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This paper discusses a simulation-based method for solving discrete-time multiperiod portfolio
choice problems under AR(1) process. The method is applicable even if the distributions of return
processes are unknown. We first generate simulation sample paths of the random returns by using
AR bootstrap. Then, for each sample path and each investment time, we obtain an optimal portfolio
estimator, which optimizes a constant relative risk aversion (CRRA) utility function. When an
investor considers an optimal investment strategy with portfolio rebalancing, it is convenient to
introduce a value function. The most important difference between single-period portfolio choice
problems and multiperiod ones is that the value function is time dependent. Our method takes
care of the time dependency by using bootstrapped sample paths. Numerical studies are provided
to examine the validity of our method. The result shows the necessity to take care of the time
dependency of the value function.

1. Introduction

Portfolio optimization is said to be “myopic” when the investor does not know what will
happen beyond the immediate next period. In this framework, basic results about single
period portfolio optimization (such as mean-variance analysis) are justified for short-term
investments without portfolio rebalancing. Multiperiod problems are much more realistic
than single-period ones. In this framework, we assume that an investor makes a sequence of
decisions to maximize a utility function at each time. The fundamental method to solve this
problem is the dynamic programming. In this method, a value function which expresses the
expected terminal wealth is introduced. The recursive equation with respect to the value
function is so-called Bellman equation. The first order conditions (FOCs) to satisfy the
Bellman equation are key tool in order to solve the dynamic problem.

The original literature on dynamic portfolio choice, pioneered by Merton [1] in con-
tinuous time and by Samuelson [2] and Fama [3] in discrete time, produced many important
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insights into the properties of optimal portfolio policies. Unfortunately, since it is known that
the closed-form solutions are obtained only for a few special cases, the recent literature uses a
variety of numerical and approximate solution methods to incorporate realistic features into
the dynamic portfolio problem such as Ait-Sahalia and Brandet [4] and Brandt et al. [5].

We introduce an procedure to construct the dynamic portfolio weights based on AR
bootstrap.

The simulation algorithm is as follows; first, we generate simulation sample paths
of the vector random returns by using AR bootstrap. Based on the bootstrapping samples,
an optimal portfolio estimator, which is applied from time T − 1 to the end of trading
time T , is obtained under a constant relative risk aversion (CRRA) utility function. Note
that this optimal portfolio corresponds “myopic” (single period) optimal portfolio. Next
we approximate the value function by linear functions of the past observation. This idea is
similar to that of [4, 5]. Then, optimal portfolio weight estimators at each trading time are
obtained based on the value function. Finally, we construct an optimal investment strategy
as a sequence of the optimal portfolio weight estimators.

This paper is organized as follows. We describe the basic idea to solve multiperiod
optimal portfolio weights under a CRRA utility function in Section 2. In Section 3, we
discuss an algorithm to construct the estimator involving the method of AR bootstrap. The
applications of our method are in Section 4.

2. Multiperiod Optimal Portfolio

Suppose the existence of a finite number of risky assets indexed by i, (i = 1, . . . , m). Let Xt =
(X1(t), . . . ,Xm(t))′ denote the random excess returns on m assets from time t to t+ 1 (suppose
that Si(t) is a value of asset i at time t. Then, the return is described as 1+Xi(t) = Si(t)/Si(t−1)).
Suppose too that there exists a risk-free asset with the excess return Xf (Suppose that B(t) is
a value of risk-free asset at time t. Then, the return is described as 1 + Xf = B(t)/B(t − 1)).
Based on the process {Xt}Tt=1 and Xf , we consider an investment strategy from time 0 to time T
where T(∈ N) denotes the end of the investment time. Let wt = (w1(t), . . . , wm(t))′ be vectors
of portfolio weight for the risky assets at the beginning of time t + 1. Here we assume that
the portfolio weights wt can be rebalanced at the beginning of time t + 1 and measurable
(predictable) with respect to the past information Ft = σ(Xt,Xt−1, . . .). Here we make the
following assumption.

Assumption 2.1. There exists an optimal portfolio weight w̃t ∈ R
m satisfied with |w̃′

tXt+1 + (1−
w̃te)Xf | � 1 (we assume that the risky assets exclude ultra high-risk and high-return ones,
for instance, the asset value Si(t + 1) may be larger than 2Si(t)), almost surely for each time
t = 0, 1, . . . , T − 1 where e = (1, . . . , 1)′.

