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We give a hybrid two-stage design which can be useful to estimate the reliability of a parallel-
series and/or by duality a series-parallel system.When the components’ reliabilities are unknown,
one can estimate them by sample means of Bernoulli observations. Let T be the total number of
observations allowed for the system. When T is fixed, we show that the variance of the system
reliability estimate can be lowered by allocation of the sample size T at components’ level. This
leads to a discrete optimization problem which can be solved sequentially, assuming T is large
enough. First-order asymptotic optimality is proved systematically and validated viaMonte Carlo
simulation.

1. Introduction

In reliability engineering two crucial objectives are considered: (1) to maximize an estimate of
system reliability and (2) to minimize the variance of the reliability estimate. Because system
designers and users are risk averse, they generally prefer the second objective which leads to
a system design with a slightly lower reliability estimate but a lower variance of that estimate,
(e.g., [1]). It provides decision makers efficient rules compared to other designs which have a
higher system reliability estimate, but with a high variability of that estimate. In the case
of parallel-series and/or by duality series-parallel systems, the variance of the reliability
estimate can be lowered by allocation of a fixed sample size (the number of observations
or units tested in the system), while reliability estimate is obtained by testing components,
see Berry [2]. Allocation schemes for estimation with cost, see, for example, [2–7], lead
generally to a discrete optimization problemwhich can be solved sequentially using adaptive
designs in a fixed or a Bayesian framework. Based on a decision theoretic approach, the
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authors seek to minimize either the variance or the Bayes risk associated to a squared error
loss function. The problem of optimal reliability estimation reduces to a problem of optimal
allocation of the sample sizes between Bernoulli populations. Such problems can be solved
via dynamic programming but this technique becomes costly and intractable for complex
systems. In the case of a two component series or parallel system, optimal procedures can
be obtained and solved analytically when the coefficients of variation of the associated
Bernoulli populations are known, (cf., e.g., [5, 8]). Unfortunately, these coefficients are not
known in practice since they depend themselves on the unknown components’ reliabilities
of the system. In [9], the author has defined a sequential allocation scheme in the case
of a series system and has shown its first-order asymptotic optimality for large sample
sizes with comparison to the balanced scheme. In [10], a reliability sequential scheme (R-
SS) was applied successfully to parallel-series systems, when the total number of units to
be tested in each subsystem was fixed. Recently, in [11], a two-stage design for the same
purpose was presented and shown to be asymptotically optimal when the subsystems sample
sizes are fixed and large at the same order of the total sample size of the system. The
problem considered in this paper is useful to estimate the reliability of a parallel-series
and/or by duality a series-parallel system, when the components’ reliabilities are unknown
as well as the total numbers of units allowed to be tested in each subsystem. This work
improves the results in [11] by developing a hybrid two-stage design to get a dynamic
allocation between the sample sizes allowed for subsystems and those allowed for their
components. For example, consider a parallel system of four components (1), (2), (3), and
(4), with reliabilities 0.05, 0.1, 0.95, and 0.99, respectively, under the constraint that the total
number of observations allowed is T = 100. Then, the sequential scheme given in [10]
suggests to test, respectively, 10, 10, 28, and 52 units and produces a variance of the system
reliability estimate equal 10−7, approximately. This is visibly better, compared to the balanced
scheme which takes an allocation equal 25 in each component and produces a variance ten
times greater then the former. The hybrid sequential scheme proposed in this paper is a
tool to solve the same problem when the components are replaced by subsystems. More
precisely, it combines the schemes developed for parallel and/or series systems in order
to obtain approximately the best allocation at subsystems’ level as well as at components’
level.

