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The purpose of this paper is to present a uniform finite difference method for numerical solution
of nonlinear singularly perturbed convection-diffusion problem with nonlocal and third type
boundary conditions. The numerical method is constructed on piecewise uniform Shishkin type
mesh. The method is shown to be convergent, uniformly in the diffusion parameter ε, of first order
in the discrete maximum norm. Some numerical experiments illustrate in practice the result of
convergence proved theoretically.

1. Introduction

This paper is concerned with ε-uniform numerical method for the singularly perturbed
semilinear boundary-value problem (BVP):

Lu := ε2u′′ + εa(x)u′ − f(x, u) = 0, 0 < x < �, (1.1)

L0u := −εu′(0) + ψ(u(0)) = 0, (1.2)

u(�) − ϕ(u(�1)) = 0, 0 < �1 < �, (1.3)

where ε is a small positive parameter, the functions a(x) ≥ 0, f(x, u), and ψ(u), ϕ(u) are
sufficiently smooth on [0, �], [0, �] × R, and R, respectively, and furthermore

0 < β ≤ ∂f

∂u
≤ β∗ <∞,

dψ

du
≥ δ > 0,

∣
∣
∣
∣

dϕ

du

∣
∣
∣
∣
≤ κ < 1.

(1.4)

The solution u generally has boundary layers near x = 0 and x = �.
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Singularly perturbed differential equations are characterized by the presence of a small
parameter ε multiplying the highest-order derivatives. Such problems arise in many areas
of applied mathematics. Among these are the Navier-Stokes equations of fluid flow at high
Reynolds number, mathematical models of liquid crystal materials and chemical reactions,
control theory, reaction-diffusion processes, quantum mechanics, and electrical networks.
The solutions of singularly perturbed differential equations typically have steep gradients,
in thin regions of the domain, whose magnitude depends inversely on some positive power
of ε. Such regions are called either interior or boundary layers, depending on whether their
location is in the interior or at the boundary of the domain. An overview of some existence
and uniqueness results and applications of singularly perturbed equations can be found in
[1–6].

It is known that these problems depend on a small positive parameter ε in such
away that the solution exhibits a multiscale character; that is, there are thin transition layers
where the solution varies rapidly, while away from layers it behaves regularly and varies
slowly. The treatment of singularly perturbed problems presents severe difficulties that
have to be addressed to ensure accurate numerical solutions. Therefore it is important to
develop suitable numerical methods for solving these problems, whose accuracy does not
depend on the value of parameter ε, that is, methods that are convergent ε-uniformly. These
include fitted finite-difference methods, finite element methods using special elements such
as exponential elements, andmethods which use a priori refined or special piecewise uniform
grids which condense in the boundary layers in a special manner. One of the simplest ways
to derive parameter-uniform methods consists of using a class of special piecewise uniform
meshes, such as Shishkin meshes (see [3, 6–15] for the motivation for this type of mesh),
which are constructed a priori and depend on the parameter ε, the problem data, and the
number of corresponding mesh points. The various approaches to numerical solution of
differential equations with stepwise continuous solutions can be found in [2, 3, 6].

There is also an increasing interest in the application of Shishkin meshes to singularly
perturbed convection-diffusion problems (see [16, 17] and references cited therein).
However, much of the Shishkin mesh literature is concerned with linear or quasilinear
singularly perturbed two-point problems with first-order reduced equations. In [18] has been
obtained a result ε-uniform for the two-point boundary value problem of (1.1), by using a
fitted operator method on uniform meshes.

In the present paper, we analyse a fitted finite-difference scheme on a Shishkin type
mesh for the numerical solution of the semilinear nonlocal boundary value problem (1.1)–
(1.3). The origin of the fitted finite difference method can be traced to [19]; for subsequent
work on fitted operator method and its applications, see [2, 3]. Nonlocal boundary value
problems have also been studied extensively in the literature. For a discussion of existence
and uniqueness results and for applications of nonlocal problems see [20–26] and the
references cited therein. Some approaches to approximating this type of problem have also
been considered [20, 21, 26–28]. However, the algorithms developed in the papers cited above
are mainly concerned with regular cases (i.e., when boundary layers are absent). In [27] has
been studied the fitted difference schemes on an equidistant mesh for the numerical solution
of the linear three-point reaction-diffusion problem.