Then the return of the portfolio from time t to t+ 1 is written as 1+Xf +w′
t(Xt+1 −Xfe)

(assuming that St := (S1(t), . . . , Sm(t))′ = B(t)e, the portfolio return is written as (w′
tSt+1 +

(1 −wte)B(t + 1))/(w′
tSt + (1 −wte)B(t)) = 1 +Xf +w′

t(Xt+1 −Xfe)) and the return from time
0 to time T (called terminal wealth) is written as

WT :=
T−1
∏

t=0

(

1 +Xf +w′
t

(

Xt+1 −Xfe
))

. (2.1)
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Suppose that a utility function U : x �→ U(x) is differentiable, concave, and strictly
increasing for each x ∈ R. Consider an investor’s problem

max
{wt}T−1

t=0

E[U(WT )]. (2.2)

Following a formulation by the dynamic programming (e.g., Bellman [6]), it is
convenient to express the expected terminal wealth in terms of a value function Vt:

Vt ≡ max
{ws}T−1

s=t

E[U(WT ) | Ft]

= max
wt

E

[

max
{ws}T−1

s=t

E[U(WT ) | Ft+1] | Ft

]

= max
wt

E[Vt+1 | Ft],

(2.3)

subject to the terminal condition VT = U(WT). The recursive equation (2.3) is the so-called
Bellman equation and is the basis for any recursive solution of the dynamic portfolio choice
problem. The first-order conditions (FOCs) (here (∂/∂wt )E[Vt+1|Ft] = E[(∂/∂wt)Vt+1|Ft].is
assumed). in order to obtain an optimal solution at each time t are

∂Vt

∂wt
= E

[

∂1U(WT )
(

Xt+1 −Xfe
) | Ft

]

= 0, (2.4)

where ∂1U(x0) = (∂/∂x)U(x)|x=x0 . These FOCs make up a system of nonlinear equations
involving integrals that can in general be solved for wt only numerically.

According to the literature (e.g., [5]), we can simplify this problem in case of a constant
relative risk aversion (CRRA) utility function, that is,

U(W) =
W1−γ

1 − γ
, γ /= 1, (2.5)
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where γ denotes the coefficient of relative risk aversion. In this case, the Bellman equation
simplifies to

Vt = max
wt

E

[

max
{ws}T−1

s=t+1

E

[

1
1 − γ

(WT )1−γ | Ft+1

]

| Ft

]

= max
wt

E

⎡

⎣ max
{ws}T−1

s=t+1

E

⎡

⎣

1
1 − γ

(

T−1
∏

s=0

(1 +Xf +w′
s

(

Xs+1 −Xfe
)

)1−γ
| Ft+1

⎤

⎦ | Ft

⎤

⎦

= max
wt

E

⎡

⎣

1
1 − γ

(

t
∏

s=0

(

1 +Xf +w′
s

(

Xs+1 −Xfe
))

)1−γ

× max
{ws}T−1

s=t+1

E

⎡

⎣

(

T−1
∏

s=t+1

(

1 +Xf +w′
s

(

Xs+1 −Xfe
))

)1−γ
| Ft+1

⎤

⎦ | Ft

⎤

⎦

= max
wt

E

[

1
1 − γ

(Wt+1)1−γ max
{ws}T−1

s=t+1

E

[

(

WT
t+1

)1−γ | Ft+1

]

| Ft

]

= max
wt

E[U(Wt+1)Ψt+1 | Ft],

(2.6)

where WT
t+1 =

∏T−1
s=t+1(1 +Xf +w′

s(Xs+1 −Xfe)) and Ψt+1 = max{ws}T−1
s=t+1

E[(WT
t+1)

1−γ |Ft+1].
From this, the value function Vt can be expressed as

Vt = U(Wt)Ψt, (2.7)

and Ψt also satisfies a Bellman equation

Ψt = max
wt

E
[

(

1 +Xf +w′
t

(

Xt+1 −Xfe
))1−γΨt+1 | Ft

]

, (2.8)

subject to the terminal condition ΨT = 1.
The corresponding FOCs (in terms of Ψt) are

E
[

(

1 +Xf +w′
t

(

Xt+1 −Xfe
))−γΨt+1

(

Xt+1 −Xfe
) | Ft

]