In Section 2, definitions and preliminary results are presented accompanied by
the proper two-stage design for a parallel subsystem just as was defined in [11] and
its asymptotic optimality is proved for a fixed and large sample size. In Section 3, a
parallel-series system is considered and it is shown that the variance of its reliability
estimate has a lower bound independent of allocation. This leads, in Section 4, to the
main result of this paper which lies in the hybrid two-stage algorithm and its asymptotic
optimality for a fixed and large sample size allowed for the system. In Section 5, the
results are validated via Monte Carlo simulation and it is shown that our algorithm
leads asymptotically to the best allocation scheme to reach the lower bound of the
variance of the reliability estimate. The last section is reserved for conclusion and
remarks.

2. Preliminary Results

Consider a system S of n subsystems S1, S2, . . . , Sn connected in series, each subsystem Sj

contains nj components S1j , S2j , . . . , Snj j connected in parallel. The system should be referred
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to as parallel-series system. Assume s-independence within and across populations, then the
system reliability is

R =
n∏

j=1

Rj, (2.1)

where

Rj = 1 −
nj∏

i=1

(
1 − Rij

)
(2.2)

is the reliability of the parallel subsystem Sj and Rij the reliability of the component Sij . An
estimator of R is assumed to be the product of sample reliabilities:

R̂ =
n∏

j=1

R̂j , (2.3)

where

R̂j = 1 −
nj∏

i=1

(
1 − R̂ij

)
, (2.4)

and R̂ij is the sample mean of functioning units in component Sij :

R̂ij =

∑Mij

l=1 X
(l)
ij

Mij
. (2.5)

R̂ij is used to estimate Rij where Mij is the sample size and X
(l)
ij is the binary outcome of the

unit l in component Sij . It should be pointed that a unit is not necessarily a physical object in
a component, but it represents just a Bernoulli observation of the functioning/failure state of
that component. Hence, for each subsystem Sj , one must allocate

Tj =
nj∑

i=1

Mij (2.6)

units such that the estimated reliability of the system is based on a total sample size:

T =
n∑

j=1

Tj . (2.7)
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As in the series case, with the help of s-independence and the fact that a sample mean is
an unbiased estimator of a Bernoulli parameter, the variance of the estimated reliability R̂
incurred by any allocation scheme can be obtained, see [1, 10, 11]:

Var
{
R̂
}
=

n∏

j=1

(
Var
(
R̂j

)
+ R2

j

)
−

n∏

j=1

R2
j , (2.8)

where

Var
{
R̂j

}
=
(
1 − Rj

)2
⎡

⎣
nj∏

i=1

⎛
⎝1 +

c−2ij
Mij

⎞
⎠ − 1

⎤

⎦ (2.9)

is given as a function of the allocation numbers Mij and the coefficients of variation of
Bernoulli populations:

cij =

√
1
Rij

− 1. (2.10)

We have found it convenient to work with the equivalent expression of (2.9):

Var
{
R̂j

}
=
(
1 − Rj

)2
⎡

⎣
nj∑

i=1

c−2ij
Mij

+ F

⎛
⎝

c−21j
M1j

, . . . ,
c−2nj j

Mnjj

⎞
⎠
⎤

⎦, (2.11)

where

F

⎛
⎝

c−21j
M1j

, . . . ,
c−2nj j

Mnjj

⎞
⎠ (2.12)

is a sum over all the products of at least two of its arguments.
The problem is to estimate R when components’ reliabilities are unknown and a total

number of T units must be tested in the system at components’ level. The aim is to minimize
the variance of R̂. Hence, the problem can be addressed by developing allocation schemes to
select Mij , the numbers of units to be tested in each component i in the subsystem j, under
the constraint

n∑

j=1

nj∑

i=1

Mij = T, (2.13)

such that the variance of R̂ is as small as possible.
Reliability sequential schemes (R-SS) exist for the series, parallel, or parallel-series

configurations when the sample sizes Tj of the subsystems are fixed, (cf., e.g., [9–11]).
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Therefore, one can fully optimize the variance of R̂ just by applying the (R-SS) to find the best
partition T1, T2, . . . , Tn of T . Unfortunately, a full sequential design cannot be used in practice
for large systems since the number of operations will grow dramatically. For this reason, we
reasonably propose a hybrid two-stage design which is shown to be asymptotically optimal
when T is large.

