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We study several criteria for the (non)linearity of Costas permutations, with or without the
imposition of additional algebraic structure in the domain and the range of the permutation,
aiming to find one that successfully identifies Costas permutations as more nonlinear than
randomly chosen permutations of the same order.

1. Introduction

Costas arrays, namely, square arrangements of dots and blanks such that there lies exactly
one dot per row and column, and such that no four dots form a parallelogram and no
three dots lying on a straight line are equidistant, appeared for the first time in 1965 in the
context of SONAR detection [1, 2], when Costas, disappointed by the poor performance of
SONAR systems, used them to describe a novel frequency hopping pattern for SONARs with
optimal auto-correlation properties. About two decades later, Professor S. Golomb published
two generation techniques [3-5] for Costas permutations, both based on the theory of finite
fields, known as the Welch and the Golomb method, respectively. These are still the only
general construction methods for Costas permutations available today. Despite the intensive
mathematical research dedicated to Costas arrays in the last two decades, many key questions
about them remain unresolved, and most notably the issue of their existence: do Costas arrays
exist for all orders? There is currently no order known for which Costas arrays provably do
not exist, while the two smallest orders for which no Costas arrays are known are 32 and 33
[3].

An interesting application of Costas arrays in cryptography was discovered when it
was shown that Welch Costas arrays are Almost Perfect Nonlinear (APN) permutations [6].
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This prompted further an investigation of the nonlinearity of Welch Costas permutations, in
the sense defined in [7, 8], whereby Welch Costas permutations were interpreted as mappings
on Zy, the group of integers modulo 7, and were indeed shown to exhibit high nonlinearity
among all such functions/permutations [9]. Costas permutations, however, are not defined
over Z,, but rather over [n] C N, the set of the first n nonnegative integers, on which no group
structure is imposed. The object of this work is to investigate the correct interpretation and
calculation of the (non)linearity of a Costas permutation, and, by extension, of any discrete
function, in this context. What does it mean for a discrete function to be linear? How can the
concept of linearity be quantified? Can this quantification benefit, in the case of functions on
[n1], from the fact that such functions can be extended to functions on Z,? Assuming that this
latter extension exhibits indeed high nonlinearity, can we infer that the original function on
[n] is also highly nonlinear (according to some appropriate definition)?

In what follows we will study several (non)linearity criteria, and more specifically
their performance on Costas permutations versus collections of random permutations. In
order to maintain compatibility between them and to be able to compare them, we will use
Costas permutations of order 15 (but also 16 and 27 on some occasions) as a test case and
recurrent example. The conclusions drawn have, of course, been verified on a wider range of
orders.

2. Costas Permutations, APN Functions, and Linearity

In this section we provide some background information on Costas permutations and APN
functions. We will note, in particular, that, though the definitions of Costas and APN
permutations appear deceptively similar, there are nonetheless important differences one has
to pay attention to.

2.1. The Definitions

In what follows, let [n] denote the set {0,1,...,n -1}, and Z, the additive group of integers
modulo n, n € N¥; in other words, [n] and Z, differ just by the imposition of an algebraic
structure on the latter, which makes it a ring. We are now ready to define the Costas
permutation.

Definition 2.1. Consider a bijection f : [n] — [n]; f is a Costas permutation if and only if:

Vi,j,k such thati,j,i+k,j+ke[n], fl+k)—f()=f(j+k)-f(j)=i=jork=0.
(2.1)

An alternative yet fully equivalent way to state this condition is to stipulate that, for any
k € [n]" and any [ € [n], the equation

fli+k) - fl) =1, ie[n-k], (2.2)

has at most one root i.
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A permutation f corresponds to a permutation array Ay = [a{ ].] by setting the
elements of the permutation to denote the positions of the (unique) 1 in the corresponding
column of the array, counting from top to bottom: a (i, = L Itis customary to represent the

yi
1s of a permutation array as “dots” and the 0Os as “bla)nks”. From now on the terms “array”
and “permutation” will be used interchangeably, in view of this correspondence.

The Costas property is invariant under horizontal and vertical flips, as well as
transposition (and therefore also under rotations of the array by multiples of 90°, which can
be expressed as combinations of the previous two operations), hence a Costas array gives
birth to an equivalence class that contains either eight Costas arrays, or four if the array
happens to be symmetric: this Costas array is then considered to be the unique representative
of the equivalence class, and normally the array within the equivalence class that comes first
in lexicographical order is selected for this purpose.

