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This article considers a continuous review perishable (s,S) inventory system in which the
demands arrive according to a Markovian arrival process (MAP). The lifetime of items
in the stock and the lead time of reorder are assumed to be independently distributed as
exponential. Demands that occur during the stock-out periods either enter a pool which
has capacity N(<∞) or are lost. Any demand that takes place when the pool is full and
the inventory level is zero is assumed to be lost. The demands in the pool are selected
one by one, if the replenished stock is above s, with time interval between any two suc-
cessive selections distributed as exponential with parameter depending on the number of
customers in the pool. The waiting demands in the pool independently may renege the
system after an exponentially distributed amount of time. In addition to the regular de-
mands, a second flow of negative demands following MAP is also considered which will
remove one of the demands waiting in the pool. The joint probability distribution of the
number of customers in the pool and the inventory level is obtained in the steady state
case. The measures of system performance in the steady state are calculated and the total
expected cost per unit time is also considered. The results are illustrated numerically.
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1. Introduction

In most of the inventory models considered in the literature, the demanded items are
directly delivered from the stock (if available). The demands occurring during the stock-
out period are either lost (lost sales) or satisfied only after the arrival of ordered items
(backlogging). In the latter case, it is assumed that either all (full backlogging) or any
prefixed number of demands (partial backlogging) that occurred during the stock-out
period are satisfied. The often quoted review articles Nahmias [1] and Raafat [2] and



2 Journal of Applied Mathematics and Decision Sciences

the recent review articles N. H. Shah and Y. K. Shah [3] and Goyal and Giri [4] provide
excellent summaries of many of these modeling efforts. For some recent references see
Chakravarthy and Daniel [5], Yadavalli et al. [6], and Kalpakam and Shanthi [7, 8].

In the case of backlogging, the backlogged demands are satisfied immediately when
the ordered items are materialized. But in some real-life situations, the backlogged de-
mand may have to wait even after the replenishment. This type of inventory problems
are called inventory with postponed demands. The concept of postponed demand in in-
ventory has been introduced by Berman et al. [9]. They have assumed that both demand
and service rates are deterministic. Krishnamoorthy and Islam [10] have considered a
Markovian inventory system with exponential lead time and the pooled customers are
selected according to an exponentially distributed time lag. The concept of postponed
customers in queueing model has considered by Deepak et al. [11].

In this work we have extended the work of Krishnamoorthy and Islam [10] by as-
suming that the items are perishable in nature, the demands occur according to a MAP,
and that the lead times are distributed as exponential. The demands that occur during
the stock-out periods either enter a pool which has capacity N(<∞) or considered to
be lost. Any demand, that takes place when the pool is full and inventory level is zero,
is also assumed to be lost. The demands in the pool are selected one-by-one, if the re-
plenished stock is above s, and the interval time between any two successive selections
is distributed as exponential with parameter depending on the number of customers in
the pool. The waiting demands in the pool may independently renege the system after an
exponentially distributed amount of time. In addition to the regular demands, we con-
sider a second flow of negative customers following MAP who will remove one of the
waiting customers in the pool. In practice, these negative customers may be viewed as the
touts of competing organizations, who take away prospective customers. The concept of
negative customer was introduced by Gelenbe [12] and the research on queueing systems
with negative arrivals has been greatly motivated by some practical applications in com-
puters, neural networks, and communication networks, and so forth. For comprehensive
analysis of queueing networks with negative arrivals, one may refer to Chao et al. [13],
Gelenbe and Pujolle [14] and Sivakumar and Arivarignan [15]. A recent review can be
found in Artalejo [16].

The rest of the paper is organized as follows. In Section 2, we describe the mathemat-
ical model and the notations. The formulation and the steady state analysis of the model
are presented in Section 3. In Section 4, we derive various system performance measures
in the steady state. In Section 5, we calculate the total expected cost rate in the steady
state. Some numerical examples are presented in Section 6.

2. The mathematical model

We consider a continuous review (s,S) perishable inventory system in which the demands
occur for single units according to a Markovian arrival process (MAP) with representa-
tion (D0,D1) where D’s are of order m1×m1. The underlying Markov chain J1(t) of the
MAP has the generator D(= D0 +D1) and a stationary row vector τ1 of length m1. The
stationary arrival rate is given by λ1 = τ1D1e, where e is a column vector of appropriate
dimension containing all ones. The life time of a unit in the inventory is exponentially
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distributed with a constant failure rate γ. The operating policy is as follows: as soon as
the stock level drops to s, a replenishment order for Q(= S− s > s) items is placed. The
lead time is exponentially distributed with parameter β(> 0). Any arriving demands, that
occur during the inventory level is zero, are offered the choice of either leaving the system
immediately or of being postponed until the ordered items are received. We assume that
the demanding customer accept the offer of postponement according to independent
Bernoulli trials with probability p, 0 ≤ p < 1. With probability q = 1− p, the customer
declines and is considered to be lost. The postponed customers are retained in a pool,
which has a finite capacity N(<∞). After any replenishment and as long as the inventory
level is greater than s, the pooled customers are selected according to an exponentially
distributed time lag with rate μn where n is the number of customers in the pool.

In addition to the regular demands, we consider a second flow of negative customers
following a MAP with representation (F0,F1) where F’s are of order m2 ×m2. The un-
derlying Markov chain J2(t) of this MAP has the generator F(= F0 +F1) and a stationary
row vector τ−1 of length m2. The stationary arrival rate of negative customer is given by
λ−1 = τ−1F1e. A negative customer has the effect of removing a waiting demand from
the pool. The removal policy adopted in the paper is RCE (removal of a customer from
the end of the queue). Further, we have assumed that an impatient customer in the pool
leaves the system independently after a random time which is distributed as negative ex-
ponential with parameter α(> 0).

3. Analysis

Let L(t) denote the inventory level, let X(t) denote the number of customers in the pool,
let J1(t) denote the phase of the regular demand process, and let J2(t) denote the phase of
the negative customer process at time t, respectively. From the assumptions made on the
input and output processes, it can be shown that the quadruple {(L(t),X(t), J1(t), J2(t)), t≥
0} is a Markov process whose state space is

E = {(i,k, j1, j2
)

: i= 0,1, . . . ,S, k = 0,1, . . . ,N , j1 = 1,2, . . . ,m1, j2 = 1,2, . . . ,m2
}
.

(3.1)

We order the elements of E lexicographically. Then the infinitesimal generator P of the
Markov process {(L(t),X(t), J1(t), J2(t)), t ≥ 0} has the following block partitioned form:

[P]i j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Bi, j = i− 1, i= 1,2, . . . ,S,

C, j = i+Q, i= 0,1, . . . ,s,

Ai, j = i, i= 0,1, . . . ,S,

0, otherwise,

(3.2)

where

C = βIm1m2(N+1). (3.3)

For i= 1,2, . . . ,s,

Bi = I(N+1)⊗
[
D1⊗ Im2 + iγIm1m2

]
. (3.4)
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For i= s+ 1,s+ 2, . . . ,S,

[
Bi
]
kl =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D1⊗ Im2 + iγIm1 ⊗ Im2 , l = k, k = 0,1, . . . ,N ,

μkIm1 ⊗ Im2 , l = k− 1, k = 1,2, . . . ,N ,

0, otherwise.

(3.5)

For i= 0,

[
Ai
]
kl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pD1⊗ Im2 , l = k+ 1, k = 0,1, . . . ,N − 1,

Im1 ⊗F1 + kαIm1 ⊗ Im2 , l = k− 1, k = 1,2, . . . ,N ,
(
D0 + qD1

)⊕F −βIm1 ⊗ Im2 , l = k, k = 0,
(
D0 + qD1

)⊕F0− (β+ kα)Im1 ⊗ Im2 , l = k, k = 1,2, . . . ,N − 1,

D⊕F0− (β+ kα)Im1 ⊗ Im2 , l = k, k =N ,

0, otherwise.

(3.6)

For i= 1,2, . . . ,s,

[
Ai
]
kl =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Im1 ⊗F1 + kαIm1 ⊗ Im2 , l = k− 1, k = 1,2, . . . ,N ,

D0⊕F − (β+ iγ)Im1 ⊗ Im2 , l = k, k = 0,

D0⊕F0− (β+ kα+ iγ)Im1 ⊗ Im2 , l = k, k = 1,2, . . . ,N ,

0, otherwise.

(3.7)

For i= s+ 1,s+ 2, . . . ,S,

[
Ai
]
kl =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Im1 ⊗F1 + kαIm1 ⊗ Im2 , l = k− 1, k = 1,2, . . . ,N ,

D0⊕F − iγIm1 ⊗ Im2 , l = k, k = 0,

D0⊕F0−
(
μk + kα+ iγ

)
Im1 ⊗ Im2 , l = k, k = 1,2, . . . ,N ,

0, otherwise.

(3.8)

It may be noted that the matrices C, B’s, and A’s are all square matrices of order
m1m2(N + 1).

3.1. Steady state analysis. It can be seen from the structure of P that the homogeneous
Markov process {(L(t),X(t), J1(t), J2(t)), t ≥ 0} on the finite state space E is irreducible.
Hence, the limiting distribution

φ(i,k, j1, j2) = lim
t→∞Pr

[
L(t)= i, X(t)= k, J1(t)= j1, J2(t)= j2 | L(0),X(0), J1(0), J2(0)

]

(3.9)
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exists. Let

φ(i,k, j1) =
(
φ(i,k, j1,1),φ(i,k, j1,2), . . . ,φ(i,k, j1,m2)

)
, j1 = 1,2, . . . ,m1,

φ(i,k) =
(
φ(i,k,1),φ(i,k,2), . . . ,φ(i,k,m1)

)
, k = 0,1, . . . ,N ,

φ(i) = (φ(i,0),φ(i,1), . . . ,φ(i,N)
)
, i= 0,1, . . . ,S,

Φ= (φ(0),φ(1),φ(2), . . . ,φ(S−1),φ(S)).

(3.10)

Then the vector of limiting probabilities Φ satisfies

ΦP = 0, Φe= 1. (3.11)

The first equation of the above yields the following set of equations:

φ(i+1)Bi+1 +φ(i)Ai = 0, i= 0,1, . . . ,Q− 1, (3.12)

φ(i+1)Bi+1 +φ(i)Ai +φ(i−Q)C = 0, i=Q, (3.13)

φ(i+1)Bi+1 +φ(i)Ai +φ(i−Q)C = 0, i=Q+ 1,Q+ 2, . . . ,S− 1, (3.14)

φ(i)Ai +φ(i−Q)C = 0, i= S. (3.15)

The equations (except (3.13)) can be recursively solved to get

φ(i) = φ(Q)θi, i= 0,1, . . . ,S, (3.16)

where

θi=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−1)Q−iBQA
−1
Q−1BQ−1 ···Bi+1A

−1
i , i= 0,1, . . . ,Q− 1,

I , i=Q,

(−1)2Q−i+1
∑S−i

j=0

[(
BQA

−1
Q−1BQ−1 ···Bs+1− jA

−1
s− j

)
CA−1

S− j

×(BS− jA
−1
S− j−1BS− j−1 ···Bi+1A

−1
i

)]
, i=Q+ 1, . . . ,S.

(3.17)

Substituting the values of θi in (3.13) and in the normalizing condition, we get

φ(Q)

[

(−1)Q
s−1∑

j=0

[(
BQA

−1
Q−1BQ−1 ···Bs+1− jA

−1
s− j

)
CA−1

S− j

× (BS− jA
−1
S− j−1BS− j−1 ···BQ+2A

−1
Q+1

)]
BQ+1 +AQ

+ (−1)QBQA
−1
Q−1BQ−1 ···B1A

−1
0 C

]

= 0,

φ(Q)

[Q−1∑

i=0

(
(−1)Q−iBQA

−1
Q−1BQ−1 ···Bi+1A

−1
i

)
+ I

+
S∑

i=Q+1

(

(−1)2Q−i+1
S−i∑

j=0

[(
BQA

−1
Q−1BQ−1 ···Bs+1− jA

−1
s− j

)
CA−1

S− j

× (BS− jA
−1
S− j−1BS− j−1 ···Bi+1A

−1
i

)]
)]

e= 1.

(3.18)
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Solving the above two equations, we get φ(Q).

4. System performance measures

In this section, we derive some stationary performance measures of the system. Using
these measures, we can construct the total expected cost per unit time.

4.1. Mean inventory level. Let ζI denote the mean inventory level in the steady state.
Since φ(i) is the steady state probability vector for ith inventory level with each component
specifying a particular combination of number of customers in the pool, the phase of the
regular demand process and phase of the negative arrival process, the quantity π(i)e gives
the probability that the inventory level is i in the steady state. Hence, the mean inventory
level is given by

ζI =
S∑

i=1

iφ(i)e. (4.1)

4.2. Mean reorder rate. Let ζR denote the expected reorder rate in the steady state. A
reorder is triggered when the inventory level drops to s from the level s+ 1, due to anyone
of the following events:

(1) a regular demand occurs,
(2) anyone of the (s+ 1) items fails,
(3) anyone of the customers in the pool is selected.

This leads to

ζR = 1
λ1

N∑

k=0

(
φ(s+1,k)

(
D1⊗ Im2

)
e
)

+
N∑

k=1

μkφ(s+1, j)e +
N∑

k=0

(s+ 1)γφ(s+1,k)e. (4.2)

4.3. Mean perishable rate. The mean perishable rate ζPR in the steady state is given by

ζPR =
S∑

i=1

N∑

k=0

iγφ(i,k)e. (4.3)

4.4. Expected number of pool customers. Let ζPC denote the expected number of pool
customers in the steady state. Since φ(i,k) is a vector of probabilities with the inventory
level is i and the number of customer in the pool is k, the mean number of pool customers
ζPC in the steady state is given by

ζPC =
S∑

i=0

N∑

k=1

kφ(i,k)e. (4.4)
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4.5. Expected reneging rate. The expected reneging rate ζRR is given by

ζRR =
S∑

i=0

N∑

k=1

kαφ(i,k)e. (4.5)

4.6. Mean rate of arrivals of negative demands. Let ζN denote the mean arrival rate of
negative demands in the steady state. This is given by

ζN = 1
λ−1

S∑

i=0

N∑

k=1

φ(i,k)
(
Im1 ⊗F1

)
e. (4.6)

4.7. Average customers lost to the system. Let ζL be the average number of customers
lost to the system. Then ζL is given by

ζL = 1
λ1

(N−1∑

k=0

φ(0,k)
(
qD1⊗ Im2

)
e +φ(0,N)

(
D1⊗ Im2

)
e

)

. (4.7)

4.8. Mean waiting time. Let ζW denote the mean waiting time of the demands in the
pool. Then by Little’s formula

ζW = ζPC

λe
, (4.8)

where ζPC is the mean number of demands in the pool and the effective arrival rate (Ross
[17]), λe is given by

λe = 1
λ1

N−1∑

k=0

φ(0,k)
(
pD1⊗ Im2

)
e. (4.9)

5. Cost analysis

The expected total cost per unit time (expected total cost rate) in the steady state for this
model is defined to be

TC(S,s,N)= chζI + cpζPR + crζRR + cwζPC + csζR + cnζN + cclζL, (5.1)

where
(i) cs: setup cost per order,
(ii) ch: the inventory carrying cost per unit item per unit time,
(iii) cr : reneging cost per customer per unit time,
(iv) cw: waiting cost of a customer in the pool per unit time,
(v) cn: loss per unit time due to arrival of a negative customer,
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(vi) cp: perishable cost per unit item per unit time,
(vii) ccl: cost of a customer lost per unit time.

Substituting ζ ’s, we get

TC(S,s,N)=ch
( S∑

i=1

iφie

)

+ cp

( S∑

i=1

N∑

k=0

iγφ(i,k)e

)

+ cr

( S∑

i=0

N∑

k=1

kαφ(i,k)e

)

+ cs

(
1
λ1

N∑

k=0

(
φ(s+1,k)

(
D1⊗ Im2

)
e
)

+
N∑

k=1

μkφ(s+1, j)e

+
N∑

k=0

(s+ 1)γφ(s+1,k)e

)

+ cw

( S∑

i=0

N∑

k=1

kφ(i,k)e

)

+ cn

(
1
λ−1

S∑

i=0

N∑

k=1

φ(i,k)
(
Im1 ⊗F1

)
e

)

+ ccl

(
1
λ1

[N−1∑

k=0

φ(0,k)
(
qD1⊗ Im2

)
e +φ(0,N)

(
D1⊗ Im2

)
e

])

.

(5.2)

Since the expected total cost function per unit time is obtained only implicitly, the
analytical properties such as convexity of the cost function cannot be studied in general.
However, we present some numerical examples in the next section to demonstrate the
computability of the results derived in our work, and to illustrate the existence of lo-
cal optimum when the expected total cost function is treated as a function of only two
variables.

6. Numerical illustrations

We first consider the following case: the regular demand process is represented by the
MAP with

D0 =
(
−50 0

0 −5

)

, D1 =
(

39 11
3.9 1.1

)

(6.1)

and the arrival process of negative customer is represented by a MAP with

F0 =
(−20 0

0 −2

)

, F1 =
(

19 1
1.9 0.1

)

. (6.2)

The parameter and the costs are assumed to have the following values: N = 5, p = .7,
β = 25, α = 1.3, γ = 0.8, μi = 4i, i = 1,2, . . . ,5, ch = 0.1, cw = 10, cr = 6, cp = 0.2, cs = 10,
cn = 25, ccl = 5.

By taking N = 5, the total expected cost function per unit time, namely TC(S,s,5), is
considered as a function of two arguments, TC(S,s). The values of TC(S,s) are given in
Table 6.1 for s= 1,2, . . . ,5 and S= 24,25, . . . ,31.

The optimal total expected cost rate for each s is shown in bold case and for each S is
underlined. These values show that TC(S,s) is a convex function in (S,s) for the selected
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Table 6.1. Total expected cost rate.

S
s

1 2 3 4 5

24 6.466367 6.320651 6.555001 7.027032 7.658907

25 6.460348 6.317161 6.542545 6.996300 7.601485

26 6.461928 6.321608 6.539325 6.977032 7.558750

27 6.470193 6.332993 6.544132 6.967672 7.528633

28 6.484365 6.350471 6.555952 6.966925 7.509426

29 6.503780 6.373324 6.573928 6.973706 7.499711

30 6.527864 6.400938 6.597334 6.987100 7.498298

31 6.556120 6.432785 6.625548 7.006328 7.504181

values of S and s and for the fixed values of other parameters and costs. The local optimum
occurs at (S,s)= (25,2).

Next, we will consider the following five MAPs for arrival of regular customers as well
as for arrival negative customers so that these processes are normalized to have a specific
(given) demand rate λ1(λ−1) when considered for arrival of regular (negative) customers.

(1) Exponential (Exp)

H0 = (−1) H1 = (1). (6.3)

(2) Erlang (Erl)

H0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, H1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (6.4)

(3) Hyper-exponential (HExp)

H0 =
⎛

⎝−10 0

0 −1

⎞

⎠ , H1 =
⎛

⎝ 9 1

0.9 0.1

⎞

⎠ . (6.5)

(4) MAP with Negative correlation (MNC)

H0 =

⎛

⎜
⎜
⎝

−2 2 0

0 −2 0

0 0 −450.50

⎞

⎟
⎟
⎠ , H1 =

⎛

⎜
⎜
⎝

0 0 0

0.02 0 1.98

445.995 0 4.505

⎞

⎟
⎟
⎠ . (6.6)

(5) MAP with positive correlation (MPC)

H0 =

⎛

⎜
⎜
⎝

−2 2 0

0 −2 0

0 0 −450.50

⎞

⎟
⎟
⎠ , H1 =

⎛

⎜
⎜
⎝

0 0 0

1.98 0 0.02

4.505 0 445.995

⎞

⎟
⎟
⎠ . (6.7)



10 Journal of Applied Mathematics and Decision Sciences

Table 6.2. Values of S∗ and s∗ (in the upper row) and the optimum cost rate (in the lower row) for
arrival processes for regular and negative customer.

MAPs of negative arrivals

Exp Erl HExp MNC MPC

Exp
24 3 22 2 27 4 25 3 25 3

1.572453 1.499994 1.796481 1.640885 1.667935

MAPs of
regular
arrival

Erl
22 2 21 2 26 4 24 3 24 3

1.479162 1.479162 1.690255 1.548586 1.556385

HExp
27 3 26 3 32 5 29 4 30 4

1.815940 1.726598 2.087582 1.894005 1.946499

MNC
24 3 23 2 28 4 25 3 26 3

1.595167 1.531924 1.815005 1.652637 1.698333

MPC
19 0 18 0 23 1 21 1 22 1

3.757670 3.680964 4.031168 3.801462 4.047543

All the above MAPs are qualitatively different in that they have different variance and
correlation structures. The first three processes are special cases of renewal processes and
the correlation between arrival times is 0. The demand process labeled as MNC has cor-
related arrival with correlation coefficient −0.488909 and the arrivals corresponding to
the process labeled MPC has positive correlation coefficient 0.488909.

For the next example, we take λ1 = 15, λ−1 = 60, N = 5, p = 0.3, β = 5, α= 2, γ = 0.6,
μi = 4i, i= 1,2, . . . ,5, ch = 0.01, cw = 15, cr = 6, cp = 0.1, cs = 2, cn = 3, ccl = 5.

Table 6.2 gives the optimum values, S∗ and s∗, that minimize the expected total cost
for each of the five MAPs for arrivals of regular demands considered with each of the five
MAPs of negative customers. The associated expected total cost values are also given.

For the third example, the various costs and parameters are assumed to be as follows:
λ1 = 8, λ−1 = 60, S = 23, s = 4, p = 0.3, β = 5, α = 1.5, γ = 0.2, μi = 4i, i = 1,2, . . . ,N ,
ch = 0.1, cw = 3, cr = 4, cp = 0.2, cs = 2, cn = 3, ccl = 8.

Table 6.3 summarizes the optimum N∗ values along with the optimum total cost rate.
The upper entries in each cell gives N∗ value and the lower entry corresponding to opti-
mal cost rate.

7. Conclusion

In this work, we modeled an inventory system of perishable commodities in which the
arrival of regular and negative customers have independent MAPs. The customers whose
requirement cannot be met immediately join a pool of finite capacity; their demands
are satisfied after a randomly distributed time when the inventory level is above s after
the replenishment. The customers in the pool may renege according to exponentially
distributed times. We have derived the steady state solutions of the joint processes and
illustrated the results by numerical examples. Since we have assumed MAPs for arrivals,
the proposed model covers a large collection of renewal and nonrenewal processes and
can be applied to wide range of inventory systems.
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Table 6.3. Value of N∗ (in the upper row) and the optimum cost rate (in the lower row) for arrival
processes for regular and negative customer.

MAPs of negative arrivals

Exp Erl HExp MNC MPC

Exp
8 8 4 9 4

1.9835 1.9813 1.9929 1.9861 1.9867

MAPs of
regular
arrival

Erl
6 5 4 7 4

1.9442 1.9429 1.94977 1.9458 1.9459

HExp
7 8 4 8 4

2.0913 2.0864 2.1123 2.09686 2.0989

MNC
8 7 4 8 4

1.9910 1.9888 2.0009 1.9934 1.9947

MPC
4 4 3 4 2

5.1857 5.1788 5.2106 5.1884 5.2512

Notations

[A]i j : The element/submatrix at (i, j)th position of A

0: Zero matrix

I : An identity matrix

Ik: An identity matrix of order k

A⊗B: Kronecker product of matrices A and B

A⊕B: Kronecker sum of matrices A and B
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