2.1. Lower Bound for the Variance of the Estimated Reliability of
the Parallel Subsystem Sj

For the asymptotic optimization of the variance of the estimated reliabilities, we make use of
the well-known Lagrange’s identity which can be written in the following form.

Let ai > 0, Ni > 0, for i = 1, . . . , k and N = N1 + · · · + Nk, then the following identity
holds:

k∑

i=1

ai

Ni
= N−1

⎡

⎣
(

k∑

i=1

√
ai

)2

+
k−1∑

i=1

k∑

j=i+1

(
Ni

√
aj −Nj

√
ai

)2

NiNj

⎤

⎦. (2.14)

Proposition 2.1. Denote by

Qj =
(
1 − Rj

)2
T−1
j

( nj∑

i=1

c−1ij

)2

, (2.15)

then

Var
{
R̂j

}
≥ Qj. (2.16)

Proof. The proof is a direct consequence of the previous identity (2.14). Indeed,

Var
{
R̂j

}
=
(
1 − Rj

)2
T−1
j

( nj∑

i=1

c−1ij

)2

+ T−1
j

(
1 − Rj

)2
nj−1∑

i=1

nj∑

k=i+1

(
Mijc

−1
kj

−Mkjc
−1
ij

)2

MijMkj

+
(
1 − Rj

)2
F

⎛
⎝

c−21j
M1j

,
c−22j
M2j

, . . . ,
c−2nj j

Mnjj

⎞
⎠.

(2.17)

2.2. The Two-Stage Design for the Parallel Subsystem Sj

Following the expansion (2.17) and since F contains second-order terms (see later), one gives
interest to the numbers Mij which minimize the expression

T−1
j

nj−1∑

i=1

nj∑

k=i+1

(
Mijc

−1
kj

−Mkjc
−1
ij

)2

MijMkj
. (2.18)
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Thus, Mij must verify for i = 1, . . . , nj :

Mijc
−1
kj = Mkjc

−1
ij , (2.19)

which implies that

Mij = Tj
c−1ij

∑nj

k=1 c
−1
kj

. (2.20)

If one assumes that Tj is fixed then a proper two-stage scheme can be used to determineMij ,
just as was defined in [11], as follows.

Choose Lj as a function of Tj such that

(i) Lj must be large if Tj is large,

(ii) Lj ≤ (Tj/nj),

(iii) limTj →∞(Lj/Tj) = 0.

One can take for example Lj = [
√
Tj], where [·] denotes the integer part.

Stage 1. Sample Lj units from each component i in the subsystem j estimate cij by its
maximum likelihood estimator (M.L.E)

ĉij =

√√√√
Lj

∑Lj

l=1 X
(l)
ij

− 1 (2.21)

and define the predictor, according to (2.20),

M̂ij =

⎡

⎣Tj
ĉ−1ij

∑nj

k=1 ĉ
−1
kj

⎤

⎦, i = 1, . . . , nj − 1. (2.22)

Stage 2. Sample Tj−njLj units for whichMij−Lj are units from component i in the subsystem
j, where Mij is the corrector of M̂ij , defined by

Mij = max
{
Lj, M̂ij

}
, i = 1, . . . , nj − 1,

Mnjj = Tj −
nj−1∑

k=1

Mkj.

(2.23)

Theorem 2.2. Choosing theMij according to the previous two-stage sampling scheme, one obtains

lim
Tj →∞

Tj
(
Var
{
R̂j

}
−Qj

)
= 0. (2.24)
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Proof. From relation (2.17), one can write

Tj
(
Var
{
R̂j

}
−Qj

)
=
(
1 − Rj

)2
nj−1∑

i=1

nj∑

k=i+1

(
Mijc

−1
kj

−Mkjc
−1
ij

)2

MijMkj

+
(
1 − Rj

)2
Tj · F

⎛
⎝

c−21j
M1j

, . . . ,
c−2nj j

Mnjj

⎞
⎠.

