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The ejectors are used commonly to extract gases in the petroleum industry where it is not possible
to use an electric bomb due the explosion risk because the gases are flammable. The steam ejector
is important in creating and holding a vacuum system. The goal of this job is to develop an object
oriented parallel numerical code to investigate the unsteady behavior of the supersonic flow in
the ejector diffuser to have an efficient computational tool that allows modeling different diffuser
designs. The first step is the construction of a proper transformation of the solution space to
generate a computational regular space to apply an explicit scheme. The second step, consists in
developing the numerical code with an-object-oriented parallel methodology. Finally, the results
obtained about the flux are satisfactory compared with the physical sensors, and the parallel
paradigm used not only reduces the computational time but also shows a better maintainability,
reusability, and extensibility accuracy of the code.
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1. Introduction

Steam jet ejectors offer a simple, reliable, low-cost way to produce vacuum. They are
especially effective in the chemical industry where an on-site supply of the high-pressure
motive gas is available. The ejector operation consists of a high-pressure motive gas that
enters the steam chest at low velocity and expands through the converging-diverging nozzle.
These results show a decrease in pressure and an increase in velocity. Meanwhile, the fluid
enters at the suction inlet. The motive fluid, which is now at high velocity, enters and
combines with the suction fluid [1, 2].

Ejector operations are classified as critical or noncritical flow mode; in the critical
mode; the incoming flow is supersonic; other related experimental work and also work with
CFD are in [3, 4]. This paper investigates the behavior of the supersonic flow for value
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of Mach number of 2.0 in the diffuser. The form of the ejector diffuser is not rectangular;
therefore, it is necessary to transform the physical plane to a computational plane where the
grid is rectangular.

The implementation was done using JPVM to run the program in a collection of
computing system interconnected by one or more networks as a single logical computational
resource to reduce the computational time. Figure 1 shows the ejector parts commonly used
in the petroleum industry. Ejectors have no moving parts and operate by the action of high-
pressure incoming stream like air and other vapors at a lower pressure into the moving
stream and thereby removing them from the process system at intermediate pressure.

2. The Governing Equation

We consider the two-dimensional compressible nonlinear Navier-Stokes equation written in
the conservation form as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0, (2.1)

where U,F, and G are column vectors defined as,

U =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩
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ρe,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρv,

ρuv − τxy,

ρv2 + p − τyy,

ρv

(

e +
u2 + v2

2

)
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(2.2)
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For a calorically perfect gas, it is possibly, to eliminate the energy e in favor of u, v, p, and ρ
as follows: e = u2 + v2/2 + p/(γ − 1)ρ. For clarity in calculations, the elements of the vector U
could be denoted as

U1 = ρ,

U2 = ρu,

U3 = ρv,

U4 =
1

γ − 1
p +

u2 + v2

2
ρ,

(2.3)

the elements of the column vector F are denoted by

F1 = ρu,

F2 = ρu2 + p − τxx,

F3 = ρuv − τxy,

F4 =
γ

γ − 1
pu + ρu

u2 + v2

2
− uτxx − vτxy + qx,

(2.4)

also, the elements of the column vector G are denoted by

G1 = ρv,

G2 = ρuv,

G3 = ρv2 + p,

G4 =
γ

γ − 1
pv + ρv

u2 + v2

2
− uτxy − vτyy + qy,

(2.5)

the viscous stress terms are written in terms of velocity gradients as

τxy = μ
(
∂u

∂y
+
∂v

∂x

)

,

τxx = λ(∇ ·V) + 2μ
(
∂u

∂x

)

,

τyy = λ(∇ ·V) + 2μ
(
∂v

∂y

)

.

(2.6)
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Figure 1: Ejector parts.

Likewise, the components of the heat flux vector (from Fourier’s law of heat) are defined as

qx = −k∂T
∂x

,

qy = −k∂T
∂y

.