= 0. (2.9)

3. Estimation

Suppose that {Xt = (X1(t), . . . , Xm(t))
′; t ∈ Z} is an m-vector AR(1) process defined by

Xt = μ +A(Xt−1 − μ) + εt, (3.1)

where μ = (μ1, . . . , μm)′ is a constant m-dimensional vector, εt = (ε1(t), . . . , εm(t))′ are
independent and identically distributed (i.i.d.) random m-dimensional vectors with E[εt] = 0
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and E[εtε′t] = Γ (Γ is a nonsingular m by m matrix), and A is a nonsingular m by m matrix.
We make the following assumption.

Assumption 3.1. det{Im −Az}/= 0 on {z ∈ C; |z| ≤ 1}.
Given {X−n+1, . . . ,X0,X1, . . . ,Xt}, the least-squares estimator ̂A(t) of A is obtained by

solving

̂Γ(t) ̂A(t) =
t
∑

s=−n+2

̂Y(t)
s−1

(

̂Y(t)
s

)′
, (3.2)

where ̂Y(t)
s = Xs− μ̂(t), ̂Γ(t) =

∑t
s=−n+1

̂Y(t)
s (̂Y(t)

s )′ and μ̂(t) = (1/(n+ t))
∑t

s=−n+1 Xs. Then, the error
ε̂(t)s = (ε̂(t)1 (s), . . . , ε̂(t)m (s))′ is “recovered” by

ε̂(t)s := ̂Y(t)
s − ̂A(t)

̂Y(t)
s−1, s = −n + 2, . . . , t. (3.3)

Let F(t)
n (·) denote the distribution which puts mass 1/(n + t) at ε̂(t)s . Let {ε(b,t)∗s }Ts=t+1 (for b =

1, . . . , B(∈ N)) be i.i.d. bootstrapped observations from F
(t)
n .

Given {ε(b,t)∗s }, define Y(b,t)∗
s and X(b1,b2,t)∗

s by

Y(b,t)∗
s =

(

̂A(t)
)s−t(

Xt − μ̂(t)
)

+
s
∑

k=t+1

(

̂A(t)
)s−k

ε
(b,t)∗
k

,

X(b1,b2,t)∗
s = μ̂(t) + ̂A(t)Y(b1,t)∗

s−1 + ε(b2,t)∗
s ,

(3.4)

for s = t + 1, . . . , T .
Based on the above {X(b1,b2,t)∗

s }b1,b2=1,...,B;s=t+1,...,T for each t = 0, . . . , T − 1, we construct an
estimator of the optimal portfolio weight w̃t as follows.

Step 1. First, we fix the current time t which implies that the observed stretch n + t is fixed.
Then, we can generate {X(b1,b2,t)∗

s } by (3.4).

Step 2. Next, for each b0 = 1, . . . , B, we obtain ŵ(b0,t)
T−1 as the maximizer of

E∗
T−1

[

(

1 +Xf +w′
(

X(b0,b,t)∗
T −Xfe

))1−γ]
=

1
B

B
∑

b=1

(

1 +Xf +w′
(

X(b0,b,t)∗
T −Xfe

))1−γ
, (3.5)

or the solution of

E∗
T−1

[

(

1 +Xf +w′
(

X(b0,b,t)∗
T −Xfe

))1−γ(
X(b0,b,t)∗
T −Xfe

)

]

=
1
B

B
∑

b=1

(

1 +Xf +w′
(

X(b0,b,t)∗
T −Xfe

))1−γ(
X(b0,b,t)∗
T −Xfe

)

= 0,

(3.6)
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with respect to w. Here we introduce a notation “E∗
s[·]” as an estimator of conditional

expectation E[· | Fs], which is defined by E∗
s[h(X

(b0,b,t)∗
s+1 )] = (1/B)

∑B
b=1 h(X

(b0,b,t)∗
s+1 ) for any

function h of X(b0,b,t)∗
s+1 . This ŵ(b0,t)

T−1 corresponds to the estimator of myopic (single period)
optimal portfolio weight.