(2.25)

When Tj is large enough, condition (iii) givesMij = M̂ij for i = 1, . . . , nj − 1. So the strong law
of large numbers with the integer part properties give, when Tj → ∞,

Mij

Mkj
−→ ckj

cij
, (2.26)

for i = 1, . . . , nj . Hence,

(
Mijc

−1
kj −Mkjc

−1
ij

)2

MijMkj
=

Mij

Mkj

(
c−1kj −

Mkj

Mij
c−1ij

)2

−→ 0, as Tj −→ ∞, (2.27)

and on the other hand,

Tj · F
⎛
⎝

c−21j
M1j

, . . . ,
c−2nj j

Mnjj

⎞
⎠ −→ 0, as Tj −→ ∞, (2.28)

which achieves the proof.

3. Lower Bound for the Variance of the Estimated Reliability
of the Parallel-Series System

We consider now the parallel-series system S. From expression (2.8), one can write

Var
{
R̂
}
= R2

⎡
⎢⎣

n∏

j=1

⎛
⎜⎝

Var
(
R̂j

)

R2
j

+ 1

⎞
⎟⎠ − 1

⎤
⎥⎦. (3.1)

The following theorem gives a lower bound for the variance of R̂.

Theorem 3.1. Denote by

Q = T−1R2

⎡

⎣
n∑

j=1

1 − Rj

Rj

( nj∑

i=1

c−1ij

)⎤

⎦
2

, (3.2)
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then

Var
{
R̂
}
≥ Q. (3.3)

Proof. Expanding the right-hand side of (2.8) and using (2.1), one obtains

Var
{
R̂
}
= R2

⎡
⎢⎣

n∑

j=1

Var
(
R̂j

)

R2
j

+ F

⎛
⎜⎝

Var
(
R̂1

)

R2
1

, . . . ,
Var
(
R̂n

)

R2
n

⎞
⎟⎠

⎤
⎥⎦, (3.4)

which gives, with the help of Theorem 2.2,

Var
{
R̂
}
≥ R2

n∑

j=1

Qj

R2
j

= R2
n∑

j=1

(((
1 − Rj

)
/Rj

)∑nj

i=1 c
−1
ij

)2

Tj
. (3.5)

This last expression has the form

R2
n∑

j=1

aj

Tj
, (3.6)

which can be expanded, thanks to identity (2.14), as follows:

R2T−1

⎡

⎣
n∑

j=1

1 − Rj

Rj

( nj∑

k=1

c−1kj

)⎤

⎦
2

+ R2T−1
n−1∑

i=1

n∑

j=i+1

(
Ti
((
1 − Rj

)
/Rj

)∑nj

k=1 c
−1
kj − Tj((1 − Ri)/Ri)

∑ni

k=1 c
−1
ki

)2

TiTj
,

(3.7)

and, as a consequence,

Var
{
R̂
}
≥ T−1R2

⎡

⎣
n∑

j=1

1 − Rj

Rj

( nj∑

k=1

c−1kj

)⎤

⎦
2

= Q, (3.8)

which achieves the proof.
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4. The Hybrid Two-Stage Design for the Parallel-Series System S

Similarly to the case of a subsystem and from expressions (3.5) and (3.7), one gives interest
to the numbers Tj which minimize the quantity

n−1∑

i=1

n∑

j=i+1

(
Ti
((
1 − Rj

)
/Rj

)∑nj

k=1 c
−1
kj

− Tj((1 − Ri)/Ri)
∑ni

k=1 c
−1
ki

)2

TiTj
(4.1)

and obtain the asymptotic optimality criteria:

Ti
Tj

=
((1 − Ri)/Ri)

∑ni

k=1 c
−1
ki((

1 − Rj

)
/Rj

)∑nj

k=1 c
−1
kj

, (4.2)

for all i, j ∈ {1, 2, . . . , n}, which gives the rule

Tj = T

((
1 − Rj

)
/Rj

)∑nj

k=1 c
−1
kj

∑n
k=1((1 − Rk)/Rk)

∑nk

i=1 c
−1
ik

. (4.3)

We can now implement a hybrid two-stage design for the determination of the numbers Tj as
well as Mij as follows.