The numerical method presented here comprises a fitted difference scheme on a
piecewise uniform mesh. We have derived this approach on the basis of the method of
integral identities using interpolating quadrature rules with the weight and remainder terms
in integral form. This results in a local truncation error containing only first-order derivatives
of exact solution and hence facilitates examination of the convergence. A summary of paper is
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as follows. Section 2 contains results concerning the exact solutions of problem (1.1)–(1.3). In
Section 3, we describe the finite-difference discretization and construct a piecewise uniform
mesh, which is fitted to the boundary layers. In Section 4, we present the error analysis for the
approximate solution. Uniform convergence is proved in the discrete maximum norm. In the
following section numerical results are presented, which are in agreement with the theoretical
results. The approach to the construction of the discrete problem and the error analysis for
the approximate solution are similar to those in [18, 27–29].

2. Continuous Solution

In this section, we give uniform bounds for the solution of the BVP (1.1)–(1.3), which will be
used to analyze properties of appropriate difference problem.

Lemma 2.1. Let a, f ∈ C1[0, �]. Then the solution u(x) of problem (1.1)–(1.3) satisfies the
inequalities

‖u‖∞ ≤ C0, (2.1)

where

C0 = (1 − k)−1
{

|B| + k
(

δ−1|A| + β−1‖F‖∞
)}

F(x) = f(x, 0), A = −ψ(0), B = ϕ(0),

‖u‖∞ = max
[0,�]

|u(x)|,
(2.2)

∣
∣u′(x)

∣
∣ ≤ C

{

1 +
1
ε

(

e−μ1x/ε + e−μ2(�−x)/ε
)}

, 0 ≤ x ≤ �, (2.3)

with

μ1 =
1
2

(√

a2(0) + 4β + a(0)
)

,

μ2 =
1
2

(√

a2(�) + 4β − a(�)
)

,

(2.4)

providing that (∂f/∂x)(x, u) is bounded for x ∈ [0, �] and |u| ≤ C0.

Proof. We rewrite the problem (1.1)–(1.3) as

Lu ≡ ε2u′′(x) + εa(x)u′ − b(x)u(x) = F(x), 0 < x < �, (2.5)

L0u ≡ −εu′(0) + ρu(0) = A, (2.6)

u(�) − γu(�1) = B, (2.7)
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where

b(x) =
∂f

∂u
(x, ξu), 0 < ξ < 1,

ρ =
dψ

du

(

η1u(0)
)

, 0 < η1 < 1,

γ =
dϕ

du

(

η2u(�1)
)

, 0 < η2 < 1.

(2.8)

Here we use the Maximum Principle: let L and L0 be the differential operators in (2.5)-(2.6) and
v ∈ C2[0, �]. If L0v ≥ 0, v(�) ≥ 0, and Lv ≤ 0 for all, then v(x) ≥ 0 for all x < 0 < �. Then, from
(2.5)-(2.6) we have the following inequality:

|u(x)| ≤ δ−1|A| + |u(�)| + β−1‖F‖∞, x ∈ [0, �]. (2.9)

Next, from boundary condition (2.7), we get

|u(�)| ≤ |B| + k|u(�1)|. (2.10)

By setting the value x = �1 in the inequality (2.9), we obtain

|u(�1)| ≤ δ−1|A| + |u(�)| + β−1‖F‖∞. (2.11)

From (2.10) and (2.11), then we have

|u(�)| ≤ (1 − k)−1
{

|B| + k
(

δ−1|A| + β−1‖F‖∞
)}

, (2.12)

which along with (2.9) leads to (2.1).
After establishing (2.1) the further part of the proof is almost identical to that of [28].

3. Discretization and Mesh

Let ωN be any nonuniform mesh on [0, �]:

ωN = {0 < x1 < · · · < xN−1 < �}, (3.1)

and ωN = ωN ∪ {x0 = 0, xN = �}. For each i ≥ 1 we set the stepsize hi = xi − xi−1.
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Before describing our numerical method, we introduce some notation for the mesh functions.
For any mesh function g(x) defined on ωN we use

gi = g(xi), gx,i =

(

gi − gi−1
)

hi
, gx,i =

(

gi+1 − gi
)

hi+1
,

g 0
x,i

=

(

gx,i + gx,i
)

2
, gx̂,i =

(

gi+1 − gi
)

�i
, �i =

(hi + hi+1)
2

,

gxx̂,i =

(

gx,i − gx,i
)

�
,

‖w‖∞ ≡ ‖w‖∞,ωN
:= max

0≤i≤N
|wi|.