Step 3. Next, we construct estimators of ΨT−1. Since it is difficult to express the explicit form
of ΨT−1, we parameterize it as linear functions of XT−1 as follows;

Ψ(1)(XT−1,θT−1) :=
[

1,X′
T−1

]

θT−1, (3.7)

Ψ(2)(XT−1,θT−1) :=
[

1,X′
T−1, vech

(

XT−1X′
T−1

)′]
θT−1. (3.8)

Note that the dimensions of θT−1 in Ψ(1) and Ψ(2) are m+1 and m(m+1)/2+m+1, respectively.
The idea of Ψ(1) and Ψ(2) is inspired by the parameterization of the conditional expectations
in [5].

In order to construct the estimators of Ψ(i) (i = 1, 2), we introduce the conditional least
squares estimators of the parameter θ(i)

T−1, that is,

̂θ
(i)
T−1 = arg min

θ
Q

(i)
T−1(θ), (3.9)

where

Q
(i)
T−1(θ) =

1
B

B
∑

b0=1

E∗
T−1

[

(

ΨT−1 −Ψ(i)
)2
]

=
1
B

B
∑

b0=1

[

1
B

B
∑

b=1

{

ΨT−1

(

X(b0,b,t)∗
T

)

−Ψ(i)
T−1

(

X(b0,b0,t)∗
T−1 ,θ

)}2
]

,

ΨT−1

(

X(b0,b,t)∗
T

)

=
(

1 +Xf +
(

ŵ(b0,t)
T−1

)′(
X(b0,b,t)∗
T −Xfe

)

)1−γ
.

(3.10)

Then, by using ̂θ
(i)
T−1, we can compute Ψ(i)(X(b0,b,t)

∗

T−1 , ̂θ
(i)
T−1).

Step 4. Based on the above Ψ(i), we obtain ŵ(b0,t)
T−2 as the maximizer of

E∗
T−2

[

(

1 +Xf +w′
(

X(b0,b,t)∗
T−1 −Xfe

))1−γ
Ψ(i)

(

X(b0,b,t)∗
T−1 , ̂θ

(i)
T−1

)]

=
1
B

B
∑

b=1

(

1 +Xf +w′
(

X(b0,b,t)∗
T−1 −Xfe

))1−γ
Ψ(i)

(

X(b0,b,t)∗
T−1 , ̂θ

(i)
T−1

)

,

(3.11)
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or the solution of

E∗
T−2

[

(

1 +Xf +w′
(

X(b0,b,t)∗
T−1 −Xfe

))1−γ(
X(b0,b,t)∗
T−1 −Xfe

)

Ψ(i)
(

Y(b0,b,t)∗
T−1 , ̂θ

(i)
T−1

)]

=
1
B

B
∑

b=1

(

1 +Xf +w′
(

X(b0,b,t)∗
T−1 −Xfe

))1−γ(
X(b0,b,t)∗
T−1 −Xfe

)

Ψ(i)
(

X(b0,b,t)∗
T−1 , ̂θ

(i)
T−1

)

= 0.
(3.12)

with respect to w. This ŵ(b0,t)
T−2 does not correspond to the estimator of myopic (single period)

optimal portfolio weight due to the effect of Ψ(i).

Step 5. In the same manner of Steps 3–4, we can obtain ̂θ
(i)
s and ŵ(b0,t)

s , recursively, for s =
T − 2, T − 1, . . . , t + 1.

Step 6. Then, we define an optimal portfolio weight estimator at time t as ŵ(t)
t := ŵ(b0,t)

t by
Step 4. Note that ŵ(t)

t is obtained as only one solution because X(b0,b,t)∗
t+1 (= μ̂(t) + ̂A(t)(Xt − μ̂(t)) +

ε(b,t)∗t+1 ) is independent of b0.

Step 7. For each time t = 0, 1, . . . , T − 1, we obtain ŵ(t)
t by Steps 1–6. Finally, we can construct

an optimal investment strategy as {ŵ(t)
t }T−1

t=0 .

