk − 2vk · ∇ψrvk.

(2.26)

By the usual skew-symmetry property of this trilinear form, we obtain

b
(
vk,vk,ψr

)
=
∫
Ω
−vk · ∇vkψr −vk · ∇vkψr −vk · ∇vkψr + 2vk · ∇vkψr.

(2.27)

Using Cauchy-Schwarz inequality and Young inequality for convolu-
tions, we get∫ t

s

∣∣b(vk,vk,ψr)∣∣
≤ s1 max

t

∥∥vk(x,t)∥∥√t− s(∫ t

s

∥∥∇vk∥∥2
)1/2

+ s2 max
t

∥∥vk(x,t)∥∥√t− s(∫ t

s

∥∥∇vk∥∥2
)1/2

,

(2.28)
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where s1 = maxx∈Ω |ψr(x)| and s2 = 4maxx∈Ω |ψr(x)|. Now we use this in-
equality and triangle inequality in (2.23) to obtain∣∣Gr

k(t)−Gr
k(s)

∣∣
≤ max

t

∥∥vk(x,t)∥∥√t− s{s1

(∫ t

s

∥∥∇vk∥∥2
)1/2

+ s2

(∫ t

s

∥∥∇vk∥∥2
)1/2

}

+
νF(δ)

2
s3
√
t− s

(∫ t

s

∥∥∇vk∥∥2
)1/2

+Re−1∥∥∇ψr∥∥√t− s(∫ t

s

∥∥∇vk∥∥2
)1/2

+max
x∈Ω

∥∥ψr∥∥√t− s(∫ t

s

‖f‖2
)1/2

,

(2.29)

where s3 = 2‖∇ψr‖. Because of (2.21), the right-hand side of (2.29)
converges to zero uniformly as t→ s. The sequence of functions Gr

k(t)
is an equicontinuity. By the Ascoli-Arzelá theorem, from the sequence
{Gr

k(t)}k∈N, we may then select a subsequence which we continue to de-
note by {Gr

k(t)}k∈N uniformly converging to a continuous function Gr(t).
The selected sequence {Gr

k
(t)}k∈N may depend on r. However, using

Cantor diagonalization method, we end up with a sequence again de-
noted by {Gr

k(t)}k∈N converging to Gr for all r ∈ N uniformly in t ∈ [0,T].
This information, together with (2.21) and the weak compactness of the
space H, allows us to infer the existence of v(t) ∈H(Ω) such that

lim
k→∞

(
vk(t)−v(t),ψr

)
= 0, uniformly in t ∈ [0,T], ∀r ∈ N, (2.30)

where vk(t) converges weakly in L2 to v(t), uniformly in t ∈ [0,T], that
is,

lim
k→∞

(
vk(t)−v(t),u

)
= 0, uniformly in t ∈ [0,T], ∀u ∈ L2(Ω). (2.31)

In view of (2.21), v ∈ L∞(0,T ;H(Ω)). Again, from (2.21), by the weak
compactness of the space L2(ΩT),

lim
k→∞

∫ t

0

(
∂m

(
vk −v

)
,w

)
ds = 0 ∀w ∈ L2(ΩT

)
, m = 1, . . . ,n, (2.32)

with ∂m = ∂/∂xm and v ∈ L2(0,T ;H1(Ω)) [3]. It is shown that (2.30) im-
plies the strong convergence of {vk} to v in L2(w × [0,T]) for all w ⊂Ω,
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that is,

lim
k→∞

∫T

0

∥∥vk(t)−v(t)∥∥2
2,Qdt = 0 (2.33)

in [3], where Q is a cube in R
n. Now, with the help of (2.31), (2.32), and

(2.33), we show that v is a weak solution to (2.1) and (2.2). Since we
have already proved that v ∈ VT , it remains to show that v satisfies (2.3).
Integrating (2.14) from 0 to t < T , we find

−Re−1
∫ t

0

(∇vk,∇ψr)ds+∫ t

0

(
vk

(
vk −vk)+ (

vk −vk)vk,∇ψr)ds
+
∫ t

0

(
vkvk,∇ψr

)− νF(δ)
2

∫ t

0

(∇(
vk −vk),∇(

ψr −ψr
))
ds

= −
∫ t

0

(
f,ψr

)
ds+

(
vk(t),ψr

)− (
vo,ψr

)
.

(2.34)

Now we consider the second and third terms of the left-hand side of
(2.34) by the usual skew-symmetry property, writing

b
(
vk,vk,ψr

)
=
∫ t

0

∫
Ω

[−vk · ∇vkψr −vk · ∇vkψr −vk · ∇vkψr + 2vk · ∇vkψr
]
dx.