Stage 1. Choose L = [
√
T]: one applies the two-stage scheme given in Section 2.1 for each

subsystem Sj with Tj = L and Lj = [
√
Tj]. Next, obtain the predictor, according to the rule

(4.3),

T̂j =

⎡
⎢⎣T

((
1 − R̂j

)
/R̂j

)∑nj

k=1 ĉ
−1
kj

∑n
k=1

((
1 − R̂k

)
/R̂k

)∑nk

i=1 ĉ
−1
ik

⎤
⎥⎦, j = 1, . . . , n − 1. (4.4)

Stage 2. Define the corrector

Tj = max
{
L, T̂j

}
, j = 1, . . . , n − 1,

Tn = T −
n−1∑

j=1

Tj ,
(4.5)

and take back the two-stage scheme for each subsystem Sj to calculate Mij with the sample
size equals Tj .

Now, the main result of this paper is given by the following theorem.
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Theorem 4.1. Choosing Tj and Mij according to the hybrid two-stage design, one obtains

lim
T →∞

T
(
Var
{
R̂
}
−Q
)
= 0, (4.6)

where Q is defined in Theorem 3.1.

Proof. The relation (2.25) implies that

Var
{
R̂j

}
= Qj + T−1

j

(
1 − Rj

)2
nj−1∑

i=1

nj∑

k=i+1

(
Mijc

−1
kj

−Mkjc
−1
ij

)2

MijMkj
+
(
1 − Rj

)2
F

⎛
⎝

c−21j
M1j

, . . . ,
c−2nj j

Mnjj

⎞
⎠.

(4.7)

As a consequence of the hybrid two-stage design and the strong law of large numbers, T/Tj
and Tj/Mij remain bounded for all i, j as T → ∞. It follows that, as T → ∞,

F

⎛
⎝

c−21j
M1j

, . . . ,
c−2nj j

Mnjj

⎞
⎠ = o

(
T−1
)
,

T−1
j

nj−1∑

i=1

nj∑

k=i+1

(
Mijc

−1
kj −Mkjc

−1
ij

)2

MijMkj
= o
(
T−1
)
,

(4.8)

thanks to (2.27) and (2.28). Thus,

Var
{
R̂j

}
= Qj + o

(
T−1
)
, as T −→ ∞, (4.9)

which implies that

n∏

j=1

⎛
⎜⎝

Var
{
R̂j

}

R2
j

+ 1

⎞
⎟⎠ =

n∏

j=1

(
Qj

R2
j

+ 1 + o
(
T−1
))

=
n∏

j=1

(
Qj

R2
j

+ 1

)
+ o
(
T−1
)
.

(4.10)

As a consequence,

lim
T →∞

T
(
Var
{
R̂
}
−Q
)
= R2 lim

T →∞
T ·
⎡

⎣
n∏

j=1

(
Qj

R2
j

+ 1

)
− 1 −Q

⎤

⎦. (4.11)
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R11

R21

T1 = M11 +M21

R12

R22

T2 = M12 +M22

Figure 1: A simple parallel-series system of two subsystems with two components each one.