(2.7)

The variations of the properties as dynamic viscosity and thermal conductivity are
considered temperature-dependent and they are computed by Sutherland’s law as

μ(T) = μ0

(
T

T0

)3/2 T0 + S
T + S

,

k(T) =
μ(T)γR
(
γ − 1

)
Pr
.

(2.8)

3. The Numerical Scheme

An explicit predictor-corrector scheme for (2.1) is formulated as follows.
Predictor:

U∗i,j = U
t
i,j −

Δt
Δx

(
Fti+1,j − F

t
i,j

)
− Δt
Δy

(
Gt
i+1,j −G

t
i,j

)
+ Si,j

(
Ui,j

)
, (3.1)

where the artificial viscosity S is given by

Sti,j =
Cx

∣
∣
∣pti+1,j − 2pti,j + p

t
i−1,j

∣
∣
∣

pτi+1,j + 2pτi,j + p
τ
i−1,j

(
Ut
i+1,j − 2Ut

i,j +U
t
i−1,j

)

+
Cy

∣
∣
∣pti+1,j − 2pti,j + p

t
i−1,j

∣
∣
∣

pti+1,j + 2pti,j + p
t
i−1,j

(
Ut
i,j+1 − 2Ut

i,j +U
t
i,j−1

)
,

(3.2)

where the Cx and Cy are two parameters; typical values of Cx and Cy range from 0.01 to 0.3,
for this application Cx = Cy = 0.1.
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Corrector:

Uk+1
i,j =

1
2

{

Ut
i,j +U

∗
i,j −

Δt
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(
F∗i+1,j − F

∗
i,j

)
− Δt
Δy

(
G∗i+1,j −G

∗
i,j

)
+ Si,j

(
U∗i,j

)}

. (3.3)

4. Validating the Numerical Code

Before managing the ejector’s more complex geometry, it is possible to test the code with a
simpler case with analytical solution in order to compare against the result of the numerical
solution. The case is an expansion corner as sketched in Figure 2; for this problem an exact
analytical solution exists in order to obtain a reasonable feeling for the accuracy of the
numerical simulations result for the ejector shape; in this case in (2.1) the vector G = 0 and
the viscous stress terms are suppressed [5].

It is necessary to establish some details of the particular problem to be solved. The
physical plane drawn in Figure 3 is considered. The flow at the upstream boundary is at
Mach 2.0 with a pressure, density, and temperature equal to 1 × 105 N/m2, 1.23 Kg/m3 and
286 K, respectively. The supersonic flow is expanded at an angle of 5.352◦; the reason for this



6 Journal of Applied Mathematics

Wall

In
fl

ow

Wall

Outflow

η

1

0 ε

Δη{

Δε
︸︷︷︸

i, j + 1

i − 1, j i, j i + 1, j

i, j − 1

Figure 4: Computational plane.

choice is to have analytical solution. As shown in Figure 3, the calculations will be made in
the domain from x = 0 to x = 66 in and from the wall from y = 0 to y = 40 in.

The location of the expansion corner is at 10 in, for this geometry; the variation of
h = h(x) is given by

h(x) =

⎧
⎪⎨

⎪⎩

40, for x ≤ 10 in,

40 + (x − 10) tan θ, for x ≥ 10 in.
(4.1)

We can construct a proper transformation as follows (Figure 4): let h denote the local
height from the lower to the upper boundary in the physical plane, clearly h = h(x). Denote
the y location of the solid surface (the lower boundary in the physical plane) by ys, where
ys = ys(x).

We define the transformation as

ξ = x,

η =
y − ys(x)
h(x)

.

(4.2)

With this transformation, in the computational plane ξ varies from 0 to L and η varies
from 0.0 to 1.0; η = 0.0 corresponds to the surface in the physical plane, and η = 1.0
corresponds to the upper boundary. The lines of constant ξ and η form a rectangular grid
in the computational plane (Figure 4). The lines of constant ξ and η are also sketched in
the physical plane; they form a rectangular grid upstream of the corner and a networks of
divergent lines downstream of the corner.