(2.35)

From (2.31) and (2.32), we get

lim
k→∞

(
vk(t)−v(t),ψr

)
= 0,

lim
k→∞

∫ t

0

(∇vk(s)−∇v(s),∇ψr
)
ds = 0.

(2.36)

Furthermore, let Q be a cube containing the support of ψr , then we have∣∣∣∣∫ t

0

[(
vk · ∇vk,ψr

)− (
v · ∇v,ψr

)]
ds

∣∣∣∣
≤
∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣+ ∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣.
(2.37)

We consider the first term of the right-hand side of (2.37), and using
Cauchy-Schwarz inequality, we obtain∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Q∣∣∣∣ ≤ ∫ t

0

∥∥vk −v∥∥∥∥∇vk∥∥max
x∈Q

∣∣ψr(x)∣∣. (2.38)
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Setting s1 : maxx∈Q |ψr(x)| and using (2.21) and Young inequality for con-
volution, we have

∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Q∣∣∣∣ ≤ Cs1M

1/2
(∫ t

0

∥∥vk −v∥∥2
2,Q

)1/2

, (2.39)

where C is a constant. Thus, using (2.33), we get

lim
k→∞

∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣ = 0. (2.40)

We also have

∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣ ≤ n∑
m=1

∣∣∣∣∫ t

0

(
∂m

(
vk −v),vmψr)Qds∣∣∣∣

≤
n∑

m=1

∣∣∣∣∫ t

0

(
∂m

(
vk−v),gδ ∗ ((gδ ∗vm)ψr))Qds∣∣∣∣,

(2.41)

and since gδ ∗ ((gδ ∗vi)ψr) ∈ L2(ΩT), (2.32) implies that

lim
k→∞

∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣ = 0. (2.42)

Relations (2.40) and (2.42) yield

lim
k→∞

∣∣∣∣∫ t

0

((
vk · ∇vk,ψr

)− (
v · ∇v,ψr

))
ds

∣∣∣∣ = 0. (2.43)

Now we consider the second term of b(vk,vk,ψr) which is given by
(2.35). Again let Q be a cube containing the support of ψr , then we have

∣∣∣∣∫ t

0

((
vk · ∇vk,ψr

)− (
v · ∇v,ψr

))
ds

∣∣∣∣
≤
∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣+ ∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣.
(2.44)
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We use Cauchy-Schwarz inequality and the first term of the right-hand
side of (2.44) to obtain

∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣
≤ s2

(∫ t

0

∥∥vk −v∥∥2
2,Qds

)1/2(∫ t

0

∥∥∇vk∥∥2
2,Qds

)1/2

.

(2.45)

Using (2.21) and Young inequality, we get

∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣ ≤ Cs2M

1/2
(∫ t

0

∥∥vk −v∥∥2
2,Qds

)1/2

. (2.46)

Thus, using (2.33), we obtain

lim
k→∞

∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣ = 0. (2.47)

Now we consider the second term of the right-hand side of (2.44); we
write∣∣∣∣∫ t

0

(
vk · ∇(

vk −v),ψr)Q∣∣∣∣ ≤ n∑
m=1

∣∣∣∣∫ t

0

(
∂m

(
vk −v),vmψr)Qds∣∣∣∣ (2.48)

and since vmψr ∈ L2(ΩT), (2.32) implies

lim
k→∞

∣∣∣∣∫ t

0

(
vk · ∇(

vk −v),ψr)Qds∣∣∣∣ = 0. (2.49)

Relations (2.47) and (2.49) yield

lim
k→∞

∣∣∣∣∫ t

0

((
vk · ∇vk,ψr

)− (
v · ∇v,ψr

))
ds

∣∣∣∣ = 0. (2.50)

Similarly we consider the third term of b(vk,vk,ψr) which is given by
(2.35); we write

∣∣∣∣∫ t

0

[(
vk · ∇vk,ψr

)− (
v · ∇v,ψr

)]
ds

∣∣∣∣
≤
∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣+ ∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Q∣∣∣∣.
(2.51)
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Again using Cauchy-Schwarz inequality, Young inequality, and (2.21) in
the first term of the right-hand side of (2.51), we get∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣ ≤ Cs2M

1/2
(∫ t

0

∥∥vk −v∥∥2
2,Qds

)1/2

. (2.52)

Using (2.33), we get

lim
k→∞

∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣ = 0. (2.53)

Now we consider the second term of the right-hand side of (2.51)∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣ ≤ n∑
m=1

∣∣∣∣∫ t

0

(
∂m

(
vk −v),vmψr)Qds∣∣∣∣. (2.54)

We use the properties of convolutions to obtain∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣ ≤ n∑
m=1

∣∣∣∣∫ t

0
∂m

(
vk −v),gδ ∗ (vmψr)Qds∣∣∣∣.