We now give the definition of the APN function.

Definition 2.2. f : Z, — Z,is APNif and only if, for any a € Z}, and any f € Z,, the equation
flx+a)-f(x)=P, x€Zy, (2.3)

has at most two roots x.

The relation of the two definitions becomes clearer if we also look at the definition of
the Perfect Nonlinear (PN) function:

Definition 2.3. f : Z, — Z, is PN if and only if, for any a € Z;, and any p € Z,, the equation
flx+a)—f(x)=p x€ZLy, (2.4)

has at most one root (hence exactly one root) x.

We now see how close Definitions 2.1 and 2.2 are. When we focus exclusively
on permutations, thought, we see that a PN permutation is a contradiction in terms: by
Definition 2.3, for any a, there has to be an x such that f(x + a) — f(x) = 0, hence f cannot
possibly be a permutation! Consequently, when studying permutations, we can only hope
for the next best thing, namely, an APN permutation. Note that the definitions of a Costas
permutation and of an APN function show that these two types of functions are far from
being “linear”, namely, far from being similar to a “straight line”, since the distance vectors
between pairs of points in the function graph are not, in general, allowed to be collinear.

2.2, Construction Methods for Costas Permutations

We will denote the finite field of g elements by F(g), where g is, in general, a power of a prime.
Recall that Z,, p is a prime, is the finite field F(p).
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Algorithm 2.4 (Exponential Welch Construction Wi (p, g,¢)). Let p be a prime, g a primitive
root of the finite field F(p), and ¢ € [p — 1]; the exponential Welch permutation of order p — 1
corresponding to g and c is defined by

f))=¢"mod p-1, i€[p-1]. (2.5)

The inverse of an Exponential Welch permutation (corresponding to the transpose of
the corresponding Costas array) is a Logarithmic Welch permutation, which is itself a Costas
permutation. The two permutation sets are distinct for p > 5 [10], implying that there are
2(p-1)¢(p-1) distinct Welch Costas permutations of order p—1. Here ¢ denotes Euler’s totient
function: ¢(x), x € N, is the number of positive integers less than and relatively prime to x. In
particular, there are no self-inverse Wi-permutations (i.e., corresponding to symmetric Welch
Costas arrays) for p > 5.

Algorithm 2.5 (Golomb Construction Gy(gq, a,b)). Let g = p™, where p is a prime and m € N*,
and let a, b be primitive roots of the finite field F(g); the Golomb permutation f of order g -2
corresponding to a and b is defined through the equation

a?t+ /0 =1, ie[g-2]. (2.6)

There are $?(q — 1) /m distinct G,-permutations of order g — 2 [3].

2.3. A Comprehensive Example

Consider the Wi-permutation f resulting from p = 11, g = 2, and ¢ = 0. The values
corresponding to 0,1,...,9 are, in that order, 0, 1, 3, 7, 4, 9, 8, 6, 2, and 5. As mentioned
above, f is an APN permutation when construed as a function from Zjg to Zjg: in this
case, all additions take place in arithmetic modulo 10, and we write, for example, that
f(5+7)-f(5) = f(2) - f(5) =1 -4 =7. Note that, after generating f, we forget all about the
prime number p used to generate it (in this case p = 11): henceforth, all modulo operations
take place in arithmetic modulo p — 1 = 10, which is the size of the group Zy, in both the
domain and the range.

Considering, however, f as a Costas permutation from [10] to [10]; we see that f(5 +
7) — f(5) = f(12) — f(5) is undefined, because f(12) is undefined. On the other hand, f(2) -
f(5) =1-4 = -3, because addition takes place now in the usual integer arithmetic, in both
the domain and the range.