The partial differential equations for the flow are numerically solved in the rectangular
space and therefore must be appropriately transformed for use in the computational plane.
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That is, the governing equation must be transformed into terms dealing with ξ and η. The
derivative transformation is given by the following equations:

∂

∂x
=
∂

∂ξ

(
∂ξ

∂x

)

+
∂

∂η

(
∂η

∂x

)

,

∂

∂y
=
∂

∂ξ

(
∂ξ

∂y

)

+
∂

∂η

(
∂η

∂y

)

.

(4.3)

The metrics (∂ξ/∂x), (∂η/∂x), (∂ξ/∂y), and (∂η/∂y), in (4.3), are obtained from the
transformation given by (4.2), that is, ∂ξ/∂x = 1 and ∂ξ/∂y = 0:

∂η

∂x
=
∂
[
y − ys(x)/h(x)

]

∂x

=
∂

∂x

[
y

h(x)

]

− ∂

∂x

[
ys(x)
h(x)

]

= −
yh′(x)

[h(x)]2
−
[
y′s(x)h(x) − ys(x)h′(x)

[h(x)]2

]

=
h′(x)

[
ys(x) − y

]

[h(x)]2
−
y′s(x)h(x)

[h(x)]2
;

(4.4)

if y = h(x)η + ys(x), then

∂η

∂x
= h′(x)

[
ys(x) −

[
h(x)η + ys(x)

]]

[h(x)]2
−
y′s(x)
h(x)

=
h′(x)

[
−h(x)η

]

[h(x)]2
−
y′s(x)
h(x)

= −
η

h(x)
h′(x) − 1

h(x)
y′s(x);

(4.5)

if x < 10, then y′s(x) = 0 and h′(x); if x ≥ 10 = y′s(x) − tan θ and h′(x) = tan θ, so the metrics
could be finally expressed as ∂ξ/∂x = 1, ∂ξ/∂y = 0:

∂η

∂x
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < 10 in,

(
1 − η

) tan θ
h(x)

, if x > 10 in,

∂η

∂y
=

1
h(x)

.

(4.6)
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Figure 5: Mesh generated for the expansion corner.

The mesh for the expansion corner and for the ejector is automatically generated to
avoid stability numerical problems using the CFL criterion where the values of Δξi are given
by

Δξi = C
Δy

∣
∣tan θ ± μ

∣
∣

max

, (4.7)

where θ = a sin(1/Mi,j) and μ = a tan(vi,j/ui,j).
The mesh obtained is shown in Figure 5. The size of the ejector grid is 79 × 41 discrete

points.
In the results of the Mach number, pressure and density for the expansion corner

problems are shown in the results. The analytical solution of the Mach Number for the
expansion corner could be obtained with the Prandtl-Meyer function (4.8):

f(M) =

√
γ + 1
γ − 1

tan−1

√
γ − 1
γ + 1

(M2 − 1)

− tan−1
√
M2 − 1.

(4.8)

The analytical solution of the expansion corner is shown in Figure 6.
The leading edge of the expansion fan makes an angle μ1 with respect to the upstream

flow direction, and the trailing edge of the wave makes an angle μ2 with respect to
the downstream flow direction. The angles μ1 and μ2 are mach angles, defined as μ1 =
sin−1(1/M1) and μ2 = sin−1(1/M2).

The numerical solution of the expansion corner is depicted in Figure 7.
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Figure 6: Analytical solution of the expansion corner.
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Figure 7: Numerical solution of the expansion corner.

The numerical solution matches the analytical with an error of less than 1% percent at
all points and the expansion Mach fan is well formed in the numerical solution.

