
Hindawi Publishing Corporation
Advances in Decision Sciences
Volume 2012, Article ID 704693, 22 pages
doi:10.1155/2012/704693

Research Article
Estimation for Non-Gaussian Locally Stationary
Processes with Empirical Likelihood Method

Hiroaki Ogata

Waseda University, Tokyo 169-8050, Japan

Correspondence should be addressed to Hiroaki Ogata, hiroakiogata@aoni.waseda.jp

Received 28 January 2012; Revised 28 March 2012; Accepted 30 March 2012

Academic Editor: David Veredas

Copyright q 2012 Hiroaki Ogata. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

An application of the empirical likelihood method to non-Gaussian locally stationary processes
is presented. Based on the central limit theorem for locally stationary processes, we give the
asymptotic distributions of the maximum empirical likelihood estimator and the empirical
likelihood ratio statistics, respectively. It is shown that the empirical likelihood method enables
us to make inferences on various important indices in a time series analysis. Furthermore, we give
a numerical study and investigate a finite sample property.

1. Introduction

The empirical likelihood is one of the nonparametric methods for a statistical inference
proposed by Owen [1, 2]. It is used for constructing confidence regions for a mean, for
a class of M-estimates that includes quantile, and for differentiable statistical functionals.
The empirical likelihood method has been applied to various problems because of its
good properties: generality of the nonparametric method and effectiveness of the likelihood
method. For example, we can name applications to the general estimating equations, [3]
the regression models [4–6], the biased sample models [7], and so forth. Applications are
also extended to dependent observations. Kitamura [8] developed the blockwise empirical
likelihood for estimating equations and for smooth functions of means. Monti [9] applied
the empirical likelihood method to linear processes, essentially under the circular Gaussian
assumption, using a spectral method. For short- and long-range dependence, Nordman and
Lahiri [10] gave the asymptotic properties of the frequency domain empirical likelihood. As
we named above, some applications to time series analysis can be found but it seems that
they were mainly for stationary processes. Although stationarity is the most fundamental
assumption when we are engaged in a time series analysis, it is also known that real time
series data are generally nonstationary (e.g., economics analysis). Therefore we need to
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use nonstationary models in order to describe the real world. Recently Dahlhaus [11–13]
proposed an important class of nonstationary processes, called locally stationary processes.
They have so-called time-varying spectral densities whose spectral structures smoothly
change in time.

In this paper we extend the empirical likelihood method to non-Gaussian locally
stationary processes with time-varying spectra. First, We derive the asymptotic normality
of the maximum empirical likelihood estimator based on the central limit theorem for locally
stationary processes, which is stated in Dahlhaus [13, Theorem A.2]. Next, we show that the
empirical likelihood ratio converges to a sum of Gamma distribution. Especially, when we
consider a stationary case, that is, the time-varying spectral density is independent of a time
parameter, the asymptotic distribution becomes the chi-square.

As an application of this method, we can estimate an extended autocorrelation for
locally stationary processes. Besides we can consider the Whittle estimation which is stated
in Dahlhaus [13].

This paper is organized as follows. Section 2 briefly reviews the stationary processes
and explains about the locally stationary processes. In Section 3, we propose the empirical
likelihood method for non-Gaussian locally stationary processes and give the asymptotic
properties. In Section 4 we give numerical studies on confidence intervals of the autocor-
relation for locally stationary processes. Proofs of theorems are given in Section 5.

2. Locally Stationary Processes

The stationary process is a fundamental setting in a time series analysis. If the process {Xt}t∈Z

is stationary with mean zero, it is known to have the spectral representation:

Xt =
∫π

−π
exp(iλt)A(λ)dξ(λ), (2.1)

where A(λ) is a 2π-periodic complex-valued function with A(−λ) = A(λ), called transfer
function, and ξ(λ) is a stochastic process on [−π,π] with ξ(−λ) = ξ(λ) and

E[dξ(λ)] = 0, Cov(dξ(λ1), dξ(λ2)) = η(λ1 − λ2), (2.2)

where η(λ) =
∑∞

j=−∞ δ(λ + 2πj) is the 2π-periodic extension of the Dirac delta function. If
the process is stationary, the covariance between Xt and Xt+k is independent of time t and a
function of only the time lag k. We denote it by γ(k) = Cov(Xt,Xt+k). The Fourier transform
of the autocovariance function

g(λ) =
1
2π

∞∑
k=−∞

γ(k) exp(−ikλ) (2.3)

is called spectral density function. In the expression of (2.1), the spectral density function
is written by g(λ) = |A(λ)|2. It is estimated by the periodogram, defined by IT (λ) =
(2π)−1|∑T

t=1 Xt exp(−iλt)|2. If one wants to change the weight of each data, we can insert
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the function h(x) defined on [0, 1] into the periodogram: IT (λ) = (2π
∑T

t=1 h(t/
T)2)−1|∑T

t=1 h(t/T)Xt exp(−iλt)|2. The function h(x) is called data taper. Now, we give a
simple example of the stationary process below.

Example 2.1. Consider the following AR(p) process:

p∑
j = 0

ajXt−j = εt, (2.4)

where εt are independent random variables with mean zero and variance 1. In the form of
(2.1), this is obtained by letting

A(λ) =
1√
2π

⎛
⎝ p∑

j = 0

aj exp
(−iλj)

⎞
⎠

−1

. (2.5)

As an extension of the stationary process, Dahlhaus [13] introduced the concept of
locally stationary. An example of the locally stationary processes is the following time-vary-
ing AR(p) process:

p∑
j = 0

aj

(
t

T

)
Xt−j,T = εt, (2.6)

where aj(u) is a function defined on [0, 1] and εt are independent random variables with
mean zero and variance 1. If all aj(u) are constant, the process (2.6) reduces to stationary.
To define a general class of the locally stationary processes, we can naturally consider the
time-varying spectral representation

Xt,T =
∫π

−π
exp(iλt)A

(
t

T
, λ

)
dξ(λ). (2.7)

However, it turns out that (2.6) has not exactly but only approximately a solution of the
form of (2.7). Therefore, we only require that (2.7) holds approximately. The following is the
definition of the locally stationary processes given by Dahlhaus [13].