2.4. Linearity

What does it mean for a function f to be linear? In general, we will assume that both the
domain D(f) and the range R(f) of the function are subsets of a ring R, and we will call f
linear if and only if there exist three constants a, 3,y € R such that af(x) + px = y for all
x € D(f), where addition and multiplication are as defined in R. It is important to note that,
occasionally, R can be chosen in more than one way: for example, in the example shown in
Section 2.3 we may choose either R = Z or R = Zjp, and this leads to different functions f,
neither of which is linear, however.
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As another example, consider f defined on [10], where the values corresponding to
0,1,...,10 are, in thisorder, 0, 2,4, 6, 8,10, 1, 3, 5,7, and 9. This function is not linear under Z-
arithmetic. Since [10] is closed under arithmetic modulo 11, however, we may choose R = Zy,
in which case f(x) = 2x for all x € Z11, and is, therefore, linear.

3. Linearity Measures for Discrete Functions

How can we quantify the linearity of a discrete function, and especially of a Costas
permutation, in a meaningful way? There are essentially two different ways to proceed,
according to whether we are willing/able to introduce some sort of an algebraic structure to
the problem or not. Note that we will follow the convention of labeling the criteria we study
below by L or NL, according to whether an increase in the value returned by the criterion
implies increased linearity or nonlinearity for the tested function, respectively.

3.1. Linearity without Algebraic Structure
3.1.1. Least Squares

In this version of the problem we are given a set of n points (x;,y; = f(x;)), i € [n] on the
plane as an input, and we are asked to determine how closely they correspond to the graph
of a linear function. The obvious course of action is to fit a line of the form c1x + oy = ¢,
¢, c1,¢2 € R, according to some fitting criterion, and determine the error of the approximation.
The smaller the error, the more “linear” f is. Perhaps the most frequently used fitting method
used in such cases is the familiar least squares approximation.

3.1.2. Nonmodular Phases

Within the same context, an alternative, completely different concept of linearity can be
defined based on the distance vectors between pairs of points (x; —x;, f (xi) — f(x)), 1, ] € [n],
i > j, where, without loss of generality we may assume that x; > x; whenever i > j: the
function f is linear if and only if all such distance vectors have the same phase on the plane.
A way to quantify this idea in a continuous way is to determine the unit vector with each such
phase, sum the vectors, and find the length of the vector sum. In other words, we consider

D exp(ids(xi,x;)),  Pr(xi,x;) = £(xi = x5, f () = f(x7))- (3.1)

i>j

As there are n(n — 1) /2 such vectors in total, the length of the vector sum will be n(n —1)/2
when f is linear and less than that otherwise. The normalized

LU = gy | 2 e (2=, ) = () 62

i>j
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is then a number between 0 and 1: the larger it is, the more linear f is. In particular, since each
phase is confined to (- /2, /2), we may substitute Z(u, v) by tan™! (v/u). Given that

tan(u)

/1 + tan?(u) , (3:3)

et = cos(u) +isin(u), cos(u) = , sin(u) =

-
\/1 + tan?(u)

we can write

2 L+ i((f) - F(9)/ (x - )
MDA ((F0 - fW)/ (x-v)

L(f)

~

(3.4)
2 x—y+i(f(x)—f(]/)) )
n =D - 9)? + (F@) - f())°

~

3.1.3. The Log-Ratio

In order to obtain a more sensitive measure of linearity, we observe that if f(x) = ax + f, we
would get

2 x-y Jpe-h) 1
x>y\/(x—y)2+(f(x)_f(y))2 ? Vi (3.5)
fx) - f(y) _nn-1) a |

e (fm-f)?  F Vive

For a general function f, these two expressions yield two estimates for a, namely, a; and a5,
where we assume a7 > a, without loss of generality. The log-ratio NLL.(f) := In(a;/a) > 01is
a kind of condition number for f: the larger it is, the more nonlinear f is, so we can use this
log-ratio as a measure of the nonlinearity of f.

3.2. Linearity with Algebraic Structure

Let us reformulate the ideas presented above regarding distance vectors and their phases in
the special case of a function f : [n] — [n]. An indication of the linearity of f is the degree
to which a constant multiple of x — y approximates (a constant multiple of) the difference
f(x) = f(y), the approximation holding for all pairs (x,y), x,y € [n]: in other words, we
consider the functions F(a, ; x,y) = p(f(x) - f(y)) —a(x —y) and we determine whether any
specific choice of the parameters & and f leads to values that lie uniformly “close to” 0 for all
pairs (x, y), according to some proximity criterion.

