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The smoothness criterion is used in the design of symmetric moving average trend filters
in time series and in graduation in actuarial studies. This measure of smoothness is used
to motivate a diagnostic for determining the order of local polynomial trend.
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1. Introduction

The standard approach to time series analysis is to decompose the series into three com-
ponents, the trend, the seasonal component and the irregular noise. In this paper we
are concerned with estimating the trend and so we will assume that all series have been
seasonally adjusted. The structural form of the trend is often decided by physical consid-
erations or by inspection of global time series plots. A global parametric model may be
used to estimate the trend but a more common approach is to use a finite moving average
filter to obtain non-parametric estimates of the local trend. Detailed accounts of recent
developments in trend estimation can be found in Kenny and Durbin [5] and Cleveland
etal. [1].

Finite symmetric moving average filters for identifying the underlying trend in non-
seasonal time series are not new, dating from the seminal work of Henderson [3], in the
actuarial literature, and Macaulay [7]. Determining the order of the local polynomial
trend is often problematic, particularly if there is subtle local curvature in the presence of
a dominant linear trend. The most common diagnostic tool is a sequence of time series
plots for the original series and the residual series calculated after each attempt at estima-
tion. In this paper a simple, alternative graphical diagnostic is provided to help select or
confirm the order of any local polynomial term in the trend. These plots are motivated
by the smoothness criterion used in designing optimal filter weights and appear to be
sensitive to local curvature.
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2 Smoothness

Consider the simple structural model for a non-seasonal or seasonally adjusted time
series y; with underlying trend process T,

ytZTt‘f'Et, (11)

where €; is a zero mean noise process. Following Gray and Thomson [2] the trend may
be described locally by a polynomial of order p plus some stochastic process,

P
Tt= Zﬁ]t]+€t) (12)
j=0

where the zero mean stochastic process &; is assumed to be correlated, but uncorrelated
with the noise process €;. Moreover, using A to denote the backwards difference opera-
tor, Ay; = y; — y—1, it is assumed that the differenced process (A?*1¢;) is second order
stationary.

The trend at some central time point t is estimated by a moving average of n = 2r +1
consecutive observations. Let the estimator be

r

ft: Z Ws Vi+s- (1.3)

s=—r

Denote the n vector of weights by w = (w_,...,w,)T. For T, to be an unbiased predictor
of Ty, that is, E(T; — T;) = 0, we need S ws=1land X, siw,=0,0<j < p, so that
the moving average filter passes polynomials of degree p. We write these constraints as
CTw = ¢, where ¢ = (1,0,...,0)7 is a vector of length (p + 1).

Gray and Thomson [2] focus on the design of symmetric, moving average trend filters
and derive expressions for the optimal weights using the fidelity and smoothness criteria.

Fidelity is more commonly known as mean squared error,

F=E(T,-T,)’, (1.4)
and smoothness is measured by
S =E(APFIT,)%. (1.5)

These criteria have a long history, particularly in the actuarial literature (see, e.g., London
[6]) going back to Henderson [4] and Whittaker [11]. Minimising F ensures the trend
estimate is in some sense close to the “true” value, whereas minimising S ensures that
the fitted trend polynomial is close to a smooth polynomial of degree p. For actuarial
data where the underlying trend might reflect mortality rates, say, it is natural to insist on
smoothness in the estimates.

Following Whittaker’s approach Gray and Thomson [2] derive expressions for the
weights obtained by minimising the compromise criterion

Q=0F+(1-06)S, 6<]l0,1]. (1.6)
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For the classical case where €, is white noise Gray and Thomson [2] derive the optimal
symmetric weights

w=E;'C(CTE;'C) ¢, (1.7)
where
Eg=0(a* I+Q)+(1-0)(Bpr1+Tps1)s (1.8)
in which Q is the covariance matrix with elements

ij = cov (ft+j &8 — &), (1.9)

I'p+1 is the covariance matrix of a sequence of n observations from APHE, and B 541 1s the
covariance matrix of a sequence of n observations from the stationary moving average
process AP*1e,. Note that the classical Macaulay filters can be obtained by setting 6 = 1
and the Henderson filters follow by setting 6 = 0.

McLaren and Steel [9, 10] extended Gray and Thomson [2] to produce trend esti-
mates using data from repeated surveys. The correlation structure induced by the survey
rotation pattern is incorporated in deriving w.

In all cases the optimal weights depend on the choice of n, p and the covariance struc-
tures of the processes €; and &;.

The window width # is specified by the user according to the nature and volatility of
the series. The covariance structures of the processes €; and &; are used to construct the
Ep matrix. Because of the form of the optimal weights in (1.7) the covariance matrices
need only be known up to a constant of proportionality. The process €, is generally taken
to be white noise, although under conditions of rotation sampling there may be some
autocorrelation structure which can be modelled according to the rotation pattern used.
The process & is included if there is reason to assume the trend T; will include some
deviation from the local polynomial, and so should be determined by the nature of the
series being examined.

The choice of p is an important factor in determining the optimal symmetric filter
weights. In many instances the nature of the trend is clear but there are situations where
the noise can mask some local curvature. In regression and other areas of time series anal-
ysis it is standard practice to use diagnostic checks to determine whether or not model
assumptions are reasonable. In this paper we will investigate the local smoothness esti-
mates

Si(p) = (AP1T,)° (1.10)

and propose using plots of S, against ¢ for various values of p as a diagnostic tool to
identify p and/or support the choice of a particular p.
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2. Smoothness plots

First we consider what happens if we misspecify p. Assume the series y; is given locally by
a polynomial of order g, so that

q
yr=> Bt +&+e, 2.1)
=0

but we believe the local polynomial is of order p. Let w;, denote the filter weights obtained
from (1.7), where the local polynomial is assumed to be of order p. Then

. 2
§t(p) = (AP+1 Z Wsst)

s=—r

r 1 2
= <AP+1 Z WS(Z/J’j(t+S)j+ft+s+€z+s>) (2.2)

s=—r j=0

r q 2

= ( > w (AP“ Zﬁj(t‘FS)j+AP+1£I+S+AP+1€t+S)) .
s=—r =0

Now if p > g, that is, we use the correct order or over-fit the local polynomial, then

, 2
§t(P) = ( Z WS(O+AP+1€H$+AP+1€[+S)> (2.3)

s=—r

which has expected value
E(§t(P)) = W;rpﬂwp +W;Bp+lwp- (2.4)

If p = g — 1, that is we under-fit by one degree, then
. 2
St(q -1)= ( Z Ws(q!,Bq + Aq£t+s + Aq€t+s)> (2-5)

s=—r

which has expected value over the local window of length (27 + 1)
E(Si(qg—1)) = (q!,Bq)2 +qu,11"qwq_1 +qu,quwq_1. (2.6)

If p<gq—1,then

r 2

q
§t(p) = < Z Ws (APH Z/J)j(t+5)j +AP+1£t+s+AP+1€t+s)) (2.7)

=—r j=0
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which has expected value

r q 2
E(§t(p)) = ( Z W (AP“ Zﬁj(t+s)j>> +w;1"p+1wp+w;Bp+1wp. (2.8)

s=—r j=0

Note that in this case E(§t( p)) depends on . From this we can see that when we over-fit
or have a correct fit

E(gt(P)) = W;rpﬂwp +W;Bp+lwp> (2.9)

which will vary with p, depending on the structure of the processes €; and &, but will not
necessarily suggest which of the p > g is the correct choice. When we under-fit, E(S,(p))
isincreased by (3;__, wy(AP*! Z?:o B;j(t+5)7))* which does not involve €; and & but does

depend on ¢ if p < g — 1. This suggests the following diagnostic check for p. Obtain the
filtered series for various choices of p and calculate

Si(p) = (APM'T,)%, (2.10)

for each internal point ¢, that is, for t = v+ p+1,...,N — r, where N is the length of the
time series. Plot S;( p) against ¢ and choose the value of p at which Si( p) is approximately
time invariant, and does not differ drastically from E(S,(p)) = Wil W, + W1 Bpiiwp.

Let d = (AP €pir,..., AP €, )T and let e denote the (n+ p + 1) vector given by e =
(€tsrsers€rrp1)T. As APy, = S50 (1) (=1) y,j, we can write

d:Dp+1e> (2.11)

where D,y is the n X (n+ p + 1) matrix with rows made up of zeroes and the coefficients
of the operator A",

) )
Dpri=10 . 0 : (2.12)
0 e 1 _<PJ1r1> cee o (=1)pH (53)

If the errors are assumed to be normal and second order stationary, the following theorem
applies when p is greater than or equal to the correct order of the polynomial term.

Tueorem 2.1. Consider a series given by the local dynamic model (2.1), with & = 0 and
optimal symmetric central filter weights w, given by (1.7) for p > q. If the noise process e is
normally distributed and second order stationary with known covariance structure then

§t(P) ~ 0’ (W;DerlVeDgHWp)X%, (2.13)

where 0%V is the covariance matrix of a vector of error terms of length (n+ p +1).
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Proof. Under the assumption that & = 0, and for p > g, we have

. 2
§t(P) = ( Z WSAPHEIJrs) . (2.14)

S=—r

Note that we can write

> whle = wid, (2.15)

S=—r

where w, = (wy,...,w_,)T. Hence >|__, w,AP* 1€, = wgDpHe, and

o 2
St(p) = (W};Dp+1e> = wgDp+1eeTD;+le = aTMa, (2.16)

where a = Dgﬂwp isan (n+ p+1) vector of known constants, and M = ee’.
Now use the assumption that the error process €; is normally distributed and second
order stationary, then the vector e is multivariate normal with mean 0 and covariance
matrix 02 Ve, where 62 V¢ is known. Under this assumption M has a Wishart distribution,

M =ee’ ~ Wyipi1(a?Ve,1). (2.17)
Using results for the Wishart distribution

a’Ma 5
—— ~Xi- 2.18
aTo2V.a X ( )
See, for example, Mardia et al.[8, Theorem 3.4.2, page 67]. Now from (2.16) and (2.18) it
is evident that

Si(p) ~ a? (w;DpHVeDgﬂwp)Xf, (2.19)

as required. O

Thus under the assumptions that & = 0 and e is multivariate normal with zero mean
and known covariance structure we can find the distribution of S,(p) for p = g. Note
that if the errors are independent then V, = I. The above result can easily be extended
to include the case where & is normally distributed with known covariance structure by
treating (&; + €;) as the noise term.

To apply this in practice, calculate S;(p) for every point in the body of the series so as
to avoid issues with end effects. Then using the above result, compare the values of §t( p)
to some chosen reference level such as

r = 0*(WIDpi1 VDL, w, ) x3(0.95), (2.20)
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based on the 95th percentile of the y7 distribution. Recall that S (p) will tend to be larger
than expected when p < g, so if there are a large number of values greater than the refer-
ence level, this would suggest g is greater than the current value of p.

This can be done graphically by plotting all the S, (p) values together with a horizontal
line corresponding to the relevant reference value. When examining these diagrams it
is important to recall that we expect some points to lie above the line even when p is
correct, and that neighbouring points are not independent. Adjacent values of S;( p) will
have some y; values in common so one aberrant point may affect the behaviour of a
block of consecutive values of the smoothness measure. This dependence may result in
the points appearing to clump together.

3. Examples
The method is best illustrated via the following simple examples.

Example 3.1. A linear series with normal noise is generated, and a second series is gen-
erated by adding a cosine term to the first so that there is one turning point within any
filter window. The first series is given by

Yt =a+btt+e, (3.1)

and the second by
Yor = a+bt+dcos<%) + €4, (3.2)

where €; ~ N(0,1) and a and b are common. The second series approximates a locally
quadratic series since cos(x) is locally approximated by cos(x) ~ 1 — x2. The time series
plots for two series of length N = 100 are given in Figure 3.1.

By visual inspection alone one could easily be fooled into thinking that the second
series can be modelled by a local linear trend. We then filter each series with weights
given by (1.7) for r = 6, p = 0,1,2,3,4 and with Eg = B,;1. The weights with 6 = 0 were
selected because they are the ones that minimise the smoothness criterion for the filtered
series, given that the local trend is a polynomial of degree p. Thus they will be the most
sensitive to the case where the trend cannot be described by a smooth order p polynomial.
For both filtered series we calculate S;(p) = (AP*15,)2 for t = p +7,...,94, giving a series
of smoothness values. Next, calculate the reference level r for each p where

r=0*(WIDp DL w, ) x3(0.95), (3.3)

and plot the series of smoothness values with a horizontal line at r.

The diagrams in Figure 3.2 demonstrate typical patterns for these plots. Note that the
order of the smoothness values changes markedly with p, as does the cut off value r. The
series y1, can clearly be identified as linear, as it has few points above the line for the
plots corresponding to p = 1,2,3,4. The series y,; has many points above the line in the
plot for p = 1, suggesting the series is given by a local polynomial of degree greater than
1. Even in this case where the curvature is not strong the diagnostic plots send a clear
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Linear series: y = a + bt+error
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Quadratic series: y = a + bt + cos +error
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Figure 3.1. Time series plots.

message that there is some quadratic effect in the data. Note that the plots for p = 4 for
both series are very similar as almost all curvature has been differenced out of both series.

In practice the residual variance o2 is typically unknown. If we have a very long time
series, and we can assume constant variance, it would be possible to estimate o using
early values of the time series and then use this estimate to examine smoothness values at
an independent segment of the series. If we can find an estimate of the variance 6? that is

independent of Si( p) and such that 62 ~ 02)(12/ I, for some degrees of freedom /, then

~> ~ (WIDp1 VDL, W,y ) Fi . (3.4)

This result can be used in the same manner as above to provide a diagnostic check for the
order of the local polynomial when ¢? is unknown.

If the form of V¢ is known, as is the case for data from rotation group sampling (see,
e.g., McLaren and Steel [9]), then estimates for 02 and V can be obtained from early
values of the time series. If the series is sufficiently long then there should be a clear time
sequence gap between the values used to estimate the covariance structure and those
used to calculate S ( p) so that the dependence is minimised. If this is possible then the
estimates for 62 and V¢ can be used to calculate the weights, and for diagnostic purposes
they can be used to approximate the value for r via (2.20).

The following example demonstrates the use of this technique to determine the local
order of the time series for the number of adult males employed in Australia (Australian
Labour Force Survey, cat no 6202).
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Figure 3.2. Empirical smoothness plots for Example 3.1.

Example 3.2 (Australian Labour Force Survey data). Since the filters are designed to iden-
tify the trend in the presence of noise, the ABS seasonally adjusted figures are used, since
these have had seasonal variations removed. In this case we are examining the most recent
ten years of the seasonally adjusted time series, shown in Figure 3.3.
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Figure 3.3. Seasonally adjusted Australian adult male employment data.

Smoothness estimates for this series are obtained assuming a locally constant, linear,
quadratic, cubic or quartic model, according to (1.10), that is, allowing p to take the
values 0, 1, 2, 3 or 4.

Estimates of the variance of the noise process are obtained from the data in the period
1984-1992, so that the data do not overlap with the span being examined. The variance is
estimated by calculating the sample variance of the residuals that are obtained when the
filter being tested has been applied to these earlier data. This variance estimate is treated
as being approximately independent of the smoothness estimates and so is used to define
the reference level for the smoothness values.

Plots of the smoothness estimates and the reference level for each value of p are shown
in Figure 4.1.

These plots show that the series is best described by a locally quadratic trend, and that
filters based on p = 2 are most appropriate. One could argue that the series is essentially
locally linear, with a few periods of change such as late 1997 and 2000 to 2002, but these
changes are more fully explained by a quadratic model. The locally cubic and quartic
filters show no great advantage over the quadratic one, and so these more complex filters
are not recommended.

4, Conclusion

The above method provides a diagnostic check for p, the degree of the local polynomial
specified by the user when determining the optimal filter weights for a series. Interpreting
the plots is similar to investigating residual plots or sample autocorrelation function (acf)
plots. It must be remembered that if there are a large number of smoothness values, we
expect some of the points to be “large” even when p is chosen correctly, and that each
point cannot be considered independent of all others.
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Smoothness estimates for p = 0
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Figure 4.1. Empirical smoothness plots for the employment data.
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