5. The Transformation of the Physical Ejector Diffuser

The appropriate transformation to generate a boundary-fitted coordinate system for the
ejector diffuser is defined as follows:

ξ = x, (5.1)

η =
y − ys(x)

yz(x) − ys(x)
, (5.2)
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where ys(x) and yz(x) are defined as

ys(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0, for x ≤ 10,

8
167.875

(x − 10), for 10 < x ≤ 177.875,

8.0, for 177.875 < x ≤ 299.125,

− 8
89

(x − 299.125) + 8, for x > 299.125,

yz(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

42.0, for x ≤ 10,

− 8
167.875

(x − 10) + 42, for 10 < x ≤ 177.875,

34.0, for 177.875 < x ≤ 299.125,

8
89

(x − 299.125) + 34, for x > 299.125.

(5.3)

The metrics in (4.3) given by (5.1) and (5.2) are calculated as follows: ∂ξ/∂x = 1,
∂ξ/∂y = 0, ∂η/∂y = 1/(yz(x) − ys(x)), by (5.2), y = η[yz(x) − ys(x)] + ys(x), so ∂η/∂x =
(η[y′s(x) − y′z(x)] − y′s(x))/(yz(x) − ys(x)). The metric ∂η/∂x can be obtained differentiating
ys(x) and yz(x):

y′s(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x ≤ 10,

8
167.875

, for 10 < x ≤ 177.875,

0, for 177.875 < x ≤ 299.125,

− 8
89
, for x > 299.125,

y′z(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x ≤ 10,

− 8
167.875

, for 10 < x ≤ 177.875,

0, for 177.875 < x ≤ 299.125,

8
89
, for x > 299.125.

(5.4)

Therefore

∂η

∂x
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0, for x ≤ 10,

−
9.53 × 10−2η − 4.76 × 10−2

−42.95 + 9.53 × 10−2x
, for 10 < x ≤ 177.875,

0.0, for 177.87 < x ≤ 299.125,

−
−0.17η + 8.98 × 10−2

27.77 − 0.17x
, for x > 299.125.

(5.5)
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Figure 8: Distribution of ∂η/∂x.
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In Figures 8 and 9 is depicted the distribution of the metrics ∂η/∂x and ∂η/∂y, respectively.
The size of the ejector grid is 1101 × 41 discrete points and it was generated using the CFL
marching criterium.

The boundary condition in the outlet is Neumann and in the walls is applied the
nonslipping condition. The flux field is initialized with a pressure, density, and temperature
equal to 1 × 105 N/m2, 1.23 Kg/m3, and 286 K, respectively; the velocity field is initialized
with u = v = 0.0 m/s. In the upstream boundary a velocity of Mach 2.0 (u = 678 m/s and
v = 0.0 m/s) is injected. The simulation is performed for 5,000,000 time steps, with a Δt
calculated using the CFL criterium (see Figure 10).
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5.1. Viscous Stress Terms

Of course is necessary to use the metrics transformation for the viscous stress terms. Once
applied the metrics the terms are expanded as follows:

τxy = μ
(
∂u

∂η

(
∂η

∂y

)

+
∂v

∂ξ
+
∂v

∂ξ

(
∂η

∂x

))

,

τxx = λ
(
∂u

∂ξ
+
∂u

∂η

(
∂η

∂x

)

+
∂v

∂η

(
∂η

∂y

))

+ 2μ
(
∂u

∂ξ
+
∂u

∂η

(
∂η

∂x

))

,

τyy = λ
(
∂u

∂ξ
+
∂u

∂η

(
∂η

∂x

)

+
∂v

∂η

(
∂η

∂y

))

+ 2μ
(
∂v

∂η

(
∂η

∂y

))

.

(5.6)

For the heat flux vector the transformation is

qx = −k
(
∂T

∂ξ
+
∂T

∂ξ

(
∂η

∂x

))

,

qy = −k
(
∂T

∂η
+
(
∂η

∂y

))

.

(5.7)

for this application the values of T0 = 273K,S = 110.5, μ0 = 1.68 × 10−5, γ = 1.4, and Pr = 0.71
are used.

