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An equilibrium problem is investigated based on a hybrid projection iterative algorithm. Strong
convergence theorems for solutions of the equilibrium problem are established in a strictly convex
and uniformly smooth Banach space which also enjoys the Kadec-Klee property.

1. Introduction

Equilibrium problems which were introduced by Fan [1] and Blum and Oettli [2] have
had a great impact and influence on the development of several branches of pure and
applied sciences. It has been shown that the equilibrium problem theory provides a novel
and unified treatment of a wide class of problems which arise in economics, finance, image
reconstruction, ecology, transportation, network, elasticity, and optimization. It has been
shown [3–8] that equilibrium, problems include variational inequalities, fixed point, the Nash
equilibrium, and game theory as special cases. A number of iterative algorithms have recently
been studying for fixed point and equilibrium problems, see [9–26] and the references therein.
However, there were few results established in the framework of the Banach spaces. In
this paper, we suggest and analyze a projection iterative algorithm for finding solutions of
equilibrium in a Banach space.

2. Preliminaries

In what follows, we always assume that E is a Banach space with the dual space E∗. Let C be
a nonempty, closed, and convex subset of E. We use the symbol J to stand for the normalized
duality mapping from E to 2E

∗
defined by
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Jx =
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖2 = ∥∥f∗∥∥2

}
, ∀x ∈ E, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing of elements between E and E∗.
Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. E is said to be strictly convex

if ‖(x + y)/2‖ < 1 for all x, y ∈ UE with x /=y. It is said to be uniformly convex if for any
ε ∈ (0, 2] there exists δ > 0 such that for any x, y ∈ UE,

∥∥x − y
∥∥ ≥ ε implies

∥∥∥∥
x + y

2

∥∥∥∥ ≤ 1 − δ. (2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex; for details
see [27] and the references therein.

Recall that a Banach space E is said to have the Kadec-Klee property if a sequence
{xn} of E satisfies that xn ⇀ x ∈ C, where⇀ denotes the weak convergence, and ‖xn‖ → ‖x‖,
where → denotes the strong convergence, and then xn → x. It is known that if E is uniformly
convex, then E enjoys the Kadec-Klee property; for details see [26] and the references therein.

E is said to be smooth provided limt→ 0(‖x + ty‖ − ‖x‖)/t exists for all x, y ∈ UE. It is
also said to be uniformly smooth if the limit is attained uniformly for all x, y ∈ UE.

It is well known that if E∗ is strictly convex, then J is single valued; if E∗ is reflexive,
and smooth, then J is single valued and demicontinuous; for more details see [27, 28] and
the references therein.

It is also well known that if D is a nonempty, closed, and convex subset of a Hilbert
space H, and PD : H → D is the metric projection from H onto D, then PD is nonexpansive.
This fact actually characterizes theHilbert spaces, and consequently, it is not available inmore
general Banach spaces. In this connection, Alber [29] introduced a generalized projection
operatorΠD in the Banach spaces which is an analogue of the metric projection in the Hilbert
spaces.

Let E be a smooth Banach space. Consider the functional defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y∥∥2

, ∀x, y ∈ E. (2.3)

Notice that, in a Hilbert space H, (2.3) is reduced to φ(x, y) = ‖x − y‖2 for all x, y ∈ H. The
generalized projection ΠC : E → C is a mapping that is assigned to an arbitrary point x ∈ E,
the minimum point of the functional φ(x, y); that is, ΠCx = x, where x is the solution to the
following minimization problem:

φ(x, x) = min
y∈C

φ
(
y, x

)
. (2.4)

The existence and uniqueness of the operatorΠC follow from the properties of the functional
φ(x, y) and the strict monotonicity of the mapping J ; see, for example, [27, 28]. In the Hilbert
spaces, ΠC = PC. It is obvious from the definition of the function φ that

(∥∥y∥∥ − ‖x‖)2 ≤ φ
(
y, x

) ≤ (∥∥y∥∥ + ‖x‖)2, ∀x, y ∈ E, (2.5)

φ
(
x, y

)
= φ(x, z) + φ

(
z, y

)
+ 2

〈
x − z, Jz − Jy

〉
, ∀x, y, z ∈ E. (2.6)
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Let T : C → C be a mapping. Recall that a point p inC is said to be an asymptotic fixed
point of T if C contains a sequence {xn}which converges weakly to p such that limn→∞‖xn −
Txn‖ = 0. The set of asymptotic fixed points of T will be denoted by F̃(T). T is said to be
relatively nonexpansive if

F̃(T) = F(T)/= ∅, φ
(
p, Tx

) ≤ φ
(
p, x

)
, ∀x ∈ C, ∀p ∈ F(T). (2.7)

The asymptotic behavior of a relatively nonexpansive mapping was studied in [27, 29, 30].
Let f be a bifunction from C ×C to R, where R denotes the set of real numbers. In this

paper, we consider the following equilibrium problem. Find p ∈ C such that

f
(
p, y

) ≥ 0, ∀y ∈ C. (2.8)

We use EP(f) to denote the solution set of the equilibrium problem (2.3). That is,

EP
(
f
)
=
{
p ∈ C : f

(
p, y

) ≥ 0, ∀y ∈ C
}
. (2.9)

Given a mapping Q : C → E∗, let

f
(
x, y

)
=
〈
Qx, y − x

〉
, ∀x, y ∈ C. (2.10)

Then p ∈ EP(f) if and only if p is a solution of the following variational inequality. Find p
such that

〈
Qp, y − p

〉 ≥ 0, ∀y ∈ C. (2.11)

To study the equilibrium problem (2.8), we may assume that f satisfies the following
conditions:

(A1) f(x, x) = 0, for all x ∈ C;
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;
(A3)

lim sup
t↓0

f
(
tz + (1 − t)x, y

) ≤ f
(
x, y

)
, ∀x, y, z ∈ C; (2.12)

(A4) for each x ∈ C, y �→ f(x, y) is convex and weakly lower semicontinuous.
In this paper, we study the problem of approximating solutions of equilibrium

problem (2.8) based on a hybrid projection iterative algorithm in a strictly convex and
uniformly smooth Banach space which also enjoys the Kadec-Klee property. To prove our
main results, we need the following lemmas.

Lemma 2.1. Let E be a strictly convex and uniformly smooth Banach space andC a nonempty, closed,
and convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–(A4). Let r > 0 and
x ∈ E. Then
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(a) (see [2]). There exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.13)

(b) (see [31]). Define a mapping T
f
r : E → C by

T
f
r x =

{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉
, ∀y ∈ C

}
. (2.14)

Then the following conclusions hold:

(1) Tf
r is single valued;

(2) Tf
r is a firmly nonexpansive-type mapping; that is, for all x, y ∈ E,

〈
T
f
r x − T

f
r y, JT

f
r x − JT

f
r y

〉
≤
〈
T
f
r x − T

f
r y, Jx − Jy

〉
; (2.15)

(3) F(Tf
r ) = EP(f);

(4) EP(f) is closed and convex;

(5) Tf
r is relatively nonexpansive.

Lemma 2.2 (see [29]). Let E be a reflexive, strictly convex, and smooth Banach space and C a
nonempty, closed, and convex subset of E. Let x ∈ E, and x0 ∈ C. Then x0 = ΠCx if and only
if

〈
x0 − y, Jx − Jx0

〉 ≥ 0, ∀y ∈ C. (2.16)

Lemma 2.3 (see [29]). Let E be a reflexive, strictly convex, and smooth Banach space and C a
nonempty, closed, and convex subset of E, and x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.17)

Lemma 2.4 (see [27]). Let E be a reflexive, strictly convex, and smooth Banach space. Then one has
the following

φ
(
x, y

)
= 0 ⇐⇒ x = y, ∀x, y ∈ E. (2.18)
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3. Main Results

Theorem 3.1. Let E be a strictly convex and uniformly smooth Banach space which also enjoys the
Kadec-Klee property and C a nonempty, closed, and convex subset of E. Let f be a bifunction from
C×C toR satisfying (A1)–(A4) such that EP(f)/= ∅. Let {xn} be a sequence generated by the following
manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn ∈ C, such that f
(
yn, u

)
+

1
rn

〈
u − yn, Jyn − Jxn

〉 ≥ 0, ∀u ∈ C,

Cn+1 =
{
u ∈ Cn : 2

〈
xn − u, Jxn − Jyn

〉 ≥ φ
(
xn, yn

)}
,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(3.1)

where {rn} is a real number sequence in [r,∞), where r is some positive real number. Then the sequence
{xn} converges strongly to x = ΠEP(f)x0.

Proof. In view of Lemma 2.1, we see that EP(f) is closed and convex. Next, we show that Cn

is closed and convex. It is not hard to see that Cn is closed. Therefore, we only show that Cn is
convex. It is obvious that C1 = C is convex. Suppose that Ch is convex for some h ∈ N. Next,
we show that Ch+1 is also convex for the same h. Let a, b ∈ Ch+1 and c = ta + (1 − t)b, where
t ∈ (0, 1). It follows that

φ
(
xh, yh

) ≤ 2
〈
xh − a, Jxh − Jyh

〉
, φ

(
xh, yh

) ≤ 2
〈
xh − b, Jxh − Jyh

〉
, (3.2)

where a, b ∈ Ch. From the above two inequalities, we can get that

φ
(
xh, yh

) ≤ 2
〈
xh − c, Jxh − Jyh

〉
, (3.3)

where c ∈ Ch. It follows that Ch+1 is closed and convex. This completes the proof that Cn is
closed, and convex.

Next, we show that EP(f) ⊂ Cn. It is obvious that EP(f) ⊂ C = C1. Suppose that
EP(f) ⊂ Ch for some h ∈ N. For any z ∈ EP(f) ⊂ Ch, we see from Lemma 2.1 that

φ
(
z, yh

) ≤ φ(z, xh). (3.4)

On the other hand, we obtain from (2.6) that

φ
(
z, yh

)
= φ(z, xh) + φ

(
xh, yh

)
+ 2

〈
z − xh, Jxh − Jyh

〉
. (3.5)
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Combining (3.4) with (3.5), we arrive at

2
〈
xh − z, Jxh − Jyh

〉 ≥ φ
(
xh, yh

)
(3.6)

which implies that z ∈ Ch+1. This shows that EP(f) ⊂ Ch+1. This completes the proof that
EP(f) ⊂ Cn.

Next, we show that {xn} is a convergent sequence and strongly converges to x, where
x ∈ EP(f). Since xn = ΠCnx0, we see from Lemma 2.2 that

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn. (3.7)

It follows from EP(f) ⊂ Cn that

〈xn −w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ EP
(
f
)
. (3.8)

By virtue of Lemma 2.3, we obtain that

φ(xn, x0) = φ(ΠCnx0, x0)

≤ φ
(
ΠEP(f)x0, x0

) − φ
(
ΠEP(f)x0, xn

)

≤ φ
(
ΠEP(f)x0, x0

)
.

(3.9)

This implies that the sequence {φ(xn, x0)} is bounded. It follows from (2.5) that the sequence
{xn} is also bounded. Since the space is reflexive, we may assume that xn ⇀ x. Since Cn is
closed and convex, we see that x ∈ Cn. On the other hand, we see from the weakly lower
semicontinuity of the norm that

φ(x, x0) = ‖x‖2 − 2〈x, Jx0〉 + ‖x0‖2

≤ lim inf
n→∞

(
‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2

)

= lim inf
n→∞

φ(xn, x0)

≤ lim sup
n→∞

φ(xn, x0)

≤ φ(x, x0),

(3.10)

which implies that φ(xn, x0) → φ(x, x0) as n → ∞. Hence, ‖xn‖ → ‖x‖ as n → ∞. In view
of the Kadec-Klee property of E, we see that xn → x as n → ∞. Notice that xn+1 = ΠEP(f)x0 ∈
Cn+1 ⊂ Cn. It follows that

φ(xn+1, xn) = φ(xn+1,ΠCnx0)

≤ φ(xn+1, x0) − φ(ΠCnx0, x0)

= φ(xn+1, x0) − φ(xn, x0).

(3.11)
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Since xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we arrive at φ(xn, x0) ≤ φ(xn+1, x0). This
shows that {φ(xn, x0)} is nondecreasing. It follows from the boundedness that limn→∞φ(x,x0)
exists. It follows that

lim
n→∞

φ(xn+1, xn) = 0. (3.12)

By virtue of xn+1 = ΠCn+1x0 ∈ Cn+1, we find that

φ
(
xn, yn

) ≤ 2
〈
xn − xn+1, Jxn − Jyn

〉
. (3.13)

It follows that

lim
n→∞

φ
(
xn, yn

)
= 0. (3.14)

In view of (2.5), we see that

lim
n→∞

(‖xn‖ −
∥∥yn

∥∥) = 0. (3.15)

Since xn → x, we find that

lim
n→∞

∥∥yn

∥∥ = ‖x‖. (3.16)

It follows that

lim
n→∞

∥∥Jyn

∥∥ = ‖Jx‖. (3.17)

This implies that {Jyn} is bounded. Note that both E and E∗ are reflexive. We may assume
that Jyn ⇀ y∗ ∈ E∗. In view of the reflexivity of E, we see that there exists an element y ∈ E
such that Jy = y∗. It follows that

φ
(
xn, yn

)
= ‖xn‖2 − 2

〈
xn, Jyn

〉
+
∥∥yn

∥∥2

= ‖xn‖2 − 2
〈
xn, Jyn

〉
+
∥∥Jyn

∥∥2
.

(3.18)

Taking lim infn→∞ on the both sides of the equality above yields that

0 ≥ ‖x‖2 − 2〈x, y∗〉 + ∥∥y∗∥∥2

= ‖x‖2 − 2〈x, Jy〉 + ∥∥Jy∥∥2

= ‖x‖2 − 2〈x, Jy〉 + ∥∥y∥∥2

= φ
(
x, y

)
.

(3.19)
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That is, x = y, which in turn implies that y∗ = Jx. It follows that Jyn ⇀ Jx ∈ E∗. Since
E∗ enjoys the Kadec-Klee property, we obtain from (3.17) that limn→∞Jyn = Jx. Since J−1 :
E∗ → E is demicontinuous, we find that yn ⇀ x. This implies from (3.16) and the Kadec-Klee
property of E that limn→∞yn = x. This in turn implies that limn→∞‖yn − xn‖ = 0. Since J is
uniformly norm-to-norm continuous on any bounded sets, we find that

lim
n→∞

∥∥Jyn − Jxn

∥∥ = 0. (3.20)

Next, we show that x ∈ EF(f). In view of Lemma 2.1, we find from yn = T
f
rnxn that

f
(
yn, u

)
+

1
rn

〈
u − yn, Jyn − Jxn

〉 ≥ 0, ∀u ∈ C. (3.21)

It follows from condition (A2) and (3.20) that

1
rn

∥∥u − yn

∥∥∥∥Jyn − Jxn

∥∥ ≥ f
(
u, yn

)
, ∀u ∈ C. (3.22)

In view of condition (A4), we obtain from (3.17) that

f(u, x) ≤ 0, ∀u ∈ C. (3.23)

For 0 < t < 1 and u ∈ C, define ut = tu + (1 − t)x. It follows that ut ∈ C, which yields that
f(ut, x) ≤ 0. It follows from conditions (A1) and (A4) that

0 = f(ut, ut) ≤ tf(ut, u) + (1 − t)f(ut, x) ≤ tf(ut, u). (3.24)

That is,

f(ut, u) ≥ 0. (3.25)

Letting t ↓ 0, we find from condition (A3) that f(x, u) ≥ 0, for all u ∈ C. This implies that
x ∈ EP(f). This shows that x ∈ EP(f).

Finally, we prove that x = ΠEP(f)x0. Letting n → ∞ in (3.8), we see that

〈x −w, Jx0 − Jx〉 ≥ 0, ∀w ∈ EP
(
f
)
. (3.26)

In view of Lemma 2.2, we can obtain that x = ΠEP(f)x0. This completes the proof.

In the framework of the Hilbert spaces, we have the following.
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Corollary 3.2. Let E be a Hilbert space and C a nonempty, closed, and convex subset of E. Let f
be a bifunction from C × C to R satisfying (A1)–(A4) such that EP(f)/= ∅. Let {xn} be a sequence
generated by the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = PC1x0,

yn ∈ C, such that f
(
yn, u

)
+

1
rn

〈
u − yn, yn − xn

〉 ≥ 0, ∀u ∈ C,

Cn+1 =
{
u ∈ Cn : 2

〈
xn − u, xn − yn

〉 ≥ ∥∥xn − yn

∥∥2
}
,

xn+1 = PCn+1x0, ∀n ≥ 1,

(3.27)

where {rn} is a real number sequence in [r,∞), where r is some positive real number. Then the sequence
{xn} converges strongly to x = PEP(f)x0.
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