Definition 2.2. A sequence of stochastic processesXt,T (t = 1, . . . , T) is called locally stationary
with mean zero and transfer function A◦

t,T , if there exists a representation

Xt,T =
∫π

−π
exp(iλt)A◦

t,T (λ)dξ(λ), (2.8)

where the following holds.
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(i) ξ(λ) is a stochastic process on [−π,π] with ξ(−λ) = ξ(λ) and

cum{dξ(λ1), . . . , dξ(λk)} = η

⎛
⎝ k∑

j=1

λj

⎞
⎠qk(λ1, . . . , λk−1)dλ1 · · ·dλk, (2.9)

where cum{· · · } denotes the cumulant of kth order, q1 = 0, q2(λ) = 1,
|qk(λ1, . . . , λk−1)| ≤ constk for all k and η(λ) =

∑∞
j=−∞ δ(λ + 2πj) is the 2π-periodic

extension of the Dirac delta function.

(ii) There exists a constant K and 2π-periodic function A : [0, 1] × R → C with
A(u,−λ) = A(u, λ) which satisfies

sup
t,λ

∣∣∣∣A◦
t,T (λ) −A

(
t

T
, λ

)∣∣∣∣ ≤ KT−1 (2.10)

for all T ; A(u, λ) is assumed to be continuous in u.

The time-varying spectral density is defined by g(u, λ) := |A(u, λ)|2. As an estimator
of g(u, λ), we define the local periodogram IN(u, λ) (for even N) as follows:

dN(u, λ) =
N∑
s=1

h
( s

N

)
X[uT]−N/2+s,T exp(−iλs),

Hk,N =
N∑
s=1

h
( s

N

)k
,

IN(u, λ) =
1

2πH2,N
|dN(u, λ)|2.

(2.11)

Here, h : R → R is a data taper with h(x) = 0 for x /∈ [0, 1]. Thus, IN(u, λ) is nothing but
the periodogram over a segment of length N with midpoint [uT]. The shift from segment to
segment is denoted by S, which means we calculate IN withmidpoints tj = S(j−1)+N/2 (j =
1, . . . ,M), where T = S(M − 1) + N, or, written in rescaled time, at time points uj := tj/T .
Hereafter we set S = 1 rather than S = N. That means the segments overlap each other.

3. Empirical Likelihood Approach for Non-Gaussian Locally
Stationary Processes

Consider an inference on a parameter θ ∈ Θ ⊂ Rq based on an observed stretchX1,T , . . . , XT,T .
We suppose that information about θ exists through a system of general estimating equations.
For short- or long-memory processes, Nordman and Lahiri [10] supposed that θ0, the true
value of θ, is specified from the following spectral moment condition:

∫π

−π
φ(λ,θ0)g(λ)dλ = 0, (3.1)
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where φ(λ,θ) is an appropriate function depending on θ. Following this manner, we natu-
rally suppose that θ0 satisfies the following time-varying spectral moment condition:

∫1

0

∫π

−π
φ(u, λ,θ0)g(u, λ)dλdu = 0 (3.2)

in a locally stationary setting. Here φ : [0, 1] × [−π,π] ×Rq → Cq is a function depending on
θ and satisfies Assumption 3.4(i). We give brief examples of φ and corresponding θ0.

Example 3.1 (autocorrelation). Let us set

φ(u, λ, θ) = θ − exp(iλk). (3.3)

Then (3.2) leads to

θ0 =

∫1
0

∫π
−π exp(iλk)g(u, λ)dλdu∫1

0

∫π
−π g(u, λ)dλdu

. (3.4)

When we consider the stationary case, that is, g(u, λ) is independent of the time parameter u,
(3.4) becomes

θ0 =

∫π
−π exp(iλk)g(λ)dλ∫π

−π g(λ)dλ
=

γ(k)
γ(0)

= ρ(k), (3.5)

which corresponds to the autocorrelation with lag k. So, (3.4) can be interpreted as a kind of
autocorrelation with lag k for the locally stationary processes.

Example 3.2 (Whittle estimation). Consider the problem of fitting a parametric spectral model
to the true spectral density by minimizing the disparity between them. For the stationary
process, this problem is considered in Hosoya and Taniguchi [14] and Kakizawa [15]. For the
locally stationary process, the disparity between the parametric model gθ(u, λ) and the true
spectral density g(u, λ) is measured by

L(θ) =
1
4π

∫1

0

∫π

−π

{
log gθ(u, λ) +

g(u, λ)
gθ(u, λ)

}
dλdu (3.6)

and we seek the minimizer

θ0 = argmin
θ∈Θ

L(θ). (3.7)

Under appropriate conditions, θ0 in (3.7) is obtained by solving the equation ∂L(θ)/∂θ = 0.
Suppose that the fitting model is described as gθ(u, λ) = σ2(u)fθ(u, λ), which means θ is free
from innovation part σ2(u). Then, by Kolmogorov’s formula (Dahlhaus [11, Theorem 3.2])
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we can see that
∫π
−π log gθ(u, λ)dλ is independent of θ. So the differential condition on θ0

becomes

∫1

0

∫π

−π

∂

∂θ
gθ(u, λ)

−1
∣∣∣∣
θ=θ0

g(u, λ)dλdu = 0. (3.8)

This is the case when we set

φ(u, λ,θ) =
∂

∂θ
gθ(u, λ)

−1. (3.9)

Now, we set

mj(θ) =
∫π

−π
φ
(
uj, λ,θ

)
IN

(
uj , λ

)
dλ

(
j = 1, . . . ,M

)
(3.10)

as an estimating function and use the following empirical likelihood ratio function R(θ)
defined by

R(θ) = max
w

⎧⎨
⎩

M∏
j=1

Mwj |
M∑
j=1

wjmj(θ) = 0, wj ≥ 0,
M∑
j=1

wj = 1

⎫⎬
⎭. (3.11)

Denote the maximum empirical likelihood estimator by θ̃, which maximizes the empirical
likelihood ratio function R(θ).