4. Examples

In this section we examine our approach numerically. Suppose that there exists a risky asset
with the excess return Xt at time t and a risk-free asset with the excess return Xf = 0.01. We
assume that Xt is defined by the following univariate AR(1) model:

Xt = μ +A
(

Xt−1 − μ
)

+ εt, εt ∼ N(0,Γ). (4.1)

Let wt be a portfolio weight for the risky asset at the beginning of time t + 1. Suppose that
an investor is interested in the investment strategy from time 0 to time T . Then the terminal
wealth is written as (2.1). Applying our method, the estimator ̂WT can be obtained by

̂WT =
T−1
∏

t=0

(

1 +Xf + ŵt

(

Xt+1 −Xf

))

, (4.2)

where ŵt is the estimator of optimal portfolio under the CRRA utility function defined by
(2.5). In what follows, we examine the effect of ̂WT for a variety of n (initial sample size), B
(resampling size), A (AR parameter), Γ (variance of εt), γ (relative risk aversion parameter),
and Ψ (defined by (3.7) or (3.8)).

Example 4.1 (myopic (single period) versus dynamic (multiPeriod)). Let μ = 0.02, A = 0.1,
Γ = 0.05, n = 100, T = 10, and B = 100. We generate the excess return process {Xt}t=−n+1,...,T
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Figure 2: Myopic and dynamic portfolio return.
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by (4.1). First, for each t = 0, . . . , T − 1 we generate {X(b1,b2,t)∗
s }b1,b2=1,...,B;s=t+1,...,T by (3.4) based

on {Xs}ts=−n+1 (as Step 1). We plot {Xt}t=1,...,T and {X(b1,b2,t)∗
s }b=1,...,10; s=1,...,T in Figure 1.

It can be seen that X(b1,b2,t)∗
s show similar behavior with Xt.
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Table 1: Dynamic portfolio returns for γ = 5.

Myopic Dynamic (Ψ(1)) Dynamic (Ψ(2))

T Mean (q0.25, q0.5, q0.75) Mean (q0.25, q0.5, q0.75) Mean (q0.25, q0.5, q0.75)
A: Terminal wealth

1 1.013564 (0.9924, 1.0091,
1.0192) 1.013667 (0.9920, 1.0096,

1.0176) 1.013814 (0.9920, 1.0096,
1.0176)

2 1.024329 (0.9917, 1.0192,
1.0445) 1.024396 (0.9923, 1.0177,

1.0436) 1.024667 (0.9924, 1.0183,
1.0437)

5 1.065896 (1.0021, 1.0504,
1.1125) 1.065988 (1.0000, 1.0509,

1.1115) 1.066355 (0.9999, 1.0505,
1.1106)

10 1.137727 (1.0273, 1.1062,
1.2024) 1.137707 (1.0264, 1.1041,

1.2005) 1.138207 (1.0265, 1.1043,
1.2002)

B: Utility of terminal wealth

1 −0.24158 (−0.257, −0.241,
−0.231) −0.24139 (−0.258, −0.240,

−0.233) −0.24130 (−0.258, −0.240,
−0.233)

2 −0.23609 (−0.258, −0.231,
−0.210) −0.23595 (−0.257, −0.233,

−0.210) −0.23578 (−0.257, −0.232,
−0.210)

5 −0.21761 (−0.247, −0.205,
−0.163) −0.21761 (−0.249, −0.204,

−0.163) −0.21703 (−0.250, −0.205,
−0.164)

10 −0.18349 (−0.224, −0.166,
−0.119) −0.18339 (−0.225, −0.168,

−0.120) −0.18287 (−0.225, −0.168,
−0.120)

Table 2: Dynamic portfolio returns for γ = 10.

Myopic Dynamic (Ψ(1)) Dynamic (Ψ(2))

T Mean (q0.25, q0.5, q0.75) Mean (q0.25, q0.5, q0.75) Mean (q0.25, q0.5, q0.75)
A: Terminal wealth

1 1.011802 (1.0011, 1.0095,
1.0146) 1.011859 (1.0010, 1.0098,

1.0138) 1.011944 (1.0010, 1.0098,
1.0138)

2 1.022249 (1.0059, 1.0196,
1.0323) 1.022286 (1.0065, 1.0190,

1.0319) 1.022439 (1.0065, 1.0192,
1.0319)

5 1.058344 (1.0276, 1.0512,
1.0825) 1.058373 (1.0254, 1.0509,

1.0823) 1.058584 (1.0253, 1.0507,
1.0818)

10 1.120369 (1.0658, 1.1070,
1.1544) 1.120323 (1.0687, 1.1068,

1.1533) 1.120595 (1.0666, 1.1060,
1.1532)

