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We introduce a new iterative scheme that converges strongly to a common fixed point of a
countable family of nonexpansive mappings in a Hilbert space such that the common fixed point
is a solution of a hierarchical fixed point problem. Our results extend the ones of Moudafi, Xu,
Cianciaruso et al., and Yao et al.

1. Introduction

Let H be a real Hilbert space and C a nonempty closed convex subset of H. A mapping
T :C — Cis called nonexpansive if one has

|Tx-Ty| < ||lx-y|, VYx,yeC (1.1)

If there exists a point x € C such that x = Tx, then x is said to be a fixed point of T. We denote
the set of all fixed points of T by F(T). It is well known that F(T) is closed and convex if T is
nonexpansive.

Let S : C — H be a mapping. The following problem is called a hierarchical fixed
point problem: find x* € F(T') such that

(x* = Sx*,x* —x) <0, VxeF(T). (1.2)
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It is known that the hierarchical fixed point problem (1.2) links with some monotone
variational inequalities and convex programming problems (see [1]).

In order to solve the hierarchical fixed point problem (1.2), Moudafi [2] introduced the
following Krasnoselski-Mann algorithm:

X1 = (1 —ay)x, + a,(0,5x, + (1-0,)Tx,), Yn>0, (1.3)

where {a,} and {o,} are two sequences in (0, 1), and he proved that {x,} converges weakly
to a fixed point of T which is a solution of the problem (1.2).

Let f : C — C be a mapping. The mapping f is called a contraction if there exists a
constant A € [0,1) such that || fx - fy|| < A|lx — y|| for all x,y € C. For obtaining a strong
convergence result, Mainge and Moudafi in [3] and Marino and Xu in [4] introduced the
following algorithm:

Xne1 = (1= ay) f(xn) + an(0nSxy + (1 — 00)Tx,), Vn>0, (1.4)

where S : C — C is a nonexpansive mapping and {a,} and {o,} are two sequences in (0, 1),
and they proved that {x,} converges strongly to a fixed point of T which is a solution of the
problem (1.2). Recently, for solving the hierarchical fixed point problem (1.2), Cianciaruso et
al. [5] also studied the following iterative scheme:

Yn = pnsxn + (1 - ﬂn)xnr
Xns1 = O f(Xn) + (1= an)Tyn, Vn 20,

(1.5)

where {a,} and {f,} are two sequences in [0,1]. The authors proved some strong
convergence results. Very recently, Yao et al. [1] introduced the following strong convergence
iterative algorithm to solve the problem (1.2):

Yn = ﬂnsxn + (1 - ﬁn)xnr

(1.6)
X = Pe[anf(xn) + (1= ay)Ty,], Yn>0,

where f : C — H is a contraction and {a, } and {f,} are two sequences in (0, 1). Under some
certain restrictions on parameters, the authors proved that the sequence {x,} generated by
(1.6) converges strongly to z € F(T), which is the unique solution of the following variational
inequality:

(I-f)z,x-2z)>0, VxeF(T). (1.7)

By changing the restrictions on parameters, the authors obtained another result on
the iterative scheme (1.6), that is, the sequence {x,} generated by (1.6)converges strongly to
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a point x* € F(T), which is the unique solution of the following variational inequality:
1
<;(I—f)x*+(I—S)x*,y—x*> >0, YyeF(T), (1.8)

where 7 € (0, 00) is a constant.

Let S: C — H be anonexpansive mapping and {T;}Z, : C — C a countable family of
nonexpansive mappings. In this paper, motivated and inspired by the results of Yao et al. [1]
and Marino and Xu [4], we introduce and study the following iterative scheme:

Yn = Pe[PuSxn+ (1= pu)xa],

. (1.9)
Xn1 = Pc I:anf(xn) + Z(“i—l - ai)Ti]/n:I/ Vn>1,

i=1

where ay = 1, {a,} is a strictly decreasing sequence in (0,1) and {f,} is a sequence in
(0,1). Under some certain conditions on parameters, we first prove that the sequence {x,}
generated by (1.9) converges strongly to x* € (\Z; F(T;), which is the unique solution of the
following variational inequality:

(I-f)x*,x-x*)>0, Vxe ﬁF(Ti). (1.10)
i=1

By changing the restrictions on parameters, we also prove that the sequence {x,} converges
strongly to x* € N, F(T;), which is the unique solution of the following variational inequality:

<%(I—f)x*+([—5)x*,y—x*> >0, VyeﬂF(Ti), (1.11)

i=1

where 7 € (0, 00) is a constant. It is easy to see that, if T; = T for each i > 1 and S is a self-
mapping of C into itself, then our algorithm (1.9) is reduced to (1.6) of Yao et al. [1] Also, our
results extend the corresponding ones of Moudafi [6], Xu [7], and Cianciaruso et al. [5].

2. Preliminaries

Let H be a Hilbert space and C a nonempty closed convex subset of H. Let T be a
nonexpansive mapping of C into itself such that F(T) #0. For all x € F(T) and all x € C,
we have

lx = %|* > ITx - Tx|* = |[Tx - %[> = |[Tx - x + (x - X)|I*
(2.1)
= ||ITx — x||* + ||x - X||* + 2(Tx - x, x - X)
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and hence

ITx - x||> <2(x -Tx,x - x), VYxeF(), xeC. (2.2)

Let x € H be an arbitrary point. There exists a unique nearest point in C, denoted by
Pcx, such that

|[Pex —x|| < ||y -x|, VyeC. (2.3)
Moreover, we have the following:
z=Pex= (x-z,z-y)>0, YyeC. (2.4)

Let I denote the identity operator of H, and let {x,} be a sequence in a Hilbert space
H and x € H. Throughout this paper, x, — x denotes that {x,} strongly converges to x and
X, — x denotes that {x,} weakly converges to x.

The following lemmas will be used in the next section.

Lemma 2.1 (see [8]). Let T : C — C be a nonexpansive mapping with F(T)#0. If {x,} is a
sequence in C weakly converging to a point x € C and {(I — T)x,} converges strongly to a point
y € C, then (I - T)x = y. In particular, if y = 0, then x € F(T).

Lemma 2.2 (see [9]). Let f : C — H be a contraction with coefficient A € [0,1) and T : C — Ca
nonexpansive mapping. Then one has the following.

(1) The mapping (I — f) is strongly monotone with coefficient (1 — 1), that is,

(x-y,(I- f)x=(I-fy) > A-V|x-y|>, VxyeC (2.5)
(2) The mapping I — T is monotone, that is,
(x-y,d-T)x-I-T)y)>0, Vx,yeC. (2.6)

Lemma 2.3 (see [10]). Let {sn}, {cn} be the sequences of nonnegative real numbers, and let {a,} C
(0,1). Suppose that {b,} is a real number sequence such that

Sui1 < (1—ay)s,+b,+c,, Yn>0. (2.7)

Assume that 37, ¢, < oo. Then the following results hold.
(1) If b, < Pay, where p > 0, then {s,} is a bounded sequence.
(2) If one has

< . by
Zan = oo, limsup— <0, (2.8)
n=0

n—ow On

then lim,, _, s, = 0.
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3. Main Results

Now, we give the main results in this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — H be
a A-contraction with A € [0,1). Let S : C — H be a nonexpansive mapping and {T;}72; a countable
family of nonexpansive mappings of C into itself such that F = (2 F(T;) #0. Set ag = 1, and let
{an} C (0,1) be a strictly decreasing sequence and {B,} C (0,1) a sequence satisfying the following
conditions:

(a) limy oty = 0and 357 ay = oo,
(b) hmn—mo(ﬁn/“n) = 0/

(0) Xii(any —ay) <ooand 372 |Bu1 — Pul < co.

Then the sequence {x,} generated by (1.9) converges strongly to a point x* € F, which is the unique
solution of the variational inequality

(I-f)x*,x-x*)y>0, VxeF. (3.1)

Proof. First, Prf is a contraction from C into itself with a constant A and C is complete, and
there exists a unique x* € C such that x* = Pr f (x*). From (2.4), it follows that x* is the unique
solution of the problem (3.1).

Now, we prove that {x, } converges strongly to x*. To this end, we first prove that {x;,}
is bounded. Take p € F. Then it follows from (1.9) that

lyn =PIl = [ Pc[BaSxn + (1= n)xa] - Pep||
< ||BuSan + (1= Bu)xn = p|
< PullSxu = Spl| + BullSp = pll + (1 = Bu) |2 — P (32)
< Pullocn = pll + BullSp = Il + (1 = Bu) %0~ |
= |lxu = pll +BullSp - Pl

and hence (note that {a,} is strictly decreasing)

l|l2¢ns1 = pl| = || Pc [anf(xn) + Z(“i—l - tXi)Tiyn] - Pcp

i=1

IN

anf(xn) + Z(ai—l - )Ty, — PH
in1

= ||an(f (xn) = p) + D (i1 — ) (Tiyn — p) H
i=1
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< anl| f(en) = F(P) || + anll £ (P) ~ pIl + g(ai—l = a)||Tiyn - pll

n

< apd||xn = pl| + an| £ (p) - pl| + D (i1 — @) ||y - P

i=1

< and||xn =pll + @l f (p) =Pl + X (@1 —a) ([lxn = pll + BullSp - PII)
i=1

= |y = p|| + anl| f (p) = pll + 1 = an)(|[xa = p| + Bal|Sp - P|))-
(3.3)

By condition (b), we can assume that 3, < a,, for all n > 1. Hence, from above inequality, we
get
101 =pll < @ndln =pll +aull £ (p) =l + (1 = @) ([lxn = pll + anl|Sp -~ pl)
< and||xn =pl| + an|l f(p) = pll + @~ @) lxu = p| + aul[Sp = (34)

= [1=an (1= V]|l = pll + ax ([l £ () =Pl + ISP - Pl)-
Foreachn > 1, let a, = a,(1 - 1), b, = a,,(||f(p) — pll + ISp — pll), and ¢,, = 0. Then {a,},
{b,}, and {c,} satisfy the condition of Lemma 2.3(1). Hence, it follows from Lemma 2.3(1)

that {x,} is bounded and so are {f(x,)}, {yn}, {Tixx}, and {T;y,} for all i > 1. Set u,, =
an f (xn) + 2ty (ais1 — i) Tiyy for each n > 1. From (1.9), we have

llxns1 = xnll = [[Pcttn — Pettn1|| < ||ty =ty ||

Xp (f(xn) - f(xn—l)) + (ay - an—l)f(xn—l)

+Z (ai-1 — ;) (szn - Tiyn—l) + (a1 — ‘Xn)Tnyn—l
i1

7 3.5
< anll £ ) — Frn )| + 3 @it - )|y~ yos | 39
i=1

+ (@1 = an) ([Lf Cen) | + | Ty |])
< apd|xn = xpal| + Z(“i—l — i) |yn = Ynaa || + (@n1 — ) M
i=1
= an)‘”xn - xn—l” + (1 - an)”yn ~ Yn-1 ” + (an—l - an)M/

where M is a constant such that

SUIlb{ ”f(xn—l)" + ”Tn]/n—ln +[|Sxpa || + ”xn—l“} < M. (3.6)
n>
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From (1.9), we have

|y = yu-all = [[Pc(BuSxn + (1 = ) xn) = Pe(Brn-1Sxn-1+ (1= Pu-1) Xn1) |

< | (BaSxn + (1= Bu)2n) = (Bu-1S%n-1 + (1= fu1) %) |

= ”ﬂn(an - an—l) + (,ﬁn - ,ﬁn—l)sxn—l + (1 - pn)(xn - xn—l) + (ﬁn—l - ﬁn)xn—l ”

< ”xn - xn—l” + |ﬂn _ﬂn—1|M-

Substituting (3.7) into (3.5), we get that

||xn+1 - xn” < ||un - un—l”

< “n)‘”xn - xn—1|| + (1 - “n) [”xn - xn—l” + |ﬂn - ﬂn—l |M] + (an—l - ‘xn)M

<1 = 1 =Nan)|lxn = xpall + M[(“nfl —an) + |ﬁn - ﬁn—ll]-

(3.7)

(3.8)

Leta, = (1-\A)ay,, b, =0,and ¢, = (a4-1 — @) + |Bn — Pu-1]- Then conditions (a) and (c) imply
that {a,}, {b,}, and {c,} satisfy the condition of Lemma 2.3(2). Thus, by Lemma 2.3(2), we

can conclude that

lim ||x;41 — x4]| = 0.
n— oo
Since Tix, € C foreachi >1and X\, (ai-1 — a;) + a, = 1, we have

n
Z(“H —a)Tix,+a,z€ C, VzeC.
i=1

Now, fixing a z € F, from (1.9) we have

n
(i1 — ai) (xn — Tixy)
i=1

n
= Peuy + (1 —ay)x, — (Z(ail —a;)Tix, + anz> + apZ — Xpi1
i=1

n

= Pcu, - Pc I:Z(‘xil —a;)Tix, + anz] + (1 —ay)(xp — Xpe1) + an (2 = Xp41).

i=1

(3.9)

(3.10)

(3.11)
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Hence it follows that

> (i1 — i) (xn = Tixn, X0 — p)

i=1

IN

where

<PCun - Pc [Z (a1 — a;)Tix, + «anJ,xn - p>

i=1

+ (1= ay) (X0 = Xp41), X = P) + X2 = Xps1, X — P)

n
Un = D (@i — ) Tixy — apz
i1

”xn —P” + (1= ay)|lx, - xn+1||”xn _P”

+ |z = X ||| %0 = |

= ||an(f (xn) = 2) + D (i1 = i) (Tiyn = Tixw) || |20 = |
i=1
(3.12)
+ (1= an)llxn = x| ”xn - P“ +ayl|z - xn+1“”xn - P”
< ot £ (oen) = 2| | = pl| + (i1 = ) ||y = xal[[| 20 = |
i=1
+ (1= an)llxxn = xpal ”xn - P“ +ay||z - xn+1“”xn - P”
< ata | f () = 2| [Jo0n = pll + Do (et = i) BullSxu = xall|| 20 = p|
i=1
+ (1= an)llxn = xpall ”xn - P“ +ay|lz - xn+1””xn - P”
= an| f (n) = 2| [[n = | + (1 = @) Bull Sxn = xull || 20 = ||
+ (1= an)llxn = xpal ”xn - P“ +ayl|z - xn+1“”xn - P”
< ay + )M + (1 — ) |0 — X ll||xn = p|,
M = SUI13{ “.f(xn) - Z” ”xn =PIl ||an - xn“ ”xn - P”/ “Z - xn+1|| ”xn - p" } (313)
n>
Now, from (2.2) and (3.12), we get
1 n n
EZ(“i—l — a;) |0 — Tixn||* < Z(ai—l — a;){xn = Tixp, Xn — P)
i=1 i=1 (3.14)

< 2ay + fu) M+ (1 = an)||xn = x|l || 20 = p|-
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From (a), (b), (3.9), and (3.14), we have
Jim > (@i — a)|lxy = Tixa|| = 0. (3.15)
“ist

Since (ai1 — ai)||lxn — Tixn|| < X0 (ain — ai)||xn — Tixy|| for each i > 1 and {a,} is strictly
decreasing, one has

lim ||x, — Tix,|| =0, Vi>1. (3.16)
Next, we prove that
lim sup(f(x*) — x*, x, — x*) < 0. (3.17)

Since {x,} is bounded, we can take a subsequence {x,, } of {x,} such that x,, — x’ and

lim sup(f(x") ', %, ~ x°) = lim (f(x') ~ 2", %y, ). (3.18)

n— oo

From (3.16) and Lemma 2.1, we conclude that x’ € F(T;) for each i > 1, thatis, x' € N2, F(T}).
Then

klijxlo(f(x*) =X, Xy = X*) = (f(x*) = x*, x' —x*) <0. (3.19)
By (2.4), we have
(Pcuy, — uy, Pou,, — x*) <0. (3.20)

Also,

n
(aic1 — i) (Tiyn — X*, Xpa1 — x*)
i=1

n
< (@i — )| Tiyn = x*[[lxna1 — x|
i=1

n

< Z(ai—l - a;) IIyn - X*” 1241 — x|
i=1

= (1= an) ||yn = X |[llxns1 — x|

=(1-ay) ”PC (ﬂnsxn + (1 - ﬂn)xn> - ch*” 241 = x|

< (1 - “n) ”ﬁnsxn + (1 - ﬁn)xn - x*” “xn+1 - x*”
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= (1= an)||fn(Sxn — SX*) + Bn(Sx* = x*) + (1 = B) (xn

<(1-an) [ﬁn”xn = X"+ BullSx™ = X" + (1 = fu) 12t — X*H] |41 = %7

= (1= an)lloen = X" |l|xne1 = X7 + (1 = @) ful| Sx™ = x7[[[| 2041 = 27]-

x|

(3.21)

Thus,

Xns1 = 2*|1* = (Pctty — thn, Petty — X*) + {1y — X*, X1 — x°)

< (= X, X1 = X)) = @ (f (xX0) = f(X*), Xpa1 — x*)

n
+ > (@1 = @) (Tiyn = X*, Xpe1 = %) + @ (f(X7) = X7, X001 = x7)
i=1

< aplxn = X" |[[|26n1 = X7 + (1 = an) [l2en = 27| [| 1 = 27
+ (1 — ) Bul|Sx* = X ||| 241 = X¥|| + @ ( f () = X7, xXps1 — x¥)
= [1-an(1 = Vllxn = X" [ll20n1 = X7 + (1 = @) full Sx™ = x7|[[| 0001 — 7|

+an(f(x") = X", X1 — X7)

1—tXn 1-1 * * * * *
< 12D g, 1P 4 tn 1] + (1 @S — 2l — ']
+ o (f(x) = X*, xpi1 — X¥).
(3.22)
It follows that
2(1 - Ve, (1_“n)ﬁn
Ak 2< * ok Ak
Itans = [1= 2 [l = o S = s =]
Zan * * *
+m<f(x) X', Xns1 — X >
(3.23)
) [1 21 - Va, ]” 2(1 et
- 1+ -Na, | T+ (1-Day

1—“11))611 % « N 1 N . i
x{—(l_mn 185" = ler = 'l + T (") = 2", x>}_

Leta, =2(1-VNa,/(1+(1-A)ay, by = QA-Va,/(1+ A -Va,)){ (1 -a,)fn/(1-\)a,||Sx* -
Xxpar = ¥+ (1/1 = 1) (f(x*) = x*, x40 —x*)}, and ¢, = 0 for all n > 1. Since

. (1_an)ﬁn * * * 1 * * *
hmsup{mHSx —x*||||xpe1 — x| + m(f(x ) — X", Xp1 — X )} <0, (3.24)

n—oo
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> ay=o00,and 2(1 - Ma,/(1+ (1 - A)ay,) > (1 - A)a,, we have

[ee] . bn [o'e]
a, = oo, limsup— =0, ¢, =0. 3.25
2 mPa, S0 2 625)

Therefore, it follows from Lemma 2.3(2) that
lim [|x, —x"]| = 0. (3.26)

This completes the proof. O

Remark 3.2. In (1.9), if f = 0, then it follows that x, — x* = Pr0. In this case, from (3.1), it
follows that

(x*,x*—x) <0, Vx*€F, (3.27)
that is,
IxI* < (%, x) < Jl*llllxll, V€ F. (3.28)
Therefore, the point x* is the unique solution to the quadratic minimization problem
x* = arg min||x|”. (3.29)

In Theorem 3.1, if T; = T for all i > 1, then we get the following result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — H
be a A-contraction with A € [0,1). Let S : C — H be a nonexpansive mapping and T : C — Coa
nonexpansive mapping such that F(T) #0. Let x; € C and define a sequence {x,} by

Yn = pC [ﬂnsxn + (1 - ﬂn)xn]/

(3.30)
X = Pefanf(xn) + (1 - a,)Ty,], Yn>1,

where {a,} C (0,1) and {B,} C (0,1) are two sequences satisfying the following conditions:

(a) imy oty = 0, and 377 a, = oo,
(b) hmn—mo(ﬁn/“n) =0,

(0) X lana — an| <ooand 372, |Bu-1 = Pul < 0.

Then the sequence {x,} converges strongly to a point x* € F(T), which is the unique solution of the
variational inequality

((I-f)x*,x=x*y>0, VxeF(T). (3.31)
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In Corollary 3.3, if S is a self-mapping of C into itself, then we get the following result.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — H
be a \-contraction with A € [0,1). Let S : C — C be a nonexpansive mapping and T : C — Ca
nonexpansive mapping such that F(T) # 0. Let x1 € C and define a sequence {x,} by

Yn = ﬁnsxn + (1 - ,ﬁn)xnr

(332)
X1 = Pe[anf(xn) + (1 - ay)Tx,], VYn>1,

where the sequences {a,} C (0,1) and {B,} C (0,1) are two sequences satisfying the following
conditions:

(a) limy oty = 0and >77 4 ay = oo,
(b) hmn—mo(ﬂn/an) =0,

(C) Z;’f:l |“n—1 - anl < oo and Z;zu;l |ﬁn—1 - ﬁn| < oo.

Then the sequence {x,} converges strongly to a point x* € F(T), which is the unique solution of the
variational inequality

((I-f)x*,x-x*)>0, VxeF(T). (3.33)

By changing the restrictions on parameters in Theorem 3.1, we obtain the following.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — H
be a A-contraction with A € [0,1). Let S : C — C be a nonexpansive mapping and {T;}i2; : C — C
a countable family of nonexpansive mappings such that F = (72, F(T;) #0. Set ap = 1. Let x; € C
and define a sequence {x,} by

Yn = ﬂnsxn + (1 - ﬂn)xnr
(3.34)

n

X1 = Pc [anf(xn) + D (@i - ai)Tiyn]/ Vn>1,

i=1

where {a,} C (0,1) is a strictly decreasing sequence and {f,} C (0,1) is a sequence satisfying the
following conditions:

(a) limy oty = 0and >77 4 ay = o0,

(b) limy— o (Bu/an) = 7 € (0, 00),

(0) Xna(an-1 —ay) <ooand 374 |Bu-1 — Pul < oo,

(d) limy — oo ((an-1 = an) + |Bn = Pu-1])/ anfPn = 0,

(e) there exists a constant K > 0 such that (1/a,)|1/n —1/Pu-1| < K.
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Then the sequence {x, } generated by (3.34) converges strongly to a point x* € F, which is the unique
solution of the variational inequality

<%(I—f)x*+(I—S)x*,x—x*> >0, VxeF (3.35)

Proof. First, the proof of Theorem 3.2 of [1] shows that (3.35) has the unique solution. By a
similar argument as in that of Theorem 3.1, we can conclude that {x,} is bounded, ||x,.1 —
Xn|| — Oand ||x, —Tix,|| — 0asn — oo. Note that conditions (a) and (b) imply that 8, — 0
asn — oo. Hence we have

lyn = Xul = Bull Sxn = xull — 0 (n — o0). (3.36)
It follows that, for alli > 1,
1y = Tixull < [y = xall + Il = Tiull — 0 (n — o0). (3.37)
Now, it follows from (3.36) and (3.37) that, for alli > 1,

1y = Tiymll < v = Tiea|| + | Tixtn = Tiul| <y = Tial[ + [lo0n = yall — 0 (2 — o0).

(3.38)
From (3.8), we get
%1 = Xl < [ttn — ||
ﬂ" B ﬂn
< (1= (1 - )y o= Xeal ;j‘"-l“ +M [ P ;}f’”' 21 “"]
_ . . (3.39)
=(1-@- M%)"X"ﬁn—i’“l” + (1= (1= Naag) [ = x| (ﬁ—n - ﬁH)
Aot
Note that
1 1 111 1
1-(1-Vay) <ﬂ_n - ﬂn-1> < U 5 < a,K. (3.40)
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Hence, from (3.39), we have

|01 = xull < [y — un]

P - P
+M[|ﬂn _ﬂ"—1| + Ap-1 _an:I

llxn = X |

ﬁn—l

<(1-(1-Nay) +a, K]|xn = xp1|

ﬂn ,Bn
<A-(1- )L)an)”u"_'lﬁ;un_zll + 0, K |20, — 21| (3.41)
n-1
[l e,

Leta, = (1-A)a, and b, = a,K||x,—xp-1[|+ M[|Bn—Pn-1l/ Pn+ (@n-1—a) / Bu]. From conditions
(a) and (d), we have

dap=oo,  lim by, (3.42)
o) n—>ooan
By Lemma 2.3(2), we get
fi Pnt = Xull o =l e =l (3.43)
n— oo ﬂn ! n— oo ﬂn n— oo [Xn
From (3.34), we have
Xni1 = Pouy —up + anf(xn) + Z(“i—l —-a;) (Ti]/n - ]/n) +(1- “n)yn' (3.44)

i=1
Hence it follows that

Xn — Xn+1 = (1 - an)xn + anXy

- [PCun — Uy + anf (x,) + Zn:(ai_l — ;) (Tiyyn — yn) + (1 - rxn)yn]
= (3.45)

= (1= an)Pn(xy — Sxp) + (U, — Pcuy,)

+ (a1 — a;) (yn - Tiyn) +ay (xn - f(xn))
i-1

1



Journal of Applied Mathematics
and hence

Xn — Xn+l

S 1
(1 - an)ﬂn ST ot (1 - an)ﬂn

1 n
T @~ a0 (= Tayn) + ¢

i=1

(un — Pcuy)

Let v, = (x, — x441)/ (1 — ) B For any z € F, we have

1
(U, X — 2)

+(xn — Sxp, xpn — 2) n)ﬂnZ(m 1—-ai)(y

By Lemma 2.2, we have

(xn = Sxp, xp — z) = <(I_S)xn_ (I-8)z,xy _Z> + <(I_S)Z/xn_

2 ((I-5)z,xu - z),

(T=Hxpxn—zy={(T=flxn—I-f)z,xn—2z) +{(I - f)z,x, — z)
> (L= Dllxn =2l + (I - f)z, 20 - 2),
<yn _Tiyn/xn _Z> = <(I_Tl)]/n - (I_Ti)zlxn _yn> + <(I_T1)]/n -

2 <(I_ Tl)]/n - (I - Ti)zlxn - yn>
:ﬂn«I—Ti)yn/xn—an), 121

By (2.4), we have

<un - PCunr PCunfl - Z> = <un - PCunr PCunfl

T

Tiynr Xn —

- Pcuy,)

+ (u, — Pcuy, Pcu, — z)

> (uy — Pcuy, Pcuy — Pcuy,).

Now, from (3.47)—(3.51) it follows that

1
Uy, Xp — 2) > ———-— (U, — Pcu,, Pcu,_1 — Pcu,) + ————
( ) (1—an)ﬂn< ctn, Pcttn-1 — Pcty) =
+{((I-8)z,x,—z)+
(I-9) A rrnd)
1-MNa,
o

0= )P

g =)z =2)

z)

n _f(xn))-

= —(1_“n)ﬂn (un_PCun/PCun—l > (1 x )ﬂ <(I f)xn/xn >

(I-T)z,yn—z)

i(“i—l — ;) ((I = Ti)Yn, Xn — Sx)

z).

15

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)



16 Journal of Applied Mathematics

Observe that (3.52) implies that

1 n n
[l = z||* < ((1 _OJ‘\))fn [(vn, xn—2z) = (I~ 5)z,x, — 2)] - %((1 - )z, %0 - 2)
3.53
- Li(w = a))((I = T})Yn, Xn — Sxp) + Nt = el It — Petty|| e
(1 _)L)an “ i-1 i i)Yns Xn n (1 —/\)(xn Uy CUn||-

Since v, — 0, y, —Tiy, — Oforalli > 1, and |luy—1 — uy||/an, — Oasn — oo, every
weak cluster point of {x,} is also a strong cluster point. Since {x,} is bounded, there exists a
subsequence {x,,} of {x,} converging to a point x* € C. Note that x, - Tjx, — 0asn — oo
for all i > 1. By the demiclosed principle for a nonexpansive mapping, we have x* € F(T;) for
alli > 1and so x* € F = ("%, F(T;). From (3.47), (3.48), (3.50), and (3.51), it follows that, for
allz € F,

(T = f)*ne Xn, = 2)

1-ay) 1
= M(Unk/xnk - Z> - _<unk - Pcunk’PCunk_l - Z>
p, D
(1- @, )P Ly
_ #<xnk - ank/xnk - Z> - a_nkg(ai_l - ai)<ynk B Tiynk,xnk B Z> (354)

(1-an)p !
< #<Unk1xnk = 2) = — |, — Pon, |||t -1 — n, ||
A, Py

1 —ay n e Mk
_ ( - k)ﬂ k.<(I — S)Z,Xnk —z) - 'z_z(“i*1 —tXi)<(I— Ti)ynernk — ank>'
e ni =1

Sincev, — 0, (I -T;)y, — Oforalli>1, and |lu, — uy-1||/a, = 0, letting k — oo in (3.54),
we obtain

((I-f)x*,x*-z) <-1(I-S)z,x*-z), VzeF. (3.55)

Since (3.35) has the unique solution, it follows that w,(x,) = {X}. Since every weak cluster
point of {x,} is also a strong cluster point, we conclude that x, — X as n — oo. This
completes the proof. O

In Theorem 3.5, if T; = T for each i > 1, then we have the following result, which is
Theorem 3.2 of Yao et al. [1].

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — H
be a A-contraction with A € [0,1). Let S : C — C be a nonexpansive mapping and T : C — Coa
nonexpansive mapping such that F(T) #(. Let x;, € C and define a sequence {x,} by

Yn = ﬂnsxn + (1 - ,ﬁn)xnr
Xp+1 = Pc [anf(xn) + (1 - “n)Tyn]/ Vn>1,

(3.56)
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where {a,} C (0,1) and {B,} C (0,1) are the sequences satisfying the following conditions:

(a) imy, oty = 0and >77 4 ay = oo,

(b) imy, o (B /an) = 7 € (0, 00),

(@) Znii(@na — an) < ooand 350, |Pr-1 = Pul < oo,

(d) limy, oo ((n-1 = ) + |Bn = Pu-1l)/ anPn = 0,

(e) there exists a constant K > 0 such that (1/a,)|(1/fn) =1/ Pu-1| < K.

Then the sequence {x,} generated by (3.56) converges strongly to a point x* € F(T), which is the
unique solution of the variational inequality

<%(I—f)x*+(1—5)x*,x—x*> >0, VxeF(T). (3.57)

Remark 3.7. In (1.9),if S = I and f is a self-contraction of C, then we get
Xne1 = 0 f (xn) + (1 —an)Ty,, VYn>0, (3.58)

which is well known as the viscosity method studied by Moudafi [6] and Xu [7]. If S and f
are both self-mappings of C in (1.9), then we get the algorithm of Cianciaruso et al. [5].
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