A possible proximity criterion is again to apply “phase modulation”, namely, to allow
the values of F(a,f;x,y) to multiply the phase of complex exponential exp(i¢), which
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Figure 1: The histograms of all Costas permutations of order 15 (a) and an equinumerous collection of
randomly chosen permutations of order 15 (b), according to L: Costas permutations are shown to be more
nonlinear.

represents a vector of unit length, and then find the length of the aggregate vectors and choose
the longest one. This we define as the (square of the) linearity of f:

L2(f) = sup 3 eWPU@T0atwld = sup| 7 pilp0-alp| (3.6)
a,feR x,ye[n] a,peR | xe[n]

Clearly, f is linear if and only if L(f) = n.

Since f is an integer function, and remembering that our ultimate goal is to introduce
algebraic structure in the problem at some point, it makes sense to confine a and f to integer
values as well. Choosing further ¢ = 27/N, N € N*, we effectively impose a modulo N
addition and consider F mod N instead of F:

]LN(f) = n;ax Z e!Gr/NBf () —ax] | (3.7)

x€[n]

Sometimes [9] it even makes sense to generalize the previous expression slightly and use two
different integer parameters M and N as follows:

LM,N(f) = n’;ax Z ei2Jr[ﬂ(f(x)/N)—a(x/M)] , (38)

x€[n]

though we will mostly focus on the simple case M = N from now on.

So far we have not related N and 7n; how should we choose N for a given n? A first
possibility is dictated by the extension of f to a function on Z,, thatis, f : Z, — Z,, in which
case the obvious choice would be N = n. Alternatively, considering still f as a function on
[n], both x —y and f(x) - f(y), x,y € [n] range from —(n — 1) to n — 1 included, so the range
includes 2(n — 1) + 1 = 2n — 1 distinct values and hence it suffices to choose N = 2n — 1, if our
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Figure 2: (a, b) the log-ratio histograms of all Costas permutations of order 15 (a) and an equinumerous
collection of randomly chosen permutations of order 15 (b); Costas permutations are shown to be more
nonlinear. (¢, d) the log-ratio histograms of all Costas permutations of order 16 (c) and of all algebraically
constructed Costas permutations of order 16 (d); algebraically constructed Costas permutations seem to
be amongst the most linear ones.

goal is to avoid any fold-over of values within this range. Finally, note that if f : Z,_; — Zj is
a Wi-permutation, it makes sense to choose either M = N = p—1, as both the domain and the
range contain p — 1 elements, or M = p — 1 and N = p, as these parameters reflect the natural
modulo arithmetic in the domain and the range, respectively (both cases were studied in [9]).

Let us finish this discussion by mentioning that 1-LL,,(f)/n has already been proposed
as a measure of the nonlinearity of f : Z, — Z, in the literature [7, 8], though, in our opinion,
the presentation therein was much less straightforward and intuitive than the one given here.

4. Results

In this section we discuss the results obtained for each (non)linearity criterion through
simulation. Simulation has been used extensively in recent times for the study of the
properties of Costas arrays (see, e.g., [12, 13]).



Journal of Applied Mathematics 9

Table 1: Linearity results for all Costas permutations of orders 3 < n < 27: the columns correspond from
left to right to n, the minimal and maximal linearities observed, and the mean and standard deviations of
the linearity.

n min L max L mean L std L.
3 2.4972 2.4972 2.4972 0

4 2.9750 3.7069 3.5083 0.3046
5 3.4886 4.3459 3.8902 0.2741
6 3.7244 5.1008 4.3918 0.3834
7 4.1534 5.1786 4.6496 0.2988
8 44234 5.9241 5.0275 0.2964
9 4.7015 6.8218 5.5497 0.3621
10 49301 7.4756 5.8875 0.3519
11 5.1913 7.6610 6.2660 0.3775
12 5.4815 8.5341 6.5952 0.3965
13 5.9015 8.7261 6.9115 0.4053
14 6.2014 9.4388 7.2270 0.4082
15 6.2186 9.8519 7.5333 0.4320
16 6.5159 11.0186 7.8509 0.4521
17 6.9582 11.4045 8.1315 0.4465
18 7.1846 12.9660 8.4167 0.4811
19 7.5165 12.4471 8.7136 0.4935
20 7.7579 11.8479 8.9461 0.4815
21 7.9894 13.9195 9.2645 0.5443
22 8.1603 15.2323 9.8122 0.9286
23 8.6376 14.7480 9.9175 0.8786
24 8.7028 15.9756 10.2508 1.0853
25 9.7256 16.5861 11.1684 1.5209
26 9.4019 14.8275 11.5788 1.6035
27 10.2502 16.8729 12.1096 1.4790