B: Utility of terminal wealth

1 −0.10224 (−0.109, −0.101,
−0.097) −0.10215 (−0.110, −0.101,

−0.098) −0.10210 (−0.110, −0.101,
−0.098)

2 −0.09530 (−0.105, −0.093,
−0.083) −0.09523 (−0.104, −0.093,

−0.083) −0.09515 (−0.104, −0.093,
−0.083)

5 −0.07581 (−0.086, −0.070,
−0.054) −0.07582 (−0.088, −0.071,

−0.054) −0.07557 (−0.088, −0.071,
−0.054)

10 −0.05007 (−0.062, −0.044,
−0.030) −0.05003 (−0.061, −0.044,

−0.030) −0.04986 (−0.062, −0.044,
−0.030)
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Table 3: Dynamic portfolio returns for γ = 20.

Myopic Dynamic (Ψ(1)) Dynamic (Ψ(2))

T Mean (q0.25, q0.5, q0.75) Mean (q0.25, q0.5, q0.75) Mean (q0.25, q0.5, q0.75)
A: Terminal wealth

1 1.010905 (1.0055, 1.0097,
1.0123) 1.010934 (1.0055, 1.0099,

1.0119) 1.010979 (1.0054, 1.0099,
1.0119)

2 1.021181 (1.0131, 1.0198,
1.0262) 1.021200 (1.0133, 1.0195,

1.0260) 1.021281 (1.0133, 1.0196,
1.0260)

5 1.054646 (1.0396, 1.0512,
1.0668) 1.054655 (1.0381, 1.0509,

1.0668) 1.054767 (1.0381, 1.0508,
1.0667)

10 1.112289 (1.0853, 1.1062,
1.1297) 1.112256 (1.0876, 1.1060,

1.1291) 1.112396 (1.0865, 1.1056,
1.1290)

B: Utility of terminal wealth

1 −0.04386 (−0.047, −0.043,
−0.041) −0.04382 (−0.047, −0.043,

−0.042) −0.04379 (−0.047, −0.043,
−0.042)

2 −0.03705 (−0.041, −0.036,
−0.032) −0.03702 (−0.040, −0.036,

−0.032) −0.03699 (−0.040, −0.036,
−0.032)

5 −0.02189 (−0.025, −0.020,
−0.015) −0.02189 (−0.025, −0.020,

−0.015) −0.02181 (−0.025, −0.020,
−0.015)

10 −0.00881 (−0.011, −0.007,
−0.005) −0.00880 (−0.010, −0.007,

−0.005) −0.00876 (−0.010, −0.007,
−0.005)

Next, we construct the optimal portfolio estimator ŵ(t)
t along the lines with Steps 2–7.

Here we apply the approximated solution for (3.5) or (3.11) following [5], that is,

ŵ
(b0,t)
s

=− 1

2E∗
s

[

D
(b0,b,t)∗
3,s+1

]

{

E∗
s

[

D
(b0,b,t)∗
2,s+1

]

+3
(

̂ŵ
(b0,t)
s

)2

E∗
s

[

D
(b0,b,t)∗
4,s+1

]

+4
(

̂ŵ
(b0,t)
s

)3

E∗
s

[

D
(b0,b,t)∗
5,s+1

]

}

,

(4.3)

where

D
(b0,b,t)∗
2,s+1 =

(

1 +Xf

)−γ(
X

(b1,b2,t)∗
s+1 −Xf

)

Ψ(i)
(

X
(b1,b2,t)∗
s+1 , ̂θ

(i)
s+1

)

,

D
(b0,b,t)∗
3,s+1 =

−γ
2
(

1 +Xf

)−1−γ(
X

(b1,b2,t)∗
s+1 −Xf

)2
Ψ(i)

(

X
(b1,b2,t)∗
s+1 , ̂θ

(i)
s+1

)

,

D
(b0,b,t)∗
4,s+1 =

(−γ)(−1 − γ
)

6
(

1 +Xf

)−2−γ(
X

(b1,b2,t)∗
s+1 −Xf

)3
Ψ(i)

(

X
(b1,b2,t)∗
s+1 , ̂θ

(i)
s+1

)

,

D
(b0,b,t)∗
5,s+1 =

(−γ)(−1 − γ
)(−2 − γ

)

24
(

1 +Xf

)−3−γ(
X

(b1,b2,t)∗
s+1 −Xf

)4
Ψ(i)

(

X
(b1,b2,t)∗
s+1 , ̂θ

(i)
s+1

)

,

̂ŵ
(b0,t)
s = −

E∗
s

[

D
(b0,b,t)∗
2,s+1

]

2E∗
s

[

D
(b0,b,t)∗
3,s+1

] .

