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This paper studies the eigenvalue cc second-order linear equations with boundary

conditions on time scales. Using result algebras, the existence and comparison results
concerning eigenvalues are obtained.

1. Introduction

In this paper, w,
equations:

roblems for the following second-order linear

te [pa),p(b)], (1.1)

te [p(a), p®)], (1.2)

y(p(a)) - ty(a) = y(o(b)) - 6y(b) =0, (1.3)



where A1) and A® are parameters, o(t) and p(t) are the forward and
operators, y* is the delta derivative, y°(t) := y(o(t)), and [p(a), p(b)
time scale; the discrete interval is given by

[p(a),p(b)]; = {p(a),a,0(a),0%(a),....p

We assume throughout this paper that

(Hy) r2, p, and g are real-valued functions on [p(a
[p(a), p(b)]y and r > 0 on [p(a), b]y;

(Hy) 7, 6 €10,1).

0 (£0), 9 >0 (#0) on

First we briefly recall some existing resu
and difference equations. In 1973, Travis [1] co
value problems of higher-order differential eq
linear operator on a Banach space with a cone
results for the smallest eigenvalues. A represent
be Davis et al. [2], Diaz and Peterson [3], Hanker son [4], Hankerson and
Peterson [5-7], Henderson and Pra 8], and Kaufman . However, in all the above
papers, the comparison results are igenvalues only. The main purpose of
this paper is to establish the com igenvalues of (1.1) with (1.3)
and (1.2) with (1.3).

Like the eigenvalue comparison
this type of comparison of e1genva1ues in
Corllary 6.5.]: If A,B are H 2

igenvalues comparisons for differential
roblem for boundary
eory of ug-positive
0 obtain comparison
or these works would

dary value problems of linear equations,
Igebra is known as Weyl's inequality [10,
is, A = A*, where A* is the conjugate

transpose of A and A — ] en )LEA) > 1) where Y and A"

all eigenvalues of A a ) ciate ith-this conclusion is spectral order of operators.
The spectral order he solving several open problems of spectral
theory and has been von Neumann algebras, matrix algebras, and

er [15] studied the spectral order in a more general
is a generahzatlon of the result due to Kato [13].

time scales, the existence and comparison theorems of eigenvalues of
oble 1.1), (1.3) and (1.2), (1.3) are obtained, which will be given in

yme basic concepts and some fundamental results on time scales are intro-
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Let T C R be a nonempty closed subset. Define the forward and
operators o, p: T — T by

o(t) =inf{s e T:s>t}, p(t) =sup{seT:

where inf@ = sup T, sup@ = infT. We put T¥ = T if T is unbo
(p(max T), max T] otherwise. The graininess functions v, y :

pt)=ot)—t,  v(b) =t 22)
Let f be a function defined on T. f is said to be (

there exists a constant a such that for any € > 0,
(t-06,t+6) N T for some 6 > 0) with

T* provided
t (e, U =

|f(o(t) - f(s) —alo(t) - lo(t) —s], Vs (2.3)

In this case, denote f2(t) := a. If f is (delta) di
be (delta) differentiable on T. If f is differentiable

T*, then f is said to

A1) = (2.4)

if p

For convenience, v
and [18, Lemma 1]), wh

sults ([16, Chapter 1], [17, Chapter 1],

Lemma 2.1. Let f, g

B(hg(t) = FA18 () + fF(HEH (1) (2.5)

e. A matrix is said to be positive if every component of the matrix is
e p(a) = 07(a), a = 0%a), p(b) = 0" *(a), b = 0" (a), pi = 0"'(a) -
r(c'(a)), i=-1,0,1,2,...,n—1.



It follows from Lemma 2.1(ii), (2.4), and (1.4) that the boundary va
(1.3) can be written in the form

a)), yoq(oo(a)>, . ﬂn_sq(a"‘3(a)),#n-zq(ff"‘z(u)))- (3.5)

of (1.1), (1.3) can be written into the form of vectors, then the nontrivial
ding to A is called an eigenvector.
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Let e; be the ith column of the identity matrix I of order n and

/e4+73 -B 0
-B B+C -C
0.2
0 ¢ c+ @
H2
D1 = PP
0 0 0

\

Define P, =1 + e,-_leiT. It is easily seen that

D =D +e,(1- (3.7)

Un—S Un—Z
P,Ps---P,DyPL--- PTP! = dia L@ (“)>. (3.8)
Hn-3 Hn-2

o.n—S o.n—2
., —r# (a), —r# (a)>P2‘Tp3—T - PT,
n-3 n-2
(3.9)

Ho Hn-3 Hn-2
, P,P;---P,. .
o ([1) ro'n—a (a) ro-n—z (a) > 243 (3 10)

For ., x,,)T, we have

Hn-1
*diag<(l—r)rc:l (@ r7(@ 17 (a) r” (“)> (3.11)
-1

Ho " opns T pne2

o.n—l 2
-P,:Tx) +(1_6)T_W) elx| >0.
Hn-1

implies x = 0. Hence, the matrix D is positive definite.
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Lemma 3.1. If AV is an eigenvalue of the boundary value problem (1.1);
corresponding eigenvector, then

(i) y*Py >0,
(ii) AW is real and positive.

If p# AW is an eigenvalue of the boundary value problem (1.1), (1.
eigenvector, then x*Py = 0.

Proof. (i) It follows from (H;) and (3.2) that y*Py > 0. Ass
have y*Dy = A(Dy*Py = 0. Since D is positive definite, t
(ii) We can write

hich is a contradiction.

AVyPy =y (\VPy) =y"Dy = (Dy)'y = y =0y Py =My'Py,  (312)

which implies A1) = 1), that is, A is real. Sinc
A = y*Dy/y*Py > 0.
If pPx = Dx and p# 1, then

positive definit y*Py > 0, we have

<)L(l) - p)x*Py = \Vx*Py - px*P

Hence, x*Py = 0. This completes th

alue problem (1.1), (1.3), then 1/AWY is an

Lemma 3.2. If \1 is an eigenvalue of the
q of D™V2PD7V2, then 1/a is an eigenvalue

eigenvalue of D™V2PD1/2. If s
of (1.1), (1.3), respectively.

Proof. If A1) is an ei value problem (1.1), (1.3) and vy is a
corresponding eigeny h

(3.14)

can get that if a is a positive eigenvalue of D-1/2PD"1/2,
1.3). This completes proof. O

)7 (a) + S (i /77 (a));

/(1 T)r (@) + ) (/7" (a)))((ﬂn 1/ (1=8)r""" (@) + (- / (1~
(#k/r (a)))—((# 1/(1=7)r” (a))+Zk-o(#k/r (a)))((# /(1=
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Proof. It is easy to see that Pie; = e; if i # j, while Pej = ej1 +¢;ifi = j. H

P2P3"'Pne]'=61+€2+"'+e]'.

(i) It is seen from (3.10) and (3.15) that

TD e, = (P,Ps - - Poey)T di ( S B
e D= (Pobs e) diag 1-7)ro"(a)’ r°°(a)

p-1

= (61 +ey+--- +€i)T dlag<m,

x(e1+ey+---+ej)

_ H-1 YZ_Z Hk .
(1-7)r'(a) 7o' (a)
(3.16)
(ii) It follows from (3.7) and th Morrison updating formula [19] that
- , 3.17
"(a)) + ey D; e, (17)
leading to

D enenDi e, (3.18)

-8)ro"(a)) + ele‘len'

plies the result (ii). This completes the proof.
O

ue of the boundary value problem (1.1), (1.3) and y#0 is a
0and y(b) #0.

> 0 corresponding to A;l).
ry that either y(a) = 0 or y(b) = 0. By the boundary condition
a contradiction y(t) = 0.

eigenvector corresponding to 1/ }t?) . By Lemma 3.3(ii), we have that
D! are positive, then D! is a positive matrix. Since p(t) > 0 for all
ence, the following discussions are divided into two cases.
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Case 1. If p(t) > 0 for all t € [p(a), p(b)]y, then we obtain that the matrix D
therefore, the result follows from the Perron-Forbenius theorem [20].

Case 2. Let p(t) = 0 for some t € [p(a), p(b)];. Without loss of ge

0oV
D'p = ,
0 Z

where V is an m x (n — m) matrix and Z is an (n -
are positive matrices. 1/ Ail) is also the maximum ej ing the Perron-

as follows:

(3.20)

This completes the proof.

Lemma 3.5. If \(1 is an eigenvalue of the
the null space of (-D + AV P) is 1.

.1), (1.3), then the dimension of

Proof. Let x#0 and y #0 be any t

0 dary value problem (1.1), (1.3)
corresponding to A(!) and define z =

Obviously, we have

y(a) (—D + )L(l)P>x =0, (3.21)

which, together with z atis, x(a)y = y(a)x. Therefore, x and y
are linearly dependen ull space of (-D +A(M P) is 1. This completes
the proof. O
Lemma 3.6. Let [ jve elements in the set {p(t) | t € [p(a), p(b)]}. Then

Proof. Su . > a, > 0 are all eigenvalues of D™'/2PD~'/2. Since
at there exists an orthogonal matrix C such that

CTD—l/ZPD—l/ZC — diag(alaZ ce an), (322)

£ rank(CTD’l/zPD‘1/2C> = rank(diag(aia; - - - ay)) (3.23)

e number of positive a; is the same as that of positive number in P which is
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CTD™V2PDV2Ce; = a;e; in view of (3.22), which further implies that

Suppose that a;, = aj+1 > 0 for some iy where 1 < ip < N

D(D‘l/ZCei) = lP(D_l/ZCei) i=ip, o+

o

Thus, we have two independent vectors in the null space of (-

contradicts Lemma 3.5. Thus, from Lemma 3.2, we see that {
the complete set of eigenvalues of the boundary value p
the proof.

Theorem 3.7. Let j be the number of positive elements in (b)]1} and k the
number of positive elements in the set {q(t) | t € [p(a),

set of all eigenvalues of the boundary value problem
of all eigenvalues of the boundary value problem (1

then Algl) < J\l@ for1<i<k.

Proof. It follows from Lemma 3.6 that

24 ! >
1= —37 7"
AP
(3.25)
pre—>
1=~ 7
AP

are the eigenvalues of D™V/2PE

[p(a), p(b)]y, then P > Q

(3.26)
By Weyl’s inequa
1<i<n. (3.27)
Finally, it i
1 1 .
TZF 1<i<k, (3.28)
i < k. This completes the proof. O
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