Now, expanding the product within the limit and applying identity (2.14), after having
replaced Qj by its expression (2.15), one obtains

n∏

j=1

(
Qj

R2
j

+ 1

)
− 1 = R2

⎡

⎣
n∑

j=1

Qj

R2
j

+ F

(
Q1

R2
1

, . . . ,
Qn

R2
n

)⎤

⎦

= Q + R2(A + B),

(4.12)

where

A = T−1
n−1∑

i=1

n∑

k=i+1

(
Ti((1 − Rk)/Rk)

(∑nk

l=1 c
−1
lk

) − Tk((1 − Ri)/Ri)
(∑nk

l=1 c
−1
li

))2

TiTk
,

B = F

(
Q1

R2
1

, . . . ,
Qn

R2
n

)
.

(4.13)

Once more, the hybrid two-stage allocation scheme and the strong law of large
numbers provide

lim
T →∞

T ·A = 0,

lim
T →∞

T · B = 0,
(4.14)

which achieves the proof.

5. Monte Carlo Simulation

Let us remark first that the lower bound Q is a first-order approximation of the optimal
variance of the reliability estimate under the constraint (2.13)when T is large.

In the first experiment, we will validate the fact that the hybrid scheme provides the
best allocation at system level. As in Figure 1, we consider a simple parallel-series system of
two subsystems, each one with varying reliabilities and a fixed sample size T = 20. For each
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R11 = 0.1

R21 = 0.9

R12 = 0.2

R22 = 0.1

R32 = 0.51

R13 = 0.3

R23 = 0.1

R33 = 0.8

R43 = 0.8

R54 = 0.9

R14 = 0.1

R44 = 0.8

R34 = 0.1

R24 = 0.3

Figure 2: A nontrivial parallel-series system.

situation A, B, C, and D and for each partition sample size {T1, T − T1} where T1 varies from
[
√
T] to T − [

√
T], by step of 1, we have applied the proper two-stage design for each parallel

subsystem and reported in a bar diagramVar(R̂) as a function of T1, see Figure 3. On the other
hand, in Table 1, we have reported the expected value of T1 = M11 +M21 given by the hybrid
two-stage design. As expected, our scheme gives the best allocation for each situation.

The second experiment deals with a nontrivial parallel-series system just as in [11],
where subsystems are composed, respectively, of 2, 3, 4, and 5 components, see Figure 2. The
partition total numbers Tj to test in each subsystem are evaluated systematically by the hybrid
two-stage design while their sum T is incremented from 100 to 10000 by step of 100. Figure 4
shows the rate of the excess of variance T(Var(R̂)−Q) at logarithmic scale as a function of the
sample size T . The asymptotic optimality of the hybrid scheme is validated.

6. Conclusion

The proof of the first-order asymptotic optimality for the proper two-stage design for a
parallel subsystem as well as for the hybrid two-stage design for the full system has been
obtained mainly through the following steps:

(i) an adequate writing of the variance of the reliability estimate;

(ii) a lower bound for this variance, independent of allocation;

(iii) the allocation defined by the hybrid sampling scheme and the strong law of large
numbers.

With a straightforward but tedious adaptation, the above study can be, namely, extended
to deal with complex systems involving a multicriteria optimization problem under a set of
constraints such as risk, system weight, cost, and performance, in a fixed or in a Bayesian
framework.

An interesting feature of the asymptotic optimality in reliability allocation problems is
to consider second-order procedures which, to our knowledge, is not a trivial task and needs
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Figure 3: Bar diagram Var(R̂) as a function of T1 for each case A, B, C, and D ̂ shows the minimum of
Var(R̂).

Table 1: Expected value of T1 = M11 +M21 given by the hybrid two-stage design.

System R11 R21 R12 R22 E(T1)
A 0.1 0.11 0.9 0.99 16
B 0.5 0.55 0.51 0.6 11
C 0.9 0.99 0.1 0.11 4
D 0.2 0.4 0.6 0.3 12

more investigation in the construction of the lower bound of the variance of the reliability
estimate and more understanding of the rate of convergence in the strong law of large
numbers.
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Figure 4: Asymptotic optimality of the hybrid two-stage design: the speed of the excess of variance
T(Var(R̂) −Q) at logarithmic scale as a function of the sample size T .
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