Remark 3.3. We can also use the following alternative estimating function:

m(T)
j (θ) =

2π
T

T∑
t=1

φ
(
uj,Δt,θ

)
IN

(
uj,Δt

) (
Δt =

2πt
T

)
(3.12)

instead ofmj(θ) in (3.10). The asymptotic equivalence ofmj(θ) andm(T)
j (θ) can be proven if

E
∣∣∣m(T)

j (θ) −mj(θ)
∣∣∣ = o(1) (3.13)

is satisfied for any j, and this is shown by straightforward calculation.

To show the asymptotic properties of θ̃ and R(θ0), we impose the following assump-
tion.

Assumption 3.4. (i) The functionsA(u, λ) and φ(u, λ,θ) are 2π-periodic in λ, and the periodic
extensions are differentiable in u and λ with uniformly bounded derivative (∂/∂u)(∂/∂λ)A
(φ, resp.).

(ii) The parameters N and T fulfill the relations T1/4 
 N 
 T1/2/ log T .
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(iii) The data taper h : R → R with h(x) = 0 for all x /∈ (0, 1) is continuous on R and
twice differentiable at all x /∈ p where p is a finite set and supx/∈p|h′′(x)| < ∞.

(iv) For k = 1, . . . , 8,

qk(λ1, . . . , λk−1) = ck (constant). (3.14)

Remark 3.5. Assumption 3.4(ii) seems to be restrictive. However, this is required to use the
central limit theorem for locally stationary processes (cf. Assumption A.1 and Theorem A.2
of Dahlhaus [13]) (Most of the restrictions on N result from the

√
T -unbiasedness in the

central limit theorem). See also A.3. Remarks of Dahlhaus [13] for the detail.

Now we give the following theorem.

Theorem 3.6. Suppose that Assumption 3.4 holds and X1,T , . . . , XT,T is realization of the locally
stationary process which has the representation (2.8). Then,

√
M

(
θ̃ − θ0

)
d→ N(0,Σ) (3.15)

as T → ∞, where

Σ = 4π
(
Σ′
3Σ

−1
2 Σ3

)−1
Σ′
3Σ

−1
2 Σ1Σ−1

2 Σ3

(
Σ′
3Σ

−1
2 Σ3

)−1
. (3.16)

Here Σ1 and Σ2 are the q by q matrices whose (i, j) elements are

(Σ1)ij =
1
2π

∫1

0

[∫π

−π
φi(u, λ,θ0)

{
φj(u, λ,θ0) + φj(u,−λ,θ0)

}
g(u, λ)2dλ

+c4

∫π

−π
φi(u, λ,θ0)g(u, λ)dλ

∫π

−π
φj

(
u, μ,θ0

)
g
(
u, μ

)
dμ

]
du,

(3.17)

(Σ2)ij =
1
2π

∫1

0

[∫π

−π
φi(u, λ,θ0)

{
φj(u, λ,θ0) + φj(u,−λ,θ0)

}
g(u, λ)2dλ

+
∫π

−π
φi(u, λ,θ0)g(u, λ)dλ

∫π

−π
φj

(
u, μ,θ0

)
g
(
u, μ

)
dμ

]
du,

(3.18)

respectively, and Σ3 is the q by q matrix which is defined as

Σ3 =
∫1

0

∫π

−π

∂φ(u, λ,θ)
∂θ′ g(u, λ)dλdu. (3.19)

In addition, we give the following theorem on the asymptotic property of the empirical
likelihood ratio R(θ0).
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Theorem 3.7. Suppose that Assumption 3.4 holds and X1,T , . . . , XT,T is realization of a locally
stationary process which has the representation (2.8). Then,

− 1
π

logR(θ0)
d−→ (FN)′(FN) (3.20)

as T → ∞, where N is a q-dimensional normal random vector with zero mean vector and covariance
matrix Iq (identity matrix) and F = Σ−1/2

2 Σ1/2
1 . Here Σ1 and Σ2 are same matrices in Theorem 3.6.

Remark 3.8. Denote the eigenvalues of F′F by a1, . . . , aq, then we can write

(FN)′(FN) =
q∑
i=1

Zi, (3.21)

where Zi is distributed as Gamma(1/2, 1/(2ai)), independently.

Remark 3.9. If the process is stationary, that is, the time-varying spectral density is
independent of the time parameter u, we can easily see that Σ1 = Σ2 and the asymptotic
distribution becomes the chi-square with degree of freedom q.

Remark 3.10. In our setting, the number of the estimating equations and that of the parameters
are equal. In that case, the empirical likelihood ratio at the maximum empirical likelihood
estimator, R(θ̃), becomes one (cf. [3, page 305]). That means the test statistic in Theorem 3.7
becomes zero when we evaluate it at the maximum empirical likelihood estimator.