4.1. Least Squares

When f is a Costas permutation of order n, linear least squares fitting fails to reveal any
meaningful information, precisely because the points are very dispersed on the n x n square,
owing to the Costas property. Computer simulations confirm our expectations in that the
line fitted by least squares is invariably either horizontal or vertical, while the line fitted by
orthogonal least squares, namely the variant of the method where the sum of the square
distances of the points from the fitted line is minimized, yields invariably either y = x or
y = n—1 - x as the fitted line. To conclude, Costas arrays are so far from being linear that it
makes no sense to measure how far from linearity they are using this criterion.

4.2, Nonmodular Phases

The real part of the vector sum (3.4) is in general much larger than the imaginary
part, precisely because we always choose x > y, so the real parts of the summands
add constructively. This, in turn, implies that this criterion is not sensitive enough. For
example, Figure 1 shows the histograms of L. over all Costas arrays of order 15 and over
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Table 2: Linearity results for Wi- (a) and G,- (b) permutations generated in F(p), 7 < p < 151: the columns
correspond from left to right to p, the minimal and maximal linearity observed, and the mean and standard
deviations of the linearities.

(a)

p min L max IL mean L std L
7 3.8344 3.8344 3.8344 0

11 4.7015 6.5598 5.9362 0.6950
13 5.1913 7.5414 6.4948 0.8282
17 6.2187 9.3125 7.8076 0.7503
19 7.6955 11.4045 8.9887 0.8291
23 8.2347 13.9195 9.9797 1.1294
29 10.2502 16.8729 12.0515 1.4318
31 10.9677 16.0584 13.0976 1.4772
37 11.2892 20.5871 14.8351 2.1180
41 12.7289 21.6292 16.1072 2.2266
43 12.6109 26.9280 17.1595 2.7143
47 13.6820 28.3311 18.3678 2.5944
53 14.7483 29.0807 20.7323 3.4550
59 16.5240 33.8105 23.1238 3.7493
61 18.0203 35.1987 23.8661 3.5871
67 17.9924 38.6901 26.2275 4.0515
71 19.2378 36.4151 27.6938 3.9807
73 18.1823 43.1096 28.6351 4.7167
79 19.4471 41.3463 30.9327 42014
83 21.2388 45.4478 32.5626 4.2763
89 21.3421 50.3580 35.0311 4.6115
97 24.6606 53.2888 38.2512 4.6876
101 27.1879 52.6007 39.8379 5.0796
103 25.4178 55.2598 40.6539 5.5482
107 27.3222 57.9382 42.2601 5.4518
109 24.9826 59.9810 43.1139 5.5113
113 29.6132 60.6273 44.7029 5.6808
127 32.5151 70.1353 50.4963 5.3487
131 31.2879 70.7198 51.9830 5.7581
137 37.2955 71.0958 54.4337 5.7566
139 39.2845 71.4561 55.2887 6.3653
149 40.5434 76.0981 59.2918 6.0764
151 37.4170 81.0333 60.1070 6.0674

(b)

p min L max L mean L std L
7 3.7880 4.8439 4.4465 0.4119
11 5.5053 7.4756 6.1462 0.4734
13 6.5154 8.5341 7.3052 0.6860
17 7.0501 11.0186 8.5779 0.8158
19 7.5172 12.9660 9.2807 1.1130
23 8.9254 15.2323 10.6936 1.2187
29 10.3331 18.3192 12.9565 1.8357

31 10.9192 19.9770 13.5635 1.6404
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(b) Continued.