6. Parallelizing the Numerical Scheme

The JPVM (Java Parallel Virtual Machine) library is a software system for explicit message
passing-based distributed memory MIMD parallel programming in Java. The library
supports an interface similar to the C and FORTRAN interfaces provided by the Parallel
Virtual Machine (PVM) system, but with syntax and semantics enhancements afforded
by Java and better matched to Java programming styles. The similarity between JPVM
and the widely used PVM system supports a quick learning curve for experienced PVM
programmers, thus making the JPVM system an accessible, low-investment target for
migrating parallel applications to the Java platform. At the same time, JPVM offers novel
features not found in standard PVM such as thread safety, multiple communication end-
points per task, and default-case direct message routing. JPVM is implemented entirely in
Java and is thus highly portable among platforms supporting some version of the Java Virtual
Machine. This feature opens up the possibility of utilizing resources commonly excluded
from network parallel computing systems such as Mac-, Windows- and Linux-based systems
[6, 7].

The method used is an explicit finite-difference technique which is second-order
accurate in both space and time with artificial viscosity.

In the predictor step the governing equation is written in terms of forward differences
(predictor), later on is written in backward differences (corrector). Following the scheme we
can divide the computation into tasks that perform over a part of the solution space only in
the axis η; so if we have m discrete points that divide the space over η, then the computation
could be performed into k tasks, where the number of points in which each task operates
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is m/k; if the division is not exact, then the number of remaining points will be distributed
among the tasks. For example, if we have 40 points on η, and we want to divide it into 6 tasks,
then there will be 4 tasks that take charge of working on 7 points and two tasks on 6 points.
If the calculation is wanted to divide among 4 tasks, then each task will work on 10 points.

Ifm = 40 and k = 4, then the iterators j1, j2, j3, j4 of each task will work on the following
points: j1 = 1, . . . , 10, j2 = 11, . . . , 20, j3 = 21, . . . , 30, j4 = 31, . . . , 40.

Figure 11 shows the set-up of four tasks working over the same solution space, the
arrows that arise of the tasks indicate the messages, and the arrows ahead of each task
indicate the direction of the calculation.

The main issue in a traditional parallel algorithm for finite differences problem, is the
intensive message passing, obtaining a poor performance in distributed memory systems,
where the latency time is higher. Suppose that we want to advance on 300 discrete points
over the axis ξ and we have 4 tasks; so in every iteration it is necessary to send 6 messages;
therefore it will be 300 × 6 = 1800 messages that holds just one value, and this is just for the
case of the variable F1. Additionally, also we have to create 3 tasks for the other flux variables
F2, F3, F4, that give a total of 1800 × 4 = 7200 messages.

To reduce the quantity of messages it is necessary to increase the tasks granularity,
assigning a tasks for flux variable. Figure 12 depicted four tasks working in their own flux
variable.

Creating four tasks by every term of the flux F1, F2, F3, and F4, the task q (q = 1, 2, 3, 4)
carries out the necessary calculations to obtain the new value of Fq at i + 1. The procedure is
listed as follows.

(1) Calculate the forward differences of the predictor step.

(2) Calculate the artificial viscosity of the predictor step.

(3) Calculate the predicted value of Fq.

(4) Calculate the rearward differences of the corrector step, using the predicted values
of Fq.

(5) Calculate the artificial viscosity for corrector step.

(6) Calculate the average derivative.

(7) Calculate the value of the flux variable Fq at i + 1.

Additionally to the four tasks (slave tasks), we need the master task to control the
execution of the slave tasks and achieve the following calculations.

(1) Calculate Δξ at i to obtain the predicted values of the flux variables Fq.

(2) Apply the boundary conditions.

(3) Adjust the flux variables F at boundary.

The former procedure indicates that the work of every task has to perform over the
points collection (i, j) that conform the bidimensional mesh. Every task q (q = 1, 2, 3, 4) will
calculate the new values of the flux variables Fq at localizations Δξ1,Δξ1 + Δξ2, . . . ,

∑n
i=1 Δξi.

We follow a similar reasoning if we want to increase the granularity of tasks.
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Figure 13: Coarse-grained 3D.