4. Numerical Example

In this section, we present simulation results of the estimation of the autocorrelation in locally
stationary processes which is stated in Example 3.1. Consider the following time-varying
AR(1) process:

Xt,T − a

(
t

T

)
Xt−1,T = εt for t ∈ Z, (4.1)

where εt
i.i.d.∼ Gamma(3/π, (3/π)1/2) − (3/π)1/2 and a(u) = (u − b)2, b = 0.1, 0.5, 0.9. The

observations X1,T , . . . , XT,T are generated from the process (4.1), and we make the confidence
intervals of the autocorrelation with lag k = 1, which is expressed as

θ0 =

∫1
0

∫π
−π eiλg(u, λ)dλdu∫1

0

∫π
−π g(u, λ)dλdu

, (4.2)

based on the result of Theorem 3.7. The several combinations of the sample size T and the
window length N are chosen: (T,N) = (100, 10), (500, 10), (500, 50), (1000, 10), (1000, 100),
and the data taper is set as h(x) = (1/2){1 − cos(2πx)}. Then we calculate the values
of the test statistic −π−1 logR(θ) at numerous points θ and obtain confidence intervals by
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Table 1: 90% confidence intervals of the autocorrelation with lag k = 1.

(T,N) Lower
bound

Upper
bound

Interval
length

Successful
rate

b = 0.1, θ0 = 0.308
(100, 10) 0.057 0.439 0.382 0.854
(500, 10) 0.172 0.382 0.210 0.866
(500, 50) 0.203 0.332 0.129 0.578
(1000, 10) 0.203 0.356 0.154 0.826
(1000, 100) 0.225 0.308 0.084 0.444

b = 0.5, θ0 = 0.085
(100, 10) −0.087 0.225 0.312 0.890
(500, 10) 0.001 0.169 0.168 0.910
(500, 50) 0.028 0.104 0.076 0.515
(1000, 10) 0.023 0.139 0.116 0.922
(1000, 100) 0.047 0.087 0.040 0.384

b = 0.9, θ0 = 0.308
(100, 10) 0.060 0.449 0.388 0.841
(500, 10) 0.176 0.393 0.216 0.871
(500, 50) 0.201 0.332 0.131 0.586
(1000, 10) 0.203 0.359 0.156 0.827
(1000, 100) 0.226 0.310 0.083 0.467

collecting the points θ which satisfy −π−1 logR(θ) < zα where zα, is α-percentile of the
asymptotic distribution in Theorem 3.7. We admit that Assumption 3.4. (ii) is hard to hold
in a finite sample experiment, but this Monte Carlo simulation is purely illustrative and just
for investigating how the sample size and the window length affect the results of confidence
intervals.

We set a confidence level as α = 0.90 and carry out the above procedure 1000 times for
each case. Table 1 shows the averages of lower and upper bounds, lengths of the intervals,
and the successful rates. Looking at the results, we find out that the larger sample size gives
the shorter length of the interval, as expected. Furthermore, the results indicate that the larger
window length leads to the worse successful rate. We can predict that the best rate N/T lies
around 0.02 because the combination (T,N) = (500, 10) seems to give the best result among
all.

5. Proofs

5.1. Some Lemmas

In this subsection we give the three lemmas to prove Theorems 3.6 and 3.7. First of all, we
introduce the following function LN : R → R, which is defined by the 2π-periodic extension
of

LN(α) :=

⎧⎪⎪⎨
⎪⎪⎩
N, |α| ≤ 1

N
1
|α| ,

1
N

≤ |α| ≤ π.
(5.1)

The properties of the function LN are described in Lemma A.4 of Dahlhaus [13].
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Lemma 5.1. Suppose (3.2) and Assumption 3.4 hold. Then for 1 ≤ k ≤ 8,

cum{dN(u1, λ1), . . . , dN(uk, λk)}

= (2π)k−1ck

⎧⎨
⎩

k∏
j=1

A
(
uj, λj

)
⎫⎬
⎭ exp

⎧⎨
⎩−i

k∑
j=1

λj
(
[ukT] −

[
ujT

])
⎫⎬
⎭

×
N∑
s=1

⎧⎨
⎩

k∏
j=1

h

(
s + [ukT] −

[
ujT

]
N

)⎫⎬
⎭ exp

⎧⎨
⎩−i

⎛
⎝ k∑

j=1

λj

⎞
⎠s

⎫⎬
⎭

+O

(
N2

T

)
+O

((
logN

)k−1) = O

⎛
⎝LN

⎛
⎝ k∑

j=1

λj

⎞
⎠

⎞
⎠ +O

(
N2

T

)
+O

((
logN

)k−1)
.

(5.2)

Proof. Let Π = (−π,π] and let ω = (ω1, . . . , ωk). Since

cum(Xt1,T , . . . , Xtk,T ) = ck

∫
Πk

exp

⎛
⎝i

k∑
j=1

ωjtj

⎞
⎠

⎛
⎝ k∏

j=1

A◦
tj ,T

(
ωj

)
⎞
⎠η

⎛
⎝ k∑

j=1

ωj

⎞
⎠dω, (5.3)

the kth cumulant of dN is equal to

ck

∫
Πk

exp

⎧⎨
⎩i

k∑
j=1

ωj

([
ujT

] − N

2

)⎫⎬
⎭η

⎛
⎝ k∑

j=1

ωj

⎞
⎠

×
k∏
j=1

N∑
s=1

h
( s

N

)
A◦

[ujT]−N/2+s,T

(
ωj

)
exp

{−i(λj −ωj

)
s
}
dω.

