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Within the ramp-up phase of highly automated assembly systems, the planning effort forms a
large part of production costs. Due to shortening product lifecycles, changing customer demands,
and therefore an increasing number of ramp-up processes, these costs even rise. So assembly
systems should reduce these efforts and simultaneously be flexible for quick adaption to changes
in products and their variants. A cognitive interaction system in the field of assembly planning
systems is developed within the Cluster of Excellence “Integrative production technology for
high-wage countries” at RWTH Aachen University which integrates several cognitive capabilities
according to human cognition. This approach combines the advantages of automation with the
flexibility of humans. In this paper the main principles of the system’s core component—the
cognitive control unit—are presented to underline its advantages with respect to traditional
assembly systems. Based on this, the actual innovation of this paper is the development of key
performance indicators. These refer to the ramp-up process as a main objective of such a system is
to minimize the planning effort during ramp-up. The KPIs are also designed to show the impact
on the main idea of the Cluster of Excellence in resolving the so-called Polylemma of Production.

1. Introduction

In this paper, a set of key performance indicators (KPIs) is discussed describing the impact
of a cognitive interaction system on the ramp-up period of highly automated assembly
systems. The basis is a cognitive interaction system which is designed within a project of
the Cluster of Excellence “Integrative production technology for high-wage countries” at
RWTH Aachen University with the objective to plan and control an assembly autonomously.
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The overall objective of the Cluster of Excellence is to ensure the competitive situation of
high-wage countries like Germany with respect to high-tech products, particularly in the
field of mechanical and plant engineering. Yet these countries are facing increasingly strong
competition by low-wage countries. The solution hypothesis derived in the mentioned
Cluster of Excellence is seen in the resolution of the so-called Polylemma of Production, for
example, by improving the ramp-up process.

The contribution of the project “Cognitive Planning and Control System for Produc-
tion” is the development of a cognitive interaction system. Cognitive interaction systems in
general are characterised by two facts. On the one hand, they comprise cognitive capabilities
as mentioned before, and, on the other hand, they feature an interaction between the technical
system and human operators [1]. One of themajor challenges of the Polylemma of Production
is to increase the efficiency of planning and simultaneously utilise the value stream approach
in the domain of assembly which comes along with an improvement of the ramp-up process.
The main results are the implementation of a cognitive control unit (CCU) as the key
component of the cognitive interaction system and the construction of an assembly cell on
the technical side to practically test the functionality of the CCU.

In this context, assembly tasks are a big challenge for planning systems, especially
considering uncertain constraints, as implied in this approach. As a result, classic planning
approaches have shown to be of little use due to the huge computational complexity. By
calculating the complex planning problems prior to the actual assembly, this problem can be
bypassed—but current and temporary changes cannot be taken into account. That is why, in
this project, a hybrid approach of pre- and replanning of assembly tasks is followed. While
the CCU plans and controls the whole assembly process, the operator only executes assembly
steps, which cannot be fulfilled by the robots and intervenes in case of emergency. In this
way, the robot control, which is now based on human decision processes, will lead to a better
understanding of the behaviour of the technical system and helps automating the ramp-up
process.

The crucial point of the CCU is the reduction of planning costs compared to traditional
automated assembly systems during ramp-up. This is reached by means of cognitive
capabilities with simultaneously increasing the flexibility during the actