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Monounireducible nonhomogeneous semi- Markov processes are defined and investigated. The
mono- unireducible topological structure is a sufficient condition that guarantees the absorption
of the semi-Markov process in a state of the process. This situation is of fundamental importance
in the modelling of credit rating migrations because permits the derivation of the distribution
function of the time of default. An application in credit rating modelling is given in order to
illustrate the results.

1. Introduction

Semi-Markov processes (SMPs) are a generalization of Markov processes in which the
waiting time distributions before the occurrence of a transition are modelled by any kind
of distribution function; see [15]. This means that, on the contrary of Markov processes, it is
possible to use also no memoryless distributions which determine a duration effect.

The duration effect affirms that the time the system is in a state influences the system’s
transition probability. One way to detect and quantify this effect, in a SMP, is by using
backward and forward recurrence time processes associated to the SMP.

In [5, 10] general distributions of the transition probabilities of SMP with backward
and forward times are investigated for discrete time nonhomogeneous and for continuous
time homogeneous processes, respectively. In these papers a credit risk application is also
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described. In this paper a further generalization is presented. In fact, a duration-dependent
semi-Markov model is presented for continuous time nonhomogeneous processes. This
extension is motivated by theoretical reasons as well by the practical need of making an
efficient rating migration model available. In the paper the mono-unreducible topological
structure for nonhomogeneous continuous time semi-Markov processes (NHCTSMPs) is
introduced and analysed. It represents a sufficient condition for the absorption of the process
in the down states of the system. Then, it represents the ideal environment in which to treat
credit risk models.

The paper is organized as follows. Section 2 gives definitions and notations on
NHCTSMP and introduces backward and forward processes and their joint distributions
together with that of the SMP. Section 3 studies the monounreducible topological structure
and derives the distribution function of going into default state. Section 4 presents a credit
risk model and a numerical example.

2. Continuous Time Non-Homogeneous Semi-Markov Process

Let us consider two sequences of random variables defined on a complete; filtered probability
space (Ω,F,Ft, P) as the following:

(i) Jn : Ω → I = {1, 2, . . . , m}, n ∈ N representing the state at the nth transition;

(ii) Tn : Ω → R+ representing the time of the nth transition.

We suppose that (Jn, Tn) is a Markov renewal process of kernel Q = [Qij(s, t)]:

P
[
Jn+1 = j, Tn+1 ≤ t | σ(Ja, Ta), Jn = i, Tn = s, 0 ≤ a ≤ n

]

= P
{
Jn+1 = j, Tn+1 ≤ t | Jn = i, Tn = s

}
:= Qij(s, t).

(2.1)

We also know that.

pij(s) := P
{
Jn+1 = j | Jn = i, Tn = s

}
= lim

t→∞
Qij(s, t). (2.2)

P(s) = [pij(s)] is the transition matrix of the embedded Markov chain {Jn}.
Let us introduce the probability; the process will leave state iwithin time t:

Hi(s, t) := P{Tn+1 ≤ t | Jn = i, Tn = s} =
∑

k∈I
Qik(s, t). (2.3)

It is possible to define the distribution function of the waiting time in each state i, given
that the state, successively, occupied is known

Gij(s, t) := P
{
Tn+1 ≤ t | Jn = i, Jn+1 = j, Tn = s

}
. (2.4)
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The related probabilities can be obtained by means of the following formula:

Gij(s, t) =

⎧
⎪⎨

⎪⎩

Qij(s, t)
pij(s)

, if pij(s)/= 0,

1, if pij(s) = 0.
(2.5)

Denote by N(t) = sup{n : Tn ≤ t}, the NHCTSMP Z = (Z(t), t ∈ R+) is defined as
Z(t) = JN(t). It represents for each waiting time the state occupied by the embedded Markov
chain.

The transition probabilities of Z(t) are defined in the following way:

φij(s, t) := P
{
Z(t) = j | Z(s) = i, TN(s) = s

}
. (2.6)

They are obtained by solving the following system of integral equations:

φij(s, t) = δij(1 −Hi(s, t)) +
∑

k∈I

∫ t

s

Q̇ik(s, θ)φkj(θ, t)dθ, (2.7)

where δij represents the Kronecker symbol.
The part δij(1−Hi(s, t)) of formula (2.7) gives the probability that the process does not

have transitions up to time t given that it starts in state i at time s.
The term

∑
k∈I

∫ t
s Q̇ik(s, θ)φkj(θ, t)dθ considers the permanence of the system in state

i up to the time θ, where a transition in state k occurs. After the transition, the system will
move to state j following one of all the possible trajectories going from state k at time θ to
state j at time t. All possible states k and times θ are considered by the summation and the
integration.

With the aim of considering a general duration-dependent model, which is of
fundamental importance in many applicative domains such as credit rating modelling and
reliability theory, we introduce the recurrence time processes. These processes were investi-
gated by many authors; see, for example, [4–6].

Given (Jn, Tn), we define the following recurrence processes:

B(t) = t − TN(t), F(t) = TN(t)+1 − t. (2.8)

B(t) is called the non-homogeneous backward time (or age) process, and F(t) is the
non-homogeneous forward time (or residual time) process.

The recurrence time processes complement Z(t) to a Markov process with respect to
F+

t ≡ σ{Z(s), F(s), s ∈ [0, t]}, t ≥ 0, then for any bounded I × R+-measurable function f(x, t)
it results

E
[
f(Z(t), F(t)) | F+

s

]
= E

[
f(Z(t), F(t)) | Z(s), F(s)

]
. (2.9)

The relation remains true if we interchange B(t)with F(t); see [7].
Figure 1 represents a trajectory of a SMP and the backward and forward processes. In

Figure 1 we have N(s) = n and N(t) = h, a starting backward B(s) = s − Tn = s − l, a starting
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Z(s)
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t − l′

Th+1 = u′
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u′ − t
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Figure 1: Trajectory of a NHSMP with backward and forward times.

forward F(s) = Tn+1 − s = u − s, a final backward B(t) = t − Th = t − l′, and a final forward
F(t) = Th+1 − t = u′ − t.

The transition probabilities of a SMP change in function of the values of the recurrence
time processes. In fact the conditional waiting times distribution functions (2.4) can be of any
type, and then, also no memoryless distributions can be used. In this case, the time length
spent in the starting state (initial backward value) changes the transition probabilities, and
the same effect is determined by a starting forward which imposes a constraint on the time
of the next transition. The same argument holds for the final backward and forward values.

To understand how the transition probabilities of the SMP are perturbed by imposing
constraints on the recurrence processes both at starting and arriving times, we report here
some of the results obtained in [8].

Definition 2.1. For all i, j ∈ I and for all l ≤ s ≤ u ≤ l′ ≤ t ≤ u′ such that 1 − Hi(l, u) > 0, one
defines the transition probabilities with initial and final backward and forward

bfφBF
ij

(
l, s, u; l′, t, u′)

= P
[
Z(t) = j, B(t) ≤ t − l′, F(t) ≤ u′ − t | Z(s) = i, B(s) = s − l, F(s) = u − s

]
.

(2.10)

The following result holds

Theorem 2.2. For all i, j ∈ I and for all l ≤ s ≤ u ≤ l′ ≤ t ≤ u′ such that 1 −Hi(l, u) > 0, one has

bfφBF
ij

(
l, s, u; l′, t, u′) =

∑

k∈I

dQik(l, u)
dHi(l, u)

φBF
kj

(
u; l′, t, u′), (2.11)

φBF
kj

(
u; l′, t, u′) = δkj

(
Hk

(
u, u′) −Hk(u, t)

)
1{l′=u} +

∑

p∈I

∫ t

u

Q̇kp(u, θ)φBF
pj

(
θ; l′, t, u′)dθ. (2.12)

Proof. See [8].
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Definition 2.3. For all i, j ∈ I and for all l ≤ s ≤ u ≤ l′ ≤ t ≤ u′ such that 1 − Hi(l, u) > 0, one
defines the probabilities with initial backward-certain forward and final backward-forward

bfφBF
ij

(
l, s, u; l′, t, u′)

= P
[
Z(t) = j, B(t) ≤ t − l′, F(t) ≤ u′ − t | Z(s) = i, B(s) = s − l, F(s) > u − s

]
.

(2.13)

Theorem 2.4. For all i, j ∈ I and for all l ≤ s ≤ u ≤ l′ ≤ t ≤ u′ such that 1 −Hi(l, u) > 0, one has

bFφBF
ij

(
l, s, u; l′, t, u′) = δij

(Hi(l, u′) −Hi(l, t))
1 −Hi(l, u)

1{l′=l} +
∑

m∈I

∫ t

u

Q̇im(u, θ)
1 −Hi(l, u)

φBF
mj

(
θ; l′, t, u′)dθ.

(2.14)

Proof. See [8].

There are several particular cases of (2.14) and (2.11) which can be of interest. In
Section 3, some of them will be studied in relation to the credit-rating problem also in the
asymptotic case.

3. Mono-Unireducible Non-Homogeneous Semi-Markov Process

In this section, we introduce the mono-unireducible topological structure. In [9], it was
studied the asymptotic behavior of a mono-unireducible discrete time non-homogeneous
SMP. Here, we extend the results to the continuous time case.

Definition 3.1. Let A =
[
AU,U AU,D

0T AD,D

]
be am ×m matrix.

A is mono-unireducible if:

(i) AU,U is a (m − 1) × (m − 1) circuit matrix,

(ii) AU,D is a (m − 1) nonnegative column vector with at least one positive element,

(iii) AD,D = amm > 0.

Remark 3.2. The product of a mono-unireducible matrix with a positive diagonal matrix is a
mono-unireducible matrix.

Definition 3.3. A NHCTSMP Z(t) is said mono-unireducible if:

(i) for all s, t ∈ R+Q̇ii(s, t) := ∂Qii(s, t)/∂t > 0,

(ii) for all s ∈ R+∃s1 : Q̇(s, s1) := (∂Q(s, t)/∂t)|t=s1 > 0 is a mono-unireducible matrix.

As it is well known, one defines the n-fold convolution of Q(s, t) by itself as:

Q
(n)
ij (s, t) =

⎧
⎨

⎩

Qij(s, t), if n = 1,
∑

k∈I

∫ t
s Q̇ik(s, θ)Q

(n−1)
kj (θ, t)dθ, if n ≥ 2. (3.1)
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Lemma 3.4. Let Z(t) be a NHCTSMP with a continuously differentiable and mono-unireducible
kernelQ(s, t). Then, for all s ∈ R+∃t ∈ R+ such that

Q(n)(s, t) =

⎡

⎣
Q(n)

U,U(s, t) Q(n)
U,D(s, t)

0T 1

⎤

⎦, (3.2)

whereQ(n)
U,U(s, t) > 0, Q(n)

U,D(s, t) > 0.

Proof. Given s ∈ R+, since Z(t) is mono-unireducible, ∃s1 > s : Q̇(s, s1) is a mono-uniredu-
cible matrix. Moreover, for all i, j ∈ I such that Q̇ij(s, s1) > 0, because Q̇ij(s, ·) is continuous,
∃Iij(s1) ⊂ R+ : for all θ1 ∈ Iij(s1), Q̇ij(s, θ1) > 0. By setting I(s1) =

⋂
i,j Iij(s1)we have

Q(n)(s, t) =
∫ t

s

Q̇(s, θ1) ∗Q(n−1)(θ1, t)dθ1 ≥
∫

I(s1)
Q̇(s, θ1) ∗Q(n−1)(θ1, t)dθ1, (3.3)

and by iteration we get

Q(n)(s, t) ≥
∫

I(s1)
· · ·

∫

I(sn)
Q̇(s, θ1) ∗ Q̇(θ1, θ2) ∗ · · · ∗ Q̇(θn, t)dθ1dθ2 · · ·dθn. (3.4)

The matrices Q̇(θi, θi+1) are all mono-uniredudible, and then, their product is a mono-
unireducible matrix and for n > m − 1 Q(n)

UU(s, t) is a full matrix as a consequence of Theorem
2.1. in [9].

At this point, we can state the following.

Theorem 3.5. Let Z(t) be a NHSMP with continuously differentiable and mono-unireducible kernel
Q(s, t). Then, for all s ∈ R+

lim
t→∞

Φ(s, t) =

⎡

⎢
⎣

0 · · · 0 1
...

. . .
...

...
0 · · · 0 1

⎤

⎥
⎦. (3.5)

Proof. Let i /=m then,

φim(s, t) = P
[
Z(t) = m | Z(s) = i, TN(s) = s

]

=
m∑

k=1

∫ t−ξ−s

0
P
[
Z(t) = m,Z(t − ξ) = k, B(t − ξ) = l | Z(s) = i, TN(s) = s

]
dl

=
m∑

k=1

∫ t−ξ−s

0
P[Z(t) = m | Z(t − ξ) = k, B(t − ξ) = l],

× P
[
Z(t − ξ) = k, B(t − ξ) = l | Z(s) = i, TN(s) = s

]
dl
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=
m∑

k=1

∫ t−ξ−s

0

bφkm(t − ξ − l, t − ξ; t)φb
ik(s; t − ξ − l, t − ξ)dl

=
∫ t−ξ−s

0

bφmm(t − ξ − l, t − ξ; t)φb
im(s; t − ξ − l, t − ξ)dl

+
∑

k /=m

∫ t−ξ−s

0

bφkm(t − ξ − l, t − ξ; t)φb
ik(s; t − ξ − l, t − ξ)dl.

(3.6)

Then, we get

φim(s, t) − φim(s, t − ξ) =
∑

k /=m

∫ t−ξ−sb

0

bφkm(t − ξ − l, t − ξ; t)φb
ik(s; t − ξ − l, t − ξ)dl. (3.7)

In this way, for all ξ > 0, t − ξ > s, φim(s, t) ≥ φim(s, t − ξ). Moreover φim(s, t) ≤ 1 which
implies, for all i the existence of limt→∞φim(s, t).

Let suppose that limt→∞φim = 1 − ε, 0 < ε < 1; then for all δ > 0∃t : for all t > t

∑

k /=m

∫ t−ξ−s

0
φb
ik(s; t − ξ − l, t − ξ)bφkm(t − ξ − l, t − ξ; t)dl < δ. (3.8)

By considering the following inequalities:

φb
ik(s; t − ξ − l, t − ξ) ≥ Q

(n)
ik (s, t − ξ − l)(1 −Hk(t − ξ − l, t − ξ)),

bφkm(t − ξ − l, t − ξ; t) ≥ Q
(2)
km(t − ξ − l, t)

1 −Hk(t − ξ − l, t − ξ)
≥ Qkk(t − ξ − l, t − ξ)Qkm(t − ξ, t)

(1 −Hk(t − ξ − l, t − ξ))
,

(3.9)

inside (3.8), we get

∑

k /=m

∫ t−ξ−s

0
Q

(n)
ik (s, t − ξ − l)Qkk(t − ξ − l, t − ξ)Qkm(t − ξ, t)dl < δ. (3.10)

Since, by Lemma 3.4, for n > m, Q
(n)
ik

(s, t − ξ − l) is a full matrix, we set λ =
mini,k{Qik(s, t − ξ − l)} > 0 and α = mink{Qkk(t − ξ − l, t − ξ)} > 0. Then, by substitution
in (3.10), we have

∑

k /=m

∫ t−ξ−s

0
λαQkm(t − ξ, t)dl < δ ⇐⇒ (t − ξ − s)λα

∑

k /=m

Qkm(t − ξ, t) < δ, (3.11)
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which implies

∑

k /=m

Qkm(t − ξ, t) <
δ

(t − ξ − s)λα
. (3.12)

Since δ is arbitrary, nothing can ensure (3.12) for mono-unireducible semi-Markov
process and consequently for all i, limt→∞φim(s, t) = 1.

Corollary 3.6. Let Z(t) be a NHSMP with continuously differentiable and mono-unireducible kernel
Q(s, t). Then for all s, u, v ∈ R+ such that s − v ≤ s ≤ s + u it results that

lim
t→∞

bfΦ(v, s, u; t) =

⎡

⎢
⎣

0 · · · 0 1
...

. . .
...

...
0 · · · 0 1

⎤

⎥
⎦. (3.13)

Proof. Because we are interested in the asymptotic behaviour as t → ∞, it is not a loss of
generality to consider that TN(s)+1 < t.

Let i /=m, then

lim
t→∞

P
[
Z(t) = j | Z(s) = i, B(s) = v, F(s) = u

]

=
m∑

k=1

lim
t→∞

P
[
Z(t) = j, JN(s+u) = k | Z(s) = i, B(s) = v, F(s) = u

]

=
m∑

k=1

lim
t→∞

P
[
Z(t) = j | JN(s+u) = k,Z(s) = i, B(s) = v, F(s) = u

]

× P
[
JN(s+u) = k | Z(s) = i, B(s) = v, F(s) = u

]

=
m∑

k=1

dQik(s − v; s + u)
1 −Hi(s − v; s + u)

lim
t→∞

φkj(s + u; t).

(3.14)

Now, from Theorem 3.5 we know that

lim
t→∞

φkj(s + u, t) =

{
1 ∀k if j = m

0 ∀k if j /=m,
(3.15)

consequently if j /=m limt→∞
bfφij(v, s, u; t) = 0, otherwise for j = m, we have that

lim
t→∞

bfφj,m(v, s, u; t) =
m∑

k=1

dQik(s − v; s + u)
1 −Hi(s − v; s + u)

= 1. (3.16)

Remark 3.7. From the previous theorem it results that (φim(s, ·)) for all s ∈ R+ and for all i ∈
I is the distribution function of going into the down state m. Moreover (bfφim(v, s, u; ·)),
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for allv, s, u ∈ R+ and for all i ∈ I is the distribution function of going into the down statem
given that at time s the process is in state i with a backward and forward values of v and u,
respectively.

4. The Credit Risk Model

SMP were proposed to describe rating dynamics for the first time by [10] with the purpose
of construct efficient rating migration models. Efficient migration models are of interest for
pricing rating sensitive derivatives (see [11, 12]), for the valuation of portfolio of defaulting
bonds, for credit risk management and capital allocation; see [13, 14].

Here, we apply our non-homogeneous model to entity ratings history, instrument
ratings history, and issue/maturity ratings history, respectively for each standard & poor’s
rated entity, for each Standard & Poor’s rated instrument stock or bonds sold by an entity
at particular time, and issue/maturity for the Global Issuers and Structured Finance (GI and
FS) instruments that Standard & Poor’s has rated, in the GI&SF sector formerly known as the
Corporate Finance since 1922 to 2007, July, 16.

In the Standard & Poor’s case there are 8 different classes of rating expressing the
creditworthiness of the rated firm. The ratings are listed to form the following set of states:

I = {AAA,AA,A, BBB, BB, B, CCC,D}. (4.1)

The creditworthiness is highest for the ratingAAA, assigned to firm extremely reliable
with regard to financial obligations and decrease towards the rating D which expresses the
occurrence of payment default on some financial obligation. A table showing the financial
meaning of the Standard & Poor’s rating categories is reported in [15]. As a matter of
example, the ratingA is assigned to firm susceptible to economic conditions having still good
credit quality.

The state space is partitioned in up and down states as follows:

U = {AAA,AA,A, BBB, BB, B, CCC}, D = {D}. (4.2)

To dispose of a semi-Markov model it is necessary to construct the embedded Markov
chain P(s) and to find the d.f. of waiting times G(s, t). The embedded Markov chain,
constructed by rating agency Standard & Poor’s (S&P) real data, was given in [16] and is
reported in Tables 1, 2, and 3 for different years.

Remark 4.1. We would outline that the Markov matrices that are given yearly in the S&P
publications are usually diagonal dominant. Instead, the matrices that are presented in this
paper do not have this property. The reason is that in a semi-Markov environment the
transitions are taken into account only if the rating agency assesses a new rating. On the
contrary, in the evaluation of the S&P transition Markov chain, if in a year there was no new
rating evaluation for a firm, it is supposed that the firm is yet in the same state, and the rating
agency in the construction of the transition matrix takes into account that there is a “virtual”
transition in the same state. This implies that the number of virtual transitions is very high
and the Markov chain becomes diagonally dominant. We think that this is another reason of
the best behaviour of the semi-Markov environment with respect to the Markov one, because
only the real rating transitions are considered.
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Table 1: Embedded Markov chain for s = 1.

AAA AA A BBB BB B CCC D
AAA 0.623 0.319 0.043 0.015 0.000 0.000 0.000 0.000
AA 0.090 0.650 0.250 0.000 0.010 0.000 0.000 0.000
A 0.017 0.123 0.714 0.132 0.014 0.000 0.000 0.000
BBB 0.000 0.011 0.365 0.581 0.043 0.000 0.000 0.000
BB 0.000 0.000 0.000 0.500 0.249 0.187 0.064 0.000
B 0.000 0.199 0.000 0.200 0.000 0.000 0.601 0.000
CCC 0.000 0.000 0.000 0.000 0.143 0.286 0.143 0.428
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 2: Embedded Markov chain for year s = 11.

AAA AA A BBB BB B CCC D
AAA 0.612 0.274 0.064 0.020 0.007 0.017 0.004 0.002
AA 0.104 0.623 0.225 0.024 0.004 0.006 0.012 0.002
A 0.026 0.138 0.625 0.137 0.041 0.031 0.001 0.001
BBB 0.029 0.051 0.195 0.540 0.131 0.039 0.011 0.003
BB 0.037 0.006 0.025 0.187 0.481 0.218 0.043 0.003
B 0.011 0.021 0.015 0.047 0.147 0.473 0.242 0.044
CCC 0.000 0.000 0.000 0.000 0.028 0.113 0.634 0.225
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 3: Embedded Markov chain for s = 21.

AAA AA A BBB BB B CCC D
AAA 0.747 0.139 0.074 0.034 0.004 0.002 0.000 0.000
AA 0.052 0.573 0.309 0.036 0.026 0.002 0.001 0.001
A 0.024 0.180 0.539 0.240 0.011 0.003 0.002 0.001
BBB 0.007 0.039 0.228 0.461 0.229 0.033 0.001 0.002
BB 0.005 0.024 0.048 0.426 0.307 0.175 0.012 0.003
B 0.002 0.014 0.016 0.096 0.371 0.341 0.150 0.010
CCC 0.000 0.010 0.015 0.070 0.120 0.525 0.165 0.095
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

By using the empirical estimator of cumulative distribution functions, we estimated
the distributions Gi,j(s, t). In Figure 2, we report only few cases.

By using relation (2.5), we recover the semi-Markov kernel, and the application of the
theoretical arguments of previous sections allow us to compute the transition probabilities.
Following the approach in [2, 10]we denote by

bRi(l, s; t) := P[Z(t) ∈ U | Z(s) = i, B(s) = s − l] =
∑

j∈U

bφij(l, s; t), (4.3)

the reliability function with initial backward. It expresses the probability that the firm has
never defaulted up to time t given that at time s it was in rating class i ∈ E, where it entered
with last transition at time s − l.

It is simple to realize that 1−bRi(l, s; t) is the probability to be defaulted at time t.
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Figure 2: Conditional waiting time d.f. GAAA,AAA(s, s + k) (dotted lines) and GA,AAA(s, s + k) (continuous
lines) for s = 1 (a), s = 3 (b), s = 6 (c), and s = 9 (d).
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Figure 3: Reliability function bRA(l, s; s + k) for s = 4 (dotted lines) and s = 8 (continuous lines) for l = 1
(a), l = 2 (b), and l = 3 (b), l = 4 (d).
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In Figure 3, we show the reliability function for rating class i = A for different values of
l, s, and t. As it is possible to see, the reliabilities have a different behaviour depending on the
values of s. This is due to the nonhomogeneity of the rating process. The reliability exhibits
also variability as a function of the backward process, then as a result, our model assigns
different survival probabilities to firms having the same rating class but with different age in
this state.
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