p min L max L mean L std L
37 11.9643 24.3642 15.7800 2.5823
41 12.7863 25.1720 17.1771 2.8822
43 12.7419 25.3322 17.8591 3.0673
47 14.0212 28.1627 19.1228 3.2689
53 15.0066 33.3970 21.5939 3.8445
59 16.4316 35.5213 23.5966 4.3340
61 16.2902 36.1331 24.3684 4.5547
67 17.4479 39.8553 26.7267 4.9172
71 18.4225 40.7985 28.2850 5.0988
73 18.3244 42,1267 29.0482 5.1430
79 18.5635 47.8331 31.4486 5.5526
83 20.0101 49.1780 33.0352 5.6957
89 21.2534 51.4717 35.4218 5.5741
97 22.1986 57.7464 38.6617 6.2288
101 22.9944 56.8656 40.2868 6.6020
103 25.5362 57.2796 41.0855 6.5606
107 24.0941 63.6045 42.7078 6.5930
109 24.7888 64.2623 43.5123 6.6427
113 26.5017 64.3054 45.1397 7.0107
127 35.1980 65.9180 50.7644 6.1753
131 30.9777 73.9441 52.4322 7.4101
137 32.7740 77.6968 54.8584 7.5626
139 31.6170 79.5067 55.6664 7.5732
149 35.0306 83.2909 59.7193 7.8052
151 36.3423 84.3540 60.5394 8.0897

an equinumerous collection of randomly chosen permutations of order 15: though the
histograms look different, the range of the former lies entirely within the range of the latter,
so this criterion is not sensitive enough to determine that Costas permutations are more
nonlinear than random permutations.

4.3. The Log-Ratio

What if L. is used instead of L.? The log-ratio histograms for all Costas permutations of order
15 and an equinumerous collection of random permutations of order 15, as well as the log-
ratio histograms for all Costas permutations of order 16 and for all algebraically constructed
Costas permutations of order 16 are shown in Figure 2. Costas permutations are indeed
found to be more nonlinear than random ones, even if only slightly so: though the random
permutations histogram contains a few outliers at higher values, its main body lies clearly
at smaller values compared to the Costas permutations histogram. Similarly, algebraically
constructed Costas permutations are observed to be, on average, some of the most linear
Costas permutations.
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Figure 3: The linearity histogram of all Costas permutations of order 15 (a) is well approximated by the
Gaussian of the same mean and variance, but the corresponding histogram of order 27 (c) is not, due to
the small number of samples. Furthermore, the linearity criterion is efficient: histograms show that the
linearity of Costas permutations of order 15 is clearly less than that of an equinumerous collection of
randomly chosen permutations of order 15 (b).

4.4. Linearity with Algebraic Structure

We computed the linearity of several families of Costas permutations, using L,,-1 as the
measure of linearity, n being the order of the Costas permutation. More specifically, we
focused on the families of all Costas permutations of order 27 and below (Table 1), and on
the families of Wi- and G,-permutations generated in F(p), 3 < p < 151 (Table 2). For each
family we recorded the minimal and maximal linearities found, the mean linearity and the
standard deviation.

As a general observation, the linearity histograms for all families are well approxi-
mated by Gaussian distributions (see, e.g., Figure 3), provided the families contain enough
Costas permutations (at least a few hundred). Furthermore, the mean linearities Lw(n) and
Lg(n) for Wi- and G,-permutations of order n, respectively, seem to increase asymptotically
linearly with n (see Figure 4): Lg(n) = L (n) = 0.4035n. Furthermore, it is clear from Figure 3
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Figure 4: (a) plot of the minimal, maximal, and mean linearities for the Welch and Golomb family
generated in F(p), 3 < p < 151. (b) plot of the mean linearity divided by the order, indicating convergence
near 0.4. (c) a detail of the tail of the previous plot.

that Lo, successfully distinguishes Costas permutations from random permutations,
assigning on average smaller linearity to the former.

5. Conclusion

We proposed various (non)linearity measures for Costas permutations, divided in two
broad categories, according to whether we are willing to impose some algebraic structure
on the domain and the range or not. Amongst the measures that do not take advantage
of any algebraic structure, the linear least squares fit was found inappropriate, as it was
completely insensitive to the input, the nonmodular phases criterion was found not to
be sensitive enough, while the log-ratio performed adequately in terms of distinguishing
Costas permutations from randomly chosen permutations of the same order and correctly
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deciding that the former are more nonlinear than the latter; it also suggested that algebraically
constructed Costas permutations are amongst the most linear Costas permutations. On the
other hand, when the difference vectors are combined with an underlying modulo structure,
the resulting criterion is sensitive enough to recognize that Costas permutations are less linear
than randomly chosen permutations of the same order.
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