Figure 13 depicted the setup of four tasks working over its own flow field, in this case
every task q(q = 1, 2, 3, 4) carried out the calculations to find the new values at each grid point
(i, j) of the variables Uq in the time τ0 + 1, τ0 + 2, . . ., τ0 + k.

The advantage of this paradigm for the parallelism is that we can made quickly
hybridizations between a coarse and fine granularity, and the parallel tasks are created
recursively easily.

7. Simulation Results

In this section we show the results of the simulations about the expansion corner and the
ejector.

7.1. Expansion Corner Results

The expansion corner results for the Mach number, density, and temperature are shown in
Figures 14 and 15 in steady state.

7.2. Ejector Results

Figures 16, 18, 20, and 22 show the contour graphs of the density and the Figures 17, 19, 21,
and 23 of the Mach number, after 0.2 s, 0.9 s, 1.6 s, and 5.0 s of real simulation when the flux
is stable.
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Figure 14: Mach number in the expansion corner.
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Figure 15: Density in the expansion corner.

In Figure 24, is depicted the profile of the Mach number in the different sections of
the diffuser; when the compression, transfer; and expansion occur, three numerical visors are
taken at 5 inches, 21 inches, and 37 inches in the vertical, and compared with the experimental
processed results when the flux is stable [1].

8. Performance Results

To gain a better perspective of the performance options, the JPVM was compiled using a
native compiler gcj (gnu java compiler) to avoid the overload of the virtual machine for Linux
and Windows to generate a native version and carry out comparatives with the byte-code
version. The creation and communication is under the same machine; a slow Pentium IV
processor was used because is easier to measure the time. Table 1 shows the creation time of
1, 2, 4, 8, and 16 tasks.

In Table 1 we can see that the time of creation is practically the same in both versions.
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Figure 16: Density through the diffuser section at 0.2 s
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Figure 17: Mach number through the diffuser section at 0.2 s.
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Figure 18: Density through the diffuser section at 0.9 s.
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Figure 19: Mach number through the diffuser section at 0.9 s.
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Figure 20: Density through the diffuser section at 1.65 s.
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Figure 21: Mach number through the diffuser section at 1.65 s.

Table 1: Required memory.

Used memory
Physical/Virtual/Threads Creation time of tasks

Native
jpvmDaemon

.exe
3060K/1352K/3

creation of 1 task: 2234.0 msecs
creation of 2 tasks: 4105.0 msecs.
creation of 4 tasks: 7972.0 msecs.
creation of 8 tasks: 16183.0 msecs.
creation of 16 tasks: 33998.0 msecs.

Using the JVM
java

jpvmDaemon
6020K/8920K/9

creation of 1 task: 2233.0 msecs.
creation of 2 tasks: 3986.0 msecs.
creation of 4 tasks: 7992.0 msecs.
creation of 8 tasks: 16363.0 msecs.
creation of 16 tasks: 34079.0 msecs.

Table 2: Communication time.

Communication
time

Communication
time

Communication
time

Communication
time

Communication
time

4 bytes 1024 bytes 10240 bytes 102400 bytes 1048576 bytes

pack: 0.625
msecs.

pack: 0.0390625
msecs.

pack:
0.00244140625

msecs.

pack:
8.750152587890625

msecs.

pack:
41.859384536743164

msecs.

Native
jpvmDaemon

.exe

comm: 36.3125
msecs.

comm:
25.39453125

msecs.

comm:
32.274658203125

msecs.

comm:
154.7671661376953

msecs.

comm:
1255.672947883606

msecs.

unpk: 0.0
msecs.

unpk: 0.625
msecs.

unpk: 0.0390625
msecs.

unpk:
1.25244140625

msecs.

unpk:
21.453277587890625

msecs.

pack: 0.0 msecs. pack: 0.0 msecs. pack: 0.0 msecs. pack: 6.875 msecs. pack: 44.1796875
msecs.