(4.4)
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This approximate solution describes a fourth-order expansion of the value function around
1 +Xf ( ̂ŵs describes a second-order expansion). According to [5], a second-order expansion
of the value function is sometimes not sufficiently accurate, but a fourth-order expansion
includes adjustments for the skewness and kurtosis of returns and their effects on the utility
of the investor.

Figure 2 shows time series plots for single portfolio return (=1+Xf+ŵt(Xt+1−Xf), Line
1), cumulative portfolio return (=̂WT , Line 2), and value of utility function (=1/(1 − g)̂W1−g

T ,
Line 3) for γ = 5, 10 and 20. The solid line shows the investment only for risk-free asset (i.e.,
ŵt = 0), the dotted line with � shows myopic (single period) portfolio (i.e., Ψ(i) = 1) and the
dotted line with + shows dynamic (multiperiod) portfolio by using Ψ(1).

Regarding the single-portfolio return, we can not argue the best investment strategy
among the risk-free, the myopic portfolio and the dynamic portfolio investment. However,
to look at the cumulative portfolio return or the value of utility function, it is obviously
that the dynamic portfolio investment is the best one. The difference between the myopic
and dynamic portfolio is due to Ψ and is called “hedging demands” because by deviating
from the single period portfolio choice, the investor tries to hedge against changes in the
investment opportunities. In view of the effect of γ , we can see that the magnitude of the
hedging demands decreases with increased amount of γ .

Next, we repeat the above algorithm 100 times using the different generated data.
Tables 1, 2, and 3 show means, 25 percentiles (q0.25), medians (q0.5), and 75 percentiles (q0.75)
of terminal wealth (̂WT ) and the values of utility function (1/(1 − g)̂W1−g

T ) for T = 1, 2, 5, 10,
and γ = 5, 10, 20.

We can see that for all T , the means of terminal wealth ̂WT are larger than that of risk-
free investment (i.e., (1+Xf)

T ). In view of the distribution of ̂WT , the means are larger than the
medians (q0.5) which shows the asymmetry of the distribution. Among the myopic, dynamic
portfolio using Ψ(1) and Ψ(2), dynamic portfolio using Ψ(2) is the best investment strategy in
view of the means of ̂WT or 1/(1 − g)̂W1−g

T . There are some cases that the means of ̂WT for
dynamic portfolio using Ψ(1) are smaller than those for myopic portfolio. This phenomenon
would show the inaccuracy of the approximation of Ψ. In addition, in view of the dispersion
of ̂WT , the dynamic portfolio’s one is relatively smaller than the myopic portfolio’s one.

Example 4.2 ((sample size (n) and resampling size (B)). In this example, we examine effect of
the initial sample size (n) and the resample size (B). Let μ = 0.02, A = 0.1, Γ = 0.05, T = 10, and
γ = 5. In the same manner as Example 4.1, we consider the effect of ̂WT for n = 10, 100, 1000
and B = 5, 20, 100. Figure 3 shows the box plots of the terminal wealth ̂WT for each
n and B.

It can be seen that the medians tend to increase with increased amount of n and B.
In addition, the wideness of the box plots decreases with increased amount of n and B. This
phenomenon shows the accuracy of the approximation of X∗

t .

Example 4.3 (AR Parameter (A) and variance of ∈t (Γ)). In this example, we examine effect of
the AR parameter (A) and the variance of εt (Γ). Let μ = 0.02, n = 100, B = 100, T = 10, and
γ = 5. In the same manner as Example 4.1, we consider the effect of ̂WT for A = 0.01, 0.1, 0.2,
and Γ = 0.01, 0.05, 0.10. Figure 4 shows the box plots of the terminal wealth ̂WT for each A
and Γ.

Obviously, the medians increase with decreased amount of Γ which shows that the
investment result is preferred when the amount of εt is small. On the other hand, the wideness
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of the box plots increases with increased amount of A which shows that the difference of the
investment result is wide when the amount of A is large.
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