(3.2)

The difference scheme we will construct follows from the identity

χ−1
i �

−1
i

∫�

0
Luϕi(x)dx = 0, i = 1, 2, . . . ,N − 1 (3.3)

with the basis functions {ϕi(x)}N−1
i=1 having the form

ϕi(x) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

ϕ
(1)
i (x), xi−1 < x < xi,

ϕ
(2)
i (x), xi < x < xi+1,

0, x /∈ (xi−1, xi+1),

(3.4)

where ϕ(1)
i (x) and ϕ(2)

i (x), respectively, are the solutions of the following problems:

εϕ′′ − aiϕ′ = 0, xi−1 < x < xi,

ϕ(xi−1) = 0, ϕ(xi) = 1,

εϕ′′ − aiϕ′ = 0, xi < x < xi+1,

ϕ(xi) = 1, ϕ(xi+1) = 0.

(3.5)

The functions ϕ(1)
i (x) and ϕ(2)

i (x) can be explicitly expressed as follows:

ϕ
(1)
i (x) =

eai(x−xi−1)/ε − 1
eaihi/ε − 1

, ϕ
(2)
i (x) =

1 − e−ai(xi+1−x)/ε
1 − e−aihi+1/ε , for ai /= 0,

ϕ
(1)
i (x) =

x − xi−1
hi

, ϕ
(2)
i (x) =

xi+1 − x
hi+1

, for ai = 0.

(3.6)
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The coefficient χi in (3.3) is given by

χi = �
−1
i

∫xi+1

xi−1
ϕi(x)dx =

⎧

⎪
⎨

⎪
⎩

�
−1
i

(
hi

1 − eaihi/ε +
hi+1

1 − e−aihi+1/ε
)

, ai /= 0,

1, ai = 0.
(3.7)

Rearranging (3.3) gives

−ε2�−1
i χ

−1
i

∫xi+1

xi−1
ϕ′
i(x)u

′(x)dx + εai�−1
i χ

−1
i

∫xi+1

xi−1
ϕi(x)u′(x)dx − f(xi, ui) + Ri = 0,

i = 1,N − 1

(3.8)

with

Ri = ε�−1
i χ

−1
i

∫xi+1

xi−1
[a(x) − a(xi)]u′(x)ϕi(x)dx − �

−1
i χ

−1
i

∫xi+1

xi−1
dx ϕi(x)

×
∫xi+1

xi−1

d

dx
f(ξ, u(ξ))K∗

0,i(x, ξ)dξ,

K∗
0,i(x, ξ) = T0(x − ξ) − T0(xi − ξ), 1 ≤ i ≤N − 1,

T0(λ) =

⎧

⎨

⎩

1, λ ≥ 0,

0, λ < 0.

(3.9)

As consistent with [26, 27], we obtain the precise relation:

− ε2�−1
i χ

−1
i

∫xi+1

xi−1
ϕ′
i(x)u

′(x)dx + εai�−1
i χ

−1
i

∫xi+1

xi−1
ϕi(x)u′(x)dx

= ε2
{

χ−1
i

(

1 + 0.5ε−1�iai
(

χ2,i − χ1,i
))}

uxx̂,i + εaiu 0
x,i
,

(3.10)

where

χ1,i = �
−1
i

∫xi

xi−1
ϕ
(1)
i (x)dx =

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪
⎩

�
−1
i

(
ε

ai
+

hi
1 − eaihi/ε

)

, ai /= 0,

hi�
−1

2
, ai = 0,

χ2,i = �
−1
i

∫xi+1

xi

ϕ
(2)
i (x)dx =

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎩

�
−1
i

(
hi+1

1 − e−aihi+1/ε −
ε

ai

)

, ai /= 0,

hi+1�
−1

2
, ai = 0.

(3.11)
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It then follows from (3.8) that

�ui + Ri ≡ ε2θiuxx̂,i + εaiu 0
x,i

− f(xi, ui) + Ri = 0, i = 1,N − 1, (3.12)

where

θi = χ−1
i

[

1 + 0.5ε−1ai�i
(

χ2,i − χ1,i
)]

(3.13)

and after a simple calculation

θi =

⎧

⎪⎨

⎪⎩

ai�i
2ε

(

hi+1
(

eaihi/ε − 1
)

+ hi
(

1 − e−aihi+1/ε)

hi+1
(

eaihi/ε − 1
) − hi

(

1 − e−aihi+1/ε)
)

, ai /= 0,

1, ai = 0.
(3.14)

To define an approximation for the boundary condition (1.2), we proceed our
discretization process by

∫x1

0
Luϕ0(x)dx = 0, (3.15)

with

ϕ0(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1 − e−a0(x1−x)/ε
1 − e−a0h1/ε , x0 < x < x1, a0 /= 0,

x1 − x
h1

, x0 < x < x1, a0 = 0,

0, x /∈ (x0, x1).