(5.4)

As in the proof of Theorem 2.2 of Dahlhaus [12] we replace A◦
[u1T]−N/2+s1,T

(ω1) by A(u1 +
(−N/2 + s1)/T, λ1) and we obtain

∣∣∣∣∣
N∑
s=1

h
( s

N

){
A◦

[u1T]−N/2+s,T(ω1) −A

(
u1 +

−N/2 + s

T
, λ1

)}
exp{−i(λ1 −ω1)s}

∣∣∣∣∣ ≤ K (5.5)

with some constant K while

∣∣∣∣∣
N∑
s=1

h
( s

N

)
A◦

[ujT]−N/2+s,T

(
ωj

)
exp

{−i(λj −ωj

)
s
}∣∣∣∣∣ ≤ KLN

(
λj −ωj

)
(5.6)



Advances in Decision Sciences 11

for j = 2, . . . , k. The replacement error is smaller than

K

∫
Πk

k∏
j=2

LN

(
λj −ωj

)
dω ≤ K

(
logN

)k−1
. (5.7)

In the same way we replace A◦
[ujT]−N/2+sj ,T

(ωj) by A(uj + (−N/2 + sj)/T, λj) for j = 2, . . . , k,
and then we obtain

ck
N∑

s1,...,sk=1

⎧⎨
⎩

k∏
j=1

h

(
sj

N

)
A

(
uj +

−N/2 + sj

T
, λj

)⎫⎬
⎭ exp

⎛
⎝−i

k∑
j=1

λjsj

⎞
⎠

×
∫
Πk

η

⎛
⎝ k∑

j=1

ωj

⎞
⎠ exp

⎧⎨
⎩i

k∑
j=1

ωj

([
ujT

] − N

2
+ sj

)⎫⎬
⎭dω +O

((
logN

)k−1)
.

(5.8)

The integral part is equal to

k−1∏
j=1

∫
Π
exp

{
iωj

([
ujT

] − [ukT] + sj − sk
)}

dωj. (5.9)

So we get

(2π)k−1ck
N∑
s=1

⎧⎨
⎩

k∏
j=1

h

(
s + [ukT] −

[
ujT

]
N

)
A

(
uj +

−N/2 + s + [ukT] −
[
ujT

]
T

, λj

)⎫⎬
⎭

× exp

⎧⎨
⎩−i

k∑
j=1

λj
(
s + [ukT] −

[
ujT

])
⎫⎬
⎭ +O

((
logN

)k−1)
.

(5.10)

Since h(x) = 0 for x /∈ (0, 1), we only have to consider the range of s which satisfies 1 ≤
s + [ukT] − [ujT] ≤ N − 1. Therefore we can regard (−N/2 + s + [ukT] − [ujT])/T asO(N/T),
and Taylor expansion of A around uj gives the first equation of the desired result. Moreover,
as in the same manner of the proof of Lemma A.5 of Dahlhaus [13] we can see that

N∑
s=1

⎧⎨
⎩

k∏
j=1

h

(
s + [ukT] −

[
ujT

]
N

)⎫⎬
⎭ exp

⎧⎨
⎩−i

⎛
⎝ k∑

j=1

λj

⎞
⎠s

⎫⎬
⎭ = O

⎛
⎝LN

⎛
⎝ k∑

j=1

λj

⎞
⎠

⎞
⎠, (5.11)

which leads to the second equation.
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Lemma 5.2. Suppose (3.2) and Assumption 3.4 hold. Then,

PM :=
1

2π
√
M

M∑
j=1

mj(θ0)
d→ N(0,Σ1). (5.12)

Proof. We set

JT (φ) :=
1
M

M∑
j=1

∫π

−π
φ
(
uj, λ,θ0

)
IN

(
uj, λ

)
dλ,

J(φ) :=
∫1

0

∫π

−π
φ(u, λ,θ0)g(u, λ)dλdu.

(5.13)

Henceforth we denote φ(u, λ,θ0) by φ (u, λ) for simplicity. This lemma is proved by proving
the convergence of the cumulants of all orders. Due to Lemma A.8 of Dahlhaus [13] the
expectation of PM is equal to

√
M

2π

{
J(φ) + o

(
T−1/2

)}
. (5.14)

By (3.2) and O(M) = O(T), this converges to zero.
Next, we calculate the covariance of PM. From the relation T = M + N − 1 we can

rewrite

PM =

√
M

T

√
T

2π
JT (φ) =

√
1 − N + 1

T

√
T

2π
JT (φ). (5.15)

Then the (α, β)-element of the covariance matrix of PM is equal to

1

(2π)2

(
1 − N + 1

T

)
T cov

{
JT

(
φα

)
, JT

(
φβ

)}
. (5.16)

Due to Lemma A.9 of Dahlhaus [13], this converges to

1
2π

∫1

0

[∫π

−π
φi(u, λ)

{
φj(u, λ) + φj(u,−λ)

}
g(u, λ)2dλ

+
∫ ∫π

−π
φi(u, λ)φj

(
u, μ

)
g(u, λ)g

(
u, μ

)
q4

(
λ,−λ, μ)dλdμ

]
du.

(5.17)

By Assumption 3.4(iv) the covariance tends to Σ1.
The kth cumulant for k ≥ 3 tends to zero due to Lemma A.10 of Dahlhaus [13]. Then

we obtain the desired result.
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Lemma 5.3. Suppose (3.2) and Assumption 3.4 hold. Then,

SM :=
1

2πM

M∑
j=1

mj(θ0)mj(θ0)′
p→ Σ2. (5.18)

Proof. First we calculate the mean of (α, β)-element of SM:

E

⎡
⎣ 1
2πM

M∑
j=1

mj(θ0)mj(θ0)′
⎤
⎦

αβ

=
1

2πM

M∑
j=1

∫ ∫π

−π
φα

(
uj, λ

)
φβ

(
uj, μ

)
E
[
IN

(
uj, λ

)
IN

(
uj, μ

)]
dλdμ

=
1

2πM

M∑
j=1

∫ ∫π

−π
φα

(
uj, λ

)
φβ

(
uj, μ

)

× [
cov

{
IN

(
uj, λ

)
, IN

(
uj, μ

)}
+ EIN

(
uj, λ

)
EIN

(
uj, μ

)]
dλdμ.