Using the
JVM
java

jpvmDaemon

comm: 33.1875
msecs.

comm:
25.88671875

msecs.

comm:
30.992919921875

msecs.

comm:
155.9370574951172

msecs.

comm:
1281.7460660934448

msecs.

unpk: 0.625
msecs.

unpk: 0.0390625
msecs.

unpk:
0.00244140625

msecs.

unpk:
3.750152587890625

msecs.

unpk:
21.484384536743164

msecs.
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Table 3: Performance Metrics using JPVM over the cluster.

Cores Time Speed-up Max speed-up Efficiency Cost
1 4752 minutes 1 1 100% 1
2 2540 minutes 1.87 1.9 98% 1.02
3 1724 minutes 2.76 2.8 98% 1.01
4 1300 minutes 3.65 3.7 99% 1.01
5 1050 minutes 4.52 4.6 98% 1.02
6 950 minutes 5.4 5.5 98% 1.02
7 760 minutes 6.25 6.4 97% 1.02
8 670 minutes 7.1 7.3 97% 1.03
9 600 minutes 7.92 8.2 97% 1.04
10 540 minutes 8.8 9.1 97% 1.03
11 490 minutes 9.7 10 97% 1.03
12 450 minutes 10.56 10.9 97% 1.03
13 415 minutes 11.45 11.8 97% 1.03
14 385 minutes 12.34 12.7 97% 1.03
15 360 minutes 13.2 13.6 97% 1.03
16 350 minutes 13.58 14.5 94% 1.07
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Figure 22: Density through the diffuser section at 5.0 s.

In Table 2 we can observe that there is not significative difference between the native
version and the byte-code version in the communication time of the tasks. Nevertheless the
advantage of the native version is the saving memory storage. About the execution time, gcj
can produce programs that are faster than the byte code version around 30%.

The cluster configuration used to execute the simulation is

(i) 14 nodes, every node with two-processor Xeon DP 2.8 Ghz, 4 GB RAM, in total 28
cores.

For this application is supposed 10% of the serial part, the part that could not be
parallelized (when the primitive variables are decoded); so the max speed-up for 16 tasks
is 14.5; Table 3 shows the performance metrics for 16 tasks.

9. Conclusions

A numerical parallel code has been developed to simulate the supersonic flow in the ejector
diffuser in a parallel-distributed system with an object-oriented methodology. The model
was validated with cases where there is an exact solution. The design of a parallel program
allows to reduce the execution time; nevertheless the design and build of a parallel program is
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Figure 23: Mach number through the diffuser section at 5.0 s.
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Figure 24: Mach profile of fluid through the diffuser section when the flux is stable.

complex due to the no deterministic execution and in a scientific computing ambient is more
difficult build and debug because it is necessary to manage several data, and so it is necessary
to use a good methodology to minimize the risk of bugs in the program construction.

We have discussed implementations of object-oriented design using Java in computa-
tional fluid dynamics simulations. This also provides the benefits of better maintainability,
reusability, and extensibility of the code. For examples, is possible to create recursively new
parallel tasks to control easily the granularity; for this reason Java is a serious language
suitable for demanding applications in science and engineering and the JPVM is a good MPI-
based tool for parallel cluster computing.

Finally, this program is a good tool to investigate the behavior of the flux in the ejector
diffuser and shows how to transform the solution space in an easy way.
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Nomenclature

u: Component velocity in the x direction (m/s)
v: Component velocity in the y direction (m/s)
T : Temperature (K)
P : Pressure (N/m3)
ρ: Density (Kg/m3)
e: Energy
M: Mach number
cp: Specific heat capacity at constant pressure ((J/(kg K)))
γ : Ratio of heat capacities
Pr: Prandtl number
qi: Heat flux along xi direction (W/m2)
R: Ideal gas constant ((J/(kg K)))
S: Sutherland’s constant (K)
k: Thermal diffusivity (W/(m K))
v: Kinematic viscosity (m2/s).
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