(3.16)

Here the function ϕ0(x) is the solution of the following problem:

εϕ′′
0 − a0ϕ′

0 = 0, x0 < x < x1,

ϕ0(x0) = 1, ϕ0(x1) = 0.
(3.17)

In the analogous way, as in construction of (3.12), we obtain

−εθ(0)0 ux,0 + ψ(u0) + θ
(1)
0 f(x0, u0) − r(0) = 0, (3.18)
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where

θ
(0)
0 =

⎧

⎪
⎨

⎪
⎩

a0ρ

1 − e−a0ρ , a0 /= 0,

1, a0 = 0,
ρ =

h1
ε
, (3.19)

θ
(1)
0 =

⎧

⎪⎪⎨

⎪⎪
⎩

ρ

1 − e−a0ρ − a−10 , a0 /= 0,

h1
2ε
, a0 = 0,

(3.20)

r(0) =
∫x1

x0

[a(x) − a0]u′(x)ϕ0(x)dx − ε−1
∫x1

x0

dx ϕ0(x)
∫x1

x0

d

dξ
f(ξ, u(ξ))T0(x − ξ)dξ,

ξ ∈ (x0, x1).

(3.21)

Now, it remains to define an approximation for the second boundary condition (1.3).
Let xN0 be the mesh point nearest to �1. Then

uN − ϕ(uN0) + r
(1) = 0, (3.22)

where

r(1) = (u(�1) − u(xN0))ϕ
′(ξ), (3.23)

being ξ-intermediate point between u(xN0) and u(�1).
Based on (3.12), (3.18), and (3.22), we propose the following difference scheme for

approximating (1.1) and (1.3):

ε2θyxx̂ + εay 0
x
− f(x, y) = 0, x ∈ ωN, (3.24)

−εθ(0)0 yx,0 + ψ
(

y0
)

+ θ(1)0 f
(

x0, y0
)

= 0, (3.25)

y(�) − ϕ(yN0

)

= 0, (3.26)

where θ, θ(0)0 , and θ(1)0 are defined by (3.14), (3.19), and (3.20), respectively.
The difference scheme (3.24)–(3.26) in order to be ε-uniform convergent, we will use

the Shishkin mesh. For a divisible by 4 positive integer N, we divide each of the intervals
[0, σ1] and [� − σ2, �] into N/4 equidistant subintervals and also [σ1, � − σ2] into N/2
equidistant subintervals, where the transition points σ1 and σ2, which separate the fine and
coarse portions of the mesh, are obtained by taking

σ1 = min
{
�

4
, μ−1

1 ε lnN
}

, σ2 = min
{
�

4
, μ−1

2 ε lnN
}

, (3.27)
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where μ1 and μ2 are given in Lemma 2.1. In practice one usually has σi � � (i = 1, 2); so the
mesh is fine on [0, σ1], [� − σ2, �], and coarse on [σ1, � − σ2]. Hence, if we denote by h(1), h(2),
and h(3) the step-size in [0, σ1], [σ1, � − σ2], and [� − σ2, �], respectively, we have

h(1) =
4σ1
N

, h(2) =
2(� − σ2 − σ1)

N
, h(3) =

4σ2
N

,

1
2

(

h(1) + h(3)
)

=
2�
N
, h(k) ≤ �N−1, k = 1, 3, �N−1 ≤ h(2) < 2�N−1,

(3.28)

and so

ωN =
{

xi = ih(1), i = 0, 1, . . . ,
N

4
; xi = σ1 +

(

i − N

4

)

h(2), i =
N

4
+ 1, . . . ,

3N
4

;

xi = � − σ2 +
(

i − 3N
4

)

h(3), i =
3N
4

+ 1, . . . ,N, h(1) =
4σ1
N

,

h(2) =
2(� − σ2 − σ1)

N
, h(3) =

4σ2
N

}

.