(5.19)

Due to Dahlhaus [12, Theorem 2.2 (i)] the second term of (5.19) becomes

1
2πM

M∑
j=1

∫π

−π
φα

(
uj, λ

){
g
(
uj, λ

)
+O

(
N2

T2

)
+O

(
logN
N

)}
dλ

×
∫π

−π
φβ

(
uj, μ

){
g
(
uj, μ

)
+O

(
N2

T2

)
+O

(
logN
N

)}
dμ

=
1
2π

∫1

0

{∫π

−π
φα(u, λ)g(u, λ) dλ

∫π

−π
φβ

(
u, μ

)
g
(
u, μ

)
dμ

}

+O

(
1
M

)
+O

(
N2

T2

)
+O

(
logN
N

)
.

(5.20)

Next we consider

cov
{
IN

(
uj, λ

)
, IN

(
uj, μ

)}

=
1

(2πH2,N)2
[
cum

{
dN

(
uj, λ

)
, dN

(
uj, μ

)}
cum

{
dN

(
uj,−λ

)
, dN

(
uj ,−μ

)}

+ cum
{
dN

(
uj, λ

)
, dN

(
uj,−μ

)}
cum

{
dN

(
uj,−λ

)
, dN

(
uj, μ

)}
+cum

{
dN

(
uj, λ

)
, dN

(
uj ,−λ

)
, dN

(
uj, μ

)
, dN

(
uj ,−μ

)}]
.

(5.21)
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We calculate the three terms separately. From Lemma 5.1 the first term of (5.21) is equal to

1

(2πH2,N)2

{
2πA

(
uj, λ

)
A
(
uj, μ

) N∑
s=1

h
( s

N

)2
exp

{−i(λ + μ
)
s
}
+O

(
N2

T

)
+O

(
logN

)}

×
{
2πA

(
uj ,−λ

)
A
(
uj,−μ

) N∑
s=1

h
( s

N

)2
exp

{−i(−λ − μ
)
s
}
+O

(
N2

T

)
+O

(
logN

)}
.

(5.22)

It converges to zero when λ/= − μ and is equal to

g
(
uj, λ

)2 +O

(
N

T

)
+O

(
logN
N

)
(5.23)

when λ = −μ. Similarly the second term of (5.21) converges to zero when λ/=μ and is equal
to (5.23)when λ = μ. We can also apply Lemma 5.1 to the third term of (5.21), and analogous
calculation shows that it converges to zero. After all we can see that (5.19) converges to (Σ2)αβ,
the (α, β)-element of Σ2.

Next we calculate the second-order cumulant:

cum

⎧⎪⎨
⎪⎩

⎡
⎣ 1
2πM

M∑
j=1

mj(θ0)mj(θ0)′
⎤
⎦

α1β1

,

⎡
⎣ 1
2πM

M∑
j=1

mj(θ0)mj(θ0)′
⎤
⎦

α2β2

⎫⎪⎬
⎪⎭. (5.24)

This is equal to

(2πM)−2(2πH2,N)−4
M∑
j1= 1

M∑
j2 = 1

∫ ∫ ∫ ∫π

−π
φα1

(
uj1 , λ1

)
φβ1

(
uj1 , μ1

)
φα2

(
uj2 , λ2

)
φβ2

(
uj2 , μ2

)

× cum
{
dN

(
uj1 , λ1

)
dN

(
uj1 ,−λ1

)
dN

(
uj1 , μ1

)
dN

(
uj1 ,−μ1

)
,

dN

(
uj2 , λ2

)
dN

(
uj2 ,−λ2

)
dN

(
uj2 , μ2

)
dN

(
uj2 ,−μ2

)}
dλ1dμ1dλ2dμ2.

(5.25)

Using the product theorem for cumulants (cf. [16, Theorem 2.3.2]) we have to sum over all
indecomposable partitions {P1, . . . , Pm}with |Pi| ≥ 2 of the scheme

dN

(
uj1 , λ1

)
dN

(
uj1 ,−λ1

)
dN

(
uj1 , μ1

)
dN

(
uj1 ,−μ1

)
dN

(
uj2 , λ2

)
dN

(
uj2 ,−λ2

)
dN

(
uj2 , μ2

)
dN

(
uj2 ,−μ2

)
.

(5.26)

We can apply Lemma 5.1 to all cumulants which is seen in (5.25), and the dominant term of
the cumulants is o(N4) so (5.25) tends to zero. Then we obtain the desired result.
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5.2. Proof of Theorem 3.6

Using the lemmas in Section 5.1, we prove Theorem 3.6. To find the maximizing weights w′
js

of (3.11), we proceed by the Lagrange multiplier method. Write

G =
M∑
j=1

log
(
Mwj

) −Mα′
M∑
j=1

wjmj(θ) + γ

⎛
⎝ M∑

j=1

wj − 1

⎞
⎠, (5.27)

where α ∈ Rq and γ ∈ R are Lagrange multipliers. Setting ∂G/∂wj = 0 gives

∂G

∂wj
=

1
wj

−Mα′mj(θ) + γ = 0. (5.28)

So the equation
∑M

j=1 wj(∂G/∂wj) = 0 gives γ = −M. Then, we may write

wj =
1
M

1
1 + α′mj(θ)

, (5.29)

where the vector α = α(θ0) satisfies q equations given by

1
M

M∑
j=1

mj(θ)
1 + α′mj(θ)

= 0. (5.30)

Therefore, θ̃ is a minimizer of the following (minus) empirical log likelihood ratio function

l(θ) :=
M∑
j=1

log
{
1 + α′mj(θ)

}
(5.31)

and satisfies

0 =
∂l(θ)
∂θ

∣∣∣∣
θ=θ̃

=
M∑
j=1

(∂α′(θ)/∂θ)mj(θ) +
(
∂m′

j(θ)/∂θ
)
α(θ)

1 + α′(θ)mj(θ)

∣∣∣∣∣∣∣
θ=θ̃

=
M∑
j=1

(
∂m′

j(θ)/∂θ
)
α(θ)

1 + α′(θ)mj(θ)

∣∣∣∣∣∣∣
θ=θ̃

.