(2.55)
Since gδ ∗ (vmψr) ∈ L2(ΩT), (2.32) implies

lim
k→∞

∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣ = 0. (2.56)

Relations (2.53) and (2.56) yield

lim
k→∞

∣∣∣∣∫ t

0

[(
vk · ∇vk,ψr

)− (
v · ∇v,ψr

)]
ds

∣∣∣∣ = 0. (2.57)

Now we consider the last term of b(vk,vk,ψr) which is given by (2.35).
Again we can write∣∣∣∣∫ t

0

[(
vk · ∇vk,ψr

)− (
v · ∇v,ψr

)]
ds

∣∣∣∣
≤
∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣+ ∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣.
(2.58)

Similarly, using Cauchy-Schwarz inequality, Young inequality, (2.21),
and (2.33) in the first term of the right-hand side of (2.58), we get

lim
k→∞

∣∣∣∣∫ t

0

((
vk −v) · ∇vk,ψr)Qds∣∣∣∣ = 0. (2.59)
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Besides, we get the following inequality for the second term of (2.58):∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣ ≤ n∑
m=1

∣∣∣∣∫ t

0

(
∂m

(
vk −v),vmψr)Q∣∣∣∣. (2.60)

From the properties of convolution, we write∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣ ≤ n∑
m=1

∣∣∣∣∫ t

0

(
∂m

(
vk −v),gδ ∗ (vmψr))Q∣∣∣∣. (2.61)

Since gδ ∗ (vmψr) ∈ L2(ΩT), and from (2.32), we obtain

lim
k→∞

∣∣∣∣∫ t

0

(
v · ∇(

vk −v),ψr)Qds∣∣∣∣ = 0. (2.62)

Thus, relations (2.59) and (2.62) yield

lim
k→∞

∣∣∣∣∫ t

0

[(
vk · ∇vk,ψr

)− (
v · ∇v,ψr

)]
ds

∣∣∣∣ = 0. (2.63)

Finally, we consider the fourth term of the left-hand side of (2.34). Again
let Q be a cube containing the support of ψr , then we have∣∣∣∣∫ t

0

[(∇(
vk −v),∇(

ψr −ψr
))− (∇(

vk −v),∇(
ψr −ψr

))]
ds

∣∣∣∣
≤
∣∣∣∣∫ t

0

(∇(
vk −v),∇(

ψr −ψr
))

Qds

∣∣∣∣
+
∣∣∣∣∫ t

0

(∇(
vk −v),∇(

ψr −ψr
))

Qds

∣∣∣∣.
(2.64)

Since ∇(ψr −ψr) ∈ L2(ΩT), and using (2.32), we get

lim
k→∞

∣∣∣∣∫ t

0

(∇(
vk −v),∇(

ψr −ψr
))

Q

∣∣∣∣ = 0. (2.65)

Similarly, since gδ ∗∇(ψr −ψr) ∈ L2(ΩT), and using (2.32), it gives

lim
k→∞

∣∣∣∣∫ t

0

(∇(
vk −v),∇(

ψr −ψr
))

Qds

∣∣∣∣ = 0. (2.66)

Using (2.65) and (2.66), we get

lim
k→∞

∣∣∣∣∫ t

0

(∇(
vk −vk)−∇(

v −v),∇(
ψr −ψr

))
ds

∣∣∣∣ = 0. (2.67)
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Therefore, taking the limit over k→∞ in (2.34) and using (2.36), (2.43),
(2.50), (2.57), (2.63), and (2.67), we get

−Re−1
∫ t

0

(∇v,∇ψr)+∫ t

0

(
v(v −v) + (v −v)v,∇ψr

)
ds

+
∫ t

0

(
vv,∇ψr

)
ds− νF(δ)

2

∫ t

0

(∇(v −v),∇(
ψr −ψr

))
= −

∫ t

0

(
f,ψr

)
ds+

(
v(t),ψr

)− (
v0,ψr

)
.

(2.68)

However, from [3, Lemma 2.3], we know that every function ψ ∈D(Ω)
can be uniformly approximated in C2(Ω) by functions of the form

ψN(x) =
N∑
r=1

γrψr(x), N ∈ N, γr ∈ R. (2.69)

So we write (2.68) with ψN in place of ψr and we may pass to the limit
N→∞ in this new relation and use the fact that v∈L2(0,T ;H1)∩L∞(0,T ;
H) to show that v is a weak solution of (2.1) and (2.2). �
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