(3.29)

In the rest of the paper we only consider this mesh.
We note that on this mesh the coefficient θi which is defined by (3.14) simplifies to

θi =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

aih
(1)

2ε
coth

aih
(1)

2ε
, for 1 ≤ i ≤ N

4
− 1,

aih
(2)

2ε
coth

aih
(2)

2ε
, for

N

4
+ 1 ≤ i ≤ 3N

4
− 1,

aih
(3)

2ε
coth

aih
(3)

2ε
, for

3N
4

+ 1 ≤ i ≤N.

(3.30)

For the evaluation of the rest values θN/4 and θ3N/4 we will use the form (3.14).

4. Error Analysis

Let z = y − u, x ∈ ωN . Then for the error of the difference scheme (3.24)–(3.26)we get

ε2θizxx̂,i + εaiz 0
x,i

− [f(xi, yi
) − f(xi, ui)

]

= Ri, 1 ≤ i ≤N − 1, (4.1)

−εθ(0)0 zx,0 +
[

ψ
(

y0
) − ψ(u0)

]

+ θ(1)0

[

f
(

x0, y0
) − f(x0, u0)

]

+ r(0) = 0, (4.2)

zN − [ϕ(yN0

) − ϕ(uN0)
]

= r(1), (4.3)

where the truncation errors Ri, r
(0), and r(1) are defined by (3.9), (3.21), and (3.23),

respectively.
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Lemma 4.1. The solution zi of problem (4.1)–(4.3) satisfies

‖z‖∞,ωN
≤ (1 − κ)−1

((

δ + βθ(1)0

)−1∣
∣
∣r(0)

∣
∣
∣ +
∣
∣
∣r(1)

∣
∣
∣ + β−1‖R‖∞,ωN

)

. (4.4)

Proof. The problem (4.1)–(4.3) can be rewritten as

ε2θizxx̂,i + εaiz 0
x,i

− b̃izi = Ri, 1 ≤ i ≤N − 1,

−εθ(0)0 zx,0 +
(

δ̃ + b̃θ(1)0

)

z0 = −r(0),

zN − γ̃zN0 = r
(1),

(4.5)

where

b̃i =
∂f

∂u

(

xi, ỹi
)

, δ̃ = ψ
′(ỹ0), γ̃ = ϕ

′(ỹN0 ), (4.6)

ỹ0, ỹN0 , ỹi-intermediate points called for by the mean value theorem.
Since the discrete maximum principle is valid here, we have the proof of (4.4) by

analogy with the proof of Lemma 2.1.

Lemma 4.2. Under the above assumptions of Section 1 and Lemma 2.1, for the error functions
Ri, r

(0), and r(1), the following estimates hold:

‖R‖∞,ωN
≤ CN−1 lnN,

∣
∣
∣r(0)

∣
∣
∣ ≤ CN−1 lnN,

∣
∣
∣r(1)

∣
∣
∣ ≤ CN−1 lnN.

(4.7)

Proof. From explicit expression (3.9) for Ri, on an arbitrary mesh we have

|Ri| ≤ C
{

ε max
[xi−1,xi+1]

∣
∣u′(x)

∣
∣ max
[xi−1,xi+1]

|xi − x| +
∫xi+1

xi−1

∣
∣
∣
∣

∂f(ξ, u(ξ))
∂ξ

+
∂f

∂u

du(ξ)
dξ

∣
∣
∣
∣
dξ

}

≤ C
{

hi + hi+1 +
∫xi+1

xi−1

(

1 +
∣
∣u′(ξ)

∣
∣
)

dξ

}

, 1 ≤ i ≤N.

(4.8)

This inequality together with (2.3) enables us to write

|Ri| ≤ C
{

hi + hi+1 +
1
ε

∫xi+1

xi−1

(

e−μ1x/ε + e−μ2(�−x)/ε
)

dx

}

, (4.9)
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in which

hi =

⎧

⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪
⎩

h(1), 1 ≤ i ≤ N

4
,

h(2),
N

4
+ 1 ≤ i ≤ 3N

4
,

h(3),
3N
4

+ 1 ≤ i ≤N.

(4.10)

We consider first the case σ1 = σ2 = �/4, and so �/4 < μ−1
k
ε lnN, k = 1, 2, and h(1) =

h(2) = h(3) = h = �N−1. Hereby, from (4.9) we can write

|Ri| ≤ C
{

N−1 + ε−1h
}

≤ C
{

N−1 +
�

N

4μ−1
1

�
lnN

}

= C
{

N−1 + 4μ−1
1 N

−1 lnN
}

.