(5.32)
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Denote

Q1M(θ,α) :=
1
M

M∑
j=1

mj(θ)
1 + α′(θ)mj(θ)

,

Q2M(θ,α) :=
1
M

M∑
j=1

1
1 + α′(θ)mj(θ)

∂m′
j(θ)

∂θ
α(θ).

(5.33)

Then, from (5.30) and (5.32), we have

0 = Q1M

(
θ̃, α̃

)

= Q1M(θ0, 0) +
∂Q1M(θ0, 0)

∂θ′
(
θ̃ − θ0

)
+
∂Q1M(θ0, 0)

∂α′ (α̃ − 0) + op(δM),
(5.34)

0 = Q2M

(
θ̃, α̃

)

= Q2M(θ0, 0) +
∂Q2M(θ0, 0)

∂θ′
(
θ̃ − θ0

)
+
∂Q2M(θ0, 0)

∂α′ (α̃ − 0) + op(δM),
(5.35)

where α̃ = α(θ̃) and δM = ||θ̃ − θ0|| + ||α̃||. Let us see the asymptotic properties of the above
four derivatives. First,

∂Q1M(θ0, 0)
∂θ′ =

1
M

M∑
j=1

∂mj(θ0)

∂θ′ =
1
M

M∑
j=1

∫π

−π

∂φ
(
uj, λ,θ

)
∂θ′ IN

(
uj, λ

)
dλ. (5.36)

From Lemmas A.8 and A.9 of Dahlhaus [13], we have

E

[
∂Q1M(θ0, 0)

∂θ′

]
=

∫1

0

∫π

−π

∂φ(u, λ,θ)
∂θ′ g(u, λ)dλdu + o

(
M−1/2

)
,

cov

[[
∂Q1M(θ0, 0)

∂θ′

]
α1β1

,

[
∂Q1M(θ0, 0)

∂θ′

]
α2β2

]
= O

(
M−1

)
,

(5.37)

which leads to

∂Q1M(θ0, 0)
∂θ′

p→
∫1

0

∫π

−π

∂φ(u, λ,θ)
∂θ′ g(u, λ)dλdu = Σ3. (5.38)

Similarly, we have

∂Q2M(θ0, 0)
∂α′ =

1
M

M∑
j=1

∂mj(θ0)′

∂θ

p→ Σ′
3. (5.39)
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Next, from Lemma 5.3, we obtain

∂Q1M(θ0, 0)
∂α′ = − 1

M

M∑
j=1

mj(θ0)mj(θ0)′
p→ −2πΣ2. (5.40)

Finally, we have

∂Q2M(θ0, 0)
∂θ′ = 0. (5.41)

Now, (5.34), (5.35) and (5.38)–(5.41) give

(
α̃

θ̃ − θ0

)
=

⎛
⎜⎜⎝

∂Q1M

∂α′
∂Q1M

∂θ′
∂Q2M

∂α′
∂Q2M

∂θ′

⎞
⎟⎟⎠

−1

(θ0,0)

(−Q1M(θ0, 0) + op(δM)

op(δM)

)
, (5.42)

where

⎛
⎜⎜⎝

∂Q1M

∂sα′
∂Q1M

∂θ′
∂Q2M

∂α′
∂Q2M

∂θ′

⎞
⎟⎟⎠

(θ0,0)

p→
(−2πΣ2 Σ3

Σ′
3 0

)
. (5.43)

Because of Lemma 5.2, we have

Q1M(θ0, 0) =
1
M

M∑
j=1

mj(θ0) = Op

(
M−1/2

)
. (5.44)

From this and the relation (5.42), (5.43), we can see that δM = Op(M−1/2). Again, from (5.42),
(5.43), and Lemma 5.2, direct calculation gives that

√
M

(
θ̃ − θ0

)
d→ N(0,Σ). (5.45)

5.3. Proof of Theorem 3.7

Using the lemmas in Section 5.1, we prove Theorem 3.7. The proof is the same as that of
Theorem 3.6 up to (5.30). Let α = ‖α‖e where ‖e‖ = 1, and we introduce

Yj := α′mj(θ0), Z∗
M := max

1≤j≤M

∥∥mj(θ0)
∥∥. (5.46)
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Note 1/(1 + Yj) = 1 − Yj/(1 + Yj) and from (5.30)we find that

e′

⎧⎨
⎩

1
M

M∑
j=1

(
1 − Yj

1 + Yj

)
mj(θ0)

⎫⎬
⎭ = 0,

e′

⎛
⎝ 1

M

M∑
j=1

α′mj(θ0)
1 + Yj

mj(θ0)

⎞
⎠ = e′

⎛
⎝ 1

M

M∑
j=1

mj(θ0)

⎞
⎠,

‖α‖e′
⎛
⎝ 1

M

M∑
j=1

mj(θ0)mj(θ0)′

1 + Yj

⎞
⎠e = e′

⎛
⎝ 1

M

M∑
j=1

mj(θ0)

⎞
⎠.

(5.47)

Every wj > 0, so 1 + Yj > 0, and therefore by (5.47), we get

‖α‖e′SMe ≤ ‖α‖e′
⎛
⎝ 1

2πM

M∑
j=1

mj(θ0)mj(θ0)′

1 + Yj

⎞
⎠e ·

(
1 +max

j
Yj

)

≤ ‖α‖e′
⎛
⎝ 1

2πM

M∑
j=1

mj(θ0)mj(θ0)′

1 + Yj

⎞
⎠e · (1 + ‖α‖Z∗

M

)

= e′M−1/2PM

(
1 + ‖α‖Z∗

M

)
,

(5.48)

where SM and PM are defined in Lemmas 5.2 and 5.3. Then by (5.48), we get

‖α‖
{
e′SMe − Z∗

Me′
(
M−1/2PM

)}
≤ e′

(
M−1/2PM

)
. (5.49)

From Lemmas 5.2 and 5.3 we can see that

M−1/2PM = Op

(
M−1/2

)
, SM = Op(1). (5.50)

We evaluate the order of Z∗
M. We can write

Z∗
M ≤ max

1≤j≤M

∫π

−π

∥∥∥φθ0

(
uj, λ

)∥∥∥IN(
uj, λ

)
dλ =: max

1≤j≤M
m∗

j (θ0)
(
say

)
. (5.51)
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Then, for any ε > 0,

P

(
max
1≤j≤M

m∗
j (θ0) > ε

√
M

)
≤

M∑
j=1

P
(
m∗

j (θ0) > ε
√
M

)

=
M∑
j=1

P

(
m∗

j (θ0)3 >
(
ε
√
M

)3
)

≤
M∑
j=1

1
ε3M3/2

E
∣∣∣m∗

j (θ0)
∣∣∣3

=
1

ε3M3/2

M∑
j=1

∫ ∫ ∫π

−π

∥∥φθ

(
uj, λ1

)
φθ

(
uj, λ2

)
φθ

(
uj, λ3

)∥∥

× E
[
IN

(
uj, λ1

)
IN

(
uj, λ2

)
IN

(
uj, λ3

)]
dλ1dλ2dλ3.

(5.52)

The above expectation is written as

E
[
IN

(
uj, λ1

)
IN

(
uj, λ2

)
IN

(
uj, λ3

)]

=
1

(2πH2,N)3
cum

[
dN

(
uj, λ1

)
dN

(
uj,−λ1

)
dN

(
uj, λ2

)

×dN

(
uj,−λ2

)
dN

(
uj, λ3

)
dN

(
uj,−λ3

)]
.

(5.53)

From Lemma 5.1 this is of order Op(1), so we can see that (5.52) tends to zero, which leads

Z∗
M = op

(
M1/2

)
. (5.54)

From (5.49), (5.50), and (5.54), it is seen that

‖α‖
[
Op(1) − op

(
M−1/2

)
Op

(
M−1/2

)]
≤ Op

(
M−1/2

)
. (5.55)

Therefore,

‖α‖ = Op

(
M−1/2

)
. (5.56)

Now we have from (5.54) that

max
1≤t≤T

∣∣Yj

∣∣ = Op

(
M−1/2

)
op

(
M1/2

)
= op(1) (5.57)
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and from (5.30) that

0 =
1
M

M∑
j=1

mj(θ0)
1

1 + Yj

=
1
M

M∑
j=1

mj(θ0)

(
1 − Yj +

Y 2
j

1 + Yj

)

= 2πM−1/2PM − 2πSMα +
1
M

M∑
j=1

mj(θ0)Y 2
j

1 + Yj
.

(5.58)

Noting that

1
M

M∑
j=1

∥∥mj(θ0)
∥∥3 ≤ 1

M

M∑
j=1

Z∗
M

∥∥mj(θ0)
∥∥2 = op

(
M1/2

)
, (5.59)

we can see that the final term in (5.58) has a norm bounded by

1
M

M∑
j=1

∥∥mj(θ0)
∥∥3‖α‖2∣∣1 + Yj

∣∣−1 = op
(
M1/2

)
Op

(
M−1

)
Op(1) = op

(
M−1/2

)
. (5.60)

Hence, we can write

α = M−1/2S−1
MPM + ε, (5.61)

where ε = op(M−1/2). By (5.57), we may write

log
(
1 + Yj

)
= Yj − 1

2
Y 2
j + ηj , (5.62)

where for some finite K

Pr
(∣∣ηj∣∣ ≤ K

∣∣Yj

∣∣3, 1 ≤ j ≤ M
)
−→ 1 (T −→ ∞). (5.63)
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We may write

− 1
π

logR(θ0) = − 1
π

M∑
j=1

log
(
Twj

)
=

1
π

M∑
j=1

log
(
1 + Yj

)

=
1
π

M∑
j=1

Yj − 1
2π

M∑
j=1

Y 2
j +

1
π

M∑
j=1

ηj

= P′
MS−1

MPM −Mε′SMε +
1
π

M∑
j=1

ηt

= (A) − (B) + (C)
(
say

)
.

(5.64)

Here it is seen that

(B) = Mop
(
M−1/2

)
Op(1)op

(
M−1/2

)
= op(1),

(C) ≤ K‖α‖3
M∑
j=1

∥∥mj(θ0)
∥∥3 = Op

(
M−3/2

)
op

(
M3/2

)
= op(1).

(5.65)

And finally from Lemmas 5.2 and 5.3, we can show that

(A) d−→
(
Σ−1/2
2 Σ1/2

1 Σ−1/2
1 PM

)′(
Σ−1/2
2 Σ1/2

1 Σ−1/2
1 PM

)

d−→ (FN)′(FN).

(5.66)

Then we can obtain the desired result.
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