(4.11)

Hence

|Ri| ≤ CN−1 lnN, 1 ≤ i ≤N. (4.12)

We now consider the case σ1 = μ−1
1 ε lnN and σ2 = μ−1

2 ε lnN, and so μ−1
k
ε lnN <

�/4, k = 1, 2 and estimate Ri on [0, σ1], [σ1, � − σ2], and [� − σ2, �] separately. In the layer
region [0, σ1], the inequality (4.9) reduces to

|Ri| ≤ C
(

1 + ε−1
)

h(1) ≤ C
(

1 + ε−1
)4μ−1

1 ε lnN
N

, 1 ≤ i ≤ N

4
− 1. (4.13)

Hence

|Ri| ≤ CN−1 lnN, 1 ≤ i ≤ N

4
− 1. (4.14)

The same estimate is obtained in the layer region [� − σ2, �] in the similar manner.
It remains to estimate Ri forN/4 + 1 ≤ i ≤ 3N/4 − 1. In this case we are able to write

(4.9) as

|Ri| ≤ C
{

h(2) + μ−1
1

(

e−μ1xi−1/ε − e−μ1xi+1/ε
)

+ μ−1
2

(

e−μ2(�−xi+1)/ε − e−μ2(�−xi−1)/ε
)}

,

N

4
+ 1 ≤ i ≤ 3N

4
− 1.

(4.15)

Since xi = μ−1
1 ε lnN + (i −N/4)h(2), it follows that

e−μ1xi−1/ε − e−μ1xi+1/ε = 1
N
e−μ1(i−1−N/4)h

(2)/ε
(

1 − e−2μ1h(2)/ε
)

< N−1. (4.16)



12 Journal of Applied Mathematics

Also, if we rewrite the mesh points in the form xi = � − σ2 − (3N/4 − i)h(2), evidently

e−μ2(�−xi+1)/ε − e−μ2(�−xi−1)/ε = 1
N
e−μ2(3N/4−i−1)h

(2)/ε
(

1 − e−2μ2h(2)/ε
)

< N−1. (4.17)

The last two inequalities together with (4.15) give the bound

|Ri| ≤ CN−1. (4.18)

It remains to estimate Ri for the mesh points xN/4 and x3N/4. For the mesh point xN/4,
inequality (4.9) reduces to

|RN/4| ≤ C
{
(

1 + ε−1
)

h(1) + h(2) +
1
ε

∫xN/4+1

xN/4

(

e−μ1x/ε + e−μ2(�−x)/ε
)

dx

}

. (4.19)

Since

e−μ1xN/4/ε − e−μ1xN/4+1/ε = 1
N

(

1 − e−μ1h(2)/ε
)

< N−1,

e−μ2(�−xN/4+1)/ε − e−μ2(�−xN/4)/ε = 1
N
e−μ2h

(1)/ε
(

1 − e−μ2h(1)/ε
)

< N−1,

(4.20)

it then follows that

|RN/4| ≤ CN−1 lnN. (4.21)

The same estimate is obtained for i = 3N/4 in the similar manner.
The same estimate is valid when only one of the values σ1 and σ2 is equal to �/4.
Next, we estimate the remainder term r(0). From the explicit expression (3.21), taking

into consideration that (δ + βθ(1)0 )
−1 ≤ δ−1 and |ϕ0(x)| ≤ 1, we obtain

∣
∣
∣r(0)

∣
∣
∣ =

1
δ

{

h1

∫x1

x0

∣
∣u′(x)

∣
∣dx +

h1
ε

∫x1

x0

∣
∣
∣
∣

∂f

∂x
+
∂f

∂u
u′(x)

∣
∣
∣
∣
dx

}

≤ C
{

h21
ε

+
(

h1 +
h1
ε

)∫x1

x0

∣
∣u′(x)

∣
∣dx

}

≤ C
{

h21
ε

+
(

h1 +
h1
ε

)∫x1

x0

(

1 +
1
ε
e−μ1x/ε

)

dx

}

≤ C
{

h21 + εh
2
1 + h1
ε

}

.

(4.22)
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Hence

∣
∣
∣r(0)

∣
∣
∣ ≤ CN−1 lnN. (4.23)

Finally, we estimate the remainder term r(1). From the expression (3.23) we obtain

∣
∣
∣r(1)

∣
∣
∣ ≤
∣
∣ϕ′(ξ)

∣
∣

∫�1

xN0

∣
∣u′(τ)

∣
∣dτ

≤ C
{

�1 − xN0 +
1
ε

∫�1

xN0

(

e−μ1τ/ε + e−μ2(�−τ)/ε
)

dτ

}

≤ C
{

N−1 +
1
ε

∫xN0+1

xN0

(

e−μ1τ/ε + e−μ2(�−τ)/ε
)

dτ

}

,

(4.24)

where we have assumed that xN0 is on the left-hand side of �1 (if xN0 is on right side of �1,
the integral will be over (xN0−1, xN0)). In the same manner as above we therefore obtain from
here that

∣
∣
∣r(1)

∣
∣
∣ ≤ CN−1 lnN. (4.25)

Thus Lemma 4.2 is proved.

Combining the two previous lemmas gives us the following convergence result.

Theorem 4.3. Let u(x) be the solution of (1.1)–(1.3) and y the solution (3.24)–(3.26). Then

∥
∥y − u∥∥∞,�N

≤ CN−1 lnN. (4.26)

5. Numerical Results

In this section, we present some numerical results which illustrate the present method.

Example 5.1. Consider the test problem:

a(x) = 1 + x, f(x, u) = u + tan−1(x + u), 0 < x < 1,

ψ(u) = sinu + 2u, ϕ(u) = 1 + cos
πu

4
, �1 =

1
2
.

(5.1)

The exact solution of our test problem is unknown. Therefore, we use a double-mesh
method [2] to estimate the errors and compute the experimental rates of convergence in our
computed solutions; that is, we compare the computed solution with the solution on a mesh
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that is twice as fine (for details see [13, 28]). The error estimates obtained in this way are
denoted by

eNε = max
i

∣
∣
∣y

ε,N
i − ỹε,2Ni

∣
∣
∣, (5.2)

where ỹε,2Ni is the approximate solution of the respective method on the mesh

ω̃2N = {xi/2 : i = 0, 1, . . . , 2N} (5.3)

with

xi+1/2 =
xi + xi+1

2
for i = 0, 1, . . . ,N − 1. (5.4)

The convergence rates are

pNε =
ln
(

eNε /e
2N
ε

)

ln 2
. (5.5)

Approximations to the ε-uniform rates of convergence are estimated from

eN = max
ε

eNε . (5.6)

The corresponding ε-uniform convergence rates are computed using the formula

pN =
ln
(

eN/e2N
)

ln 2
. (5.7)

To solve the nonlinear problem (3.24)–(3.26)we use the following iteration technique:

ε2θiy
(n)
xx̂,i

+ εaiy
(n)
0
x,i

− f(xi, yi
) − ∂f

∂y

(

xi, y
(n−1)
i

)(

y
(n)
i − y(n−1)

i

)

= 0, 1 ≤ i ≤N, (5.8)

− εθ(0)0 y
(n)
x,0 + ψ

(

y
(n−1)
0

)

+
∂ψ

∂y

(

y
(n−1)
0

)(

y
(n)
0 − y(n−1)

0

)

+ θ(1)0

(

f
(

x0, y
(n−1)
0

)

+
∂f

∂y

(

x0, y
(n−1)
0

)(

y
(n)
0 − y(n−1)

0

))

= 0,

(5.9)

y
(n)
N = ϕ

(

y
(n−1)
N0

)

+
∂ϕ

∂y

(

y
(n−1)
N0

)(

y
(n)
N0

− y(n−1)
N0

)

,

n = 1, 2, . . . ; y
(0)
i given 1 ≤ i ≤N.

(5.10)
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Table 1: For the case of a(x)/= 0, approximate errors eNε and eN and the computed orders of convergence
pNε on the piecewise uniform mesh ωN for various values of ε andN.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 0.02233220 0.01350608 0.00954256 0.00428337 0.00310038 0.00176533

0.77 0.82 0.86 0.93 0.98 0.99
10−4 0.02233215 0.01376835 0.00850615 0.00538213 0.00315446 0.00160520

0.75 0.80 0.85 0.92 0.97 0.99
10−6 0.02233210 0.01376065 0.00851454 0.00540203 0.00314356 0.00160544

0.75 0.80 0.85 0.92 0.97 0.99
10−8 0.02233205 0.01376074 0.00851405 0.00540203 0.00314356 0.00160522

0.75 0.80 0.85 0.92 0.97 0.99
10−10 0.02233209 0.01376065 0.00851405 0.00540203 0.00314356 0.00160522

0.75 0.80 0.85 0.92 0.97 0.99
10−12 0.02233209 0.01376065 0.00851405 0.00540203 0.00314356 0.00160522

0.75 0.80 0.85 0.92 0.97 0.99
10−14 0.02233209 0.01376065 0.00851405 0.00540203 0.00314356 0.00160522

0.75 0.80 0.85 0.92 0.97 0.99
10−16 0.02233213 0.01376074 0.00851405 0.00540203 0.00314356 0.00160522

0.75 0.80 0.85 0.92 0.97 0.99
10−18 0.02233213 0.01376074 0.00851405 0.00540203 0.00314356 0.00160522

0.75 0.80 0.85 0.92 0.97 0.99
10−20 0.02233213 0.01376074 0.00851405 0.00540203 0.00314356 0.00160522

0.75 0.80 0.85 0.92 0.97 0.99
eN 0.02233220 0.01376835 0.00954256 0.00540203 0.00315446 0.00176533
pN 0.75 0.80 0.85 0.92 0.97 0.99

To solve (5.8)–(5.10), we take the initial approximation as y(0)
i = x2

i and the stopping
criterion is

max
i

∣
∣
∣y

(n)
i − y(n−1)

i

∣
∣
∣ ≤ 10−5. (5.11)

The computed maximum pointwise errors eNε and e2Nε , and the orders of uniform
convergence pNε for different values of ε and N, based on the double-mesh principle are
presented in Tables 1 and 2. The results established here are that the discrete solution is
uniformly convergent with respect to the perturbation parameter pN and the errors are
uniformly convergent with rates of almost unity as predicted by our theoretical analysis.

Example 5.2. Consider the test problem:

a(x) = sin
(πx

2

)

, f(x, u) = 1 + x2 + u + tanhu, 0 < x < 1,

ψ(u) = u − 1, ϕ(u) =
1
2
u + 2, �1 =

1
2
.

(5.12)

The exact solution of our test problem is unknown. In the same manner as above we solve
this problem.
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Table 2: For the case a(0) = 0 of approximate errors eNε and eN and the computed orders of convergence
pNε on the piecewise uniform mesh ωN for various values of ε andN.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 0.02453225 0.01721110 0.01123085 0.00652485 0.00439674 0.00189543

0.68 0.79 0.83 0.88 0.96 0.99
10−4 0.02453220 0.01716585 0.01120973 0.00651194 0.00439686 0.00188515

0.67 0.76 0.80 0.85 0.94 0.99
10−6 0.02453221 0.01706582 0.01120403 0.00651089 0.0043 9225 0.00188523

0.67 0.76 0.80 0.85 0.94 0.99
10−8 0.02453215 0.01706553 0.01120282 0.00651046 0.00439214 0.00188517

0.67 0.76 0.80 0.85 0.94 0.99
10−10 0.02453215 0.01706593 0.01120275 0.00651093 0.00439214 0.00188517

0.67 0.76 0.80 0.85 0.94 0.99
10−12 0.02453216 0.01706452 0.01120270 0.00651025 0.00439214 0.00188517

0.67 0.76 0.80 0.85 0.94 0.99
10−14 0.02453209 0.01706425 0.01120256 0.00651025 0.00439214 0.00188517

0.67 0.76 0.80 0.85 0.94 0.99
10−16 0.02453209 0.01706425 0.01120256 0.00651025 0.00439214 0.00188517

0.67 0.76 0.80 0.85 0.94 0.99
10−18 0.02453209 0.01706425 0.01120256 0.00651025 0.00439214 0.00188517

0.67 0.76 0.80 0.85 0.94 0.99
10−20 0.02453209 0.01706425 0.01120256 0.00651025 0.00439214 0.00188517

0.67 0.76 0.80 0.85 0.94 0.99
eN 0.02453225 0.01716585 0.01123085 0.00652485 0.00439686 0.00189543
pN 0.68 0.79 0.83 0.88 0.96 0.99
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[26] M. P. Sapagovas and R. Yu. Čiegis, “Numerical solution of some nonlocal problems,” Lietuvas
Matematica Rink, vol. 27, no. 2, pp. 348–356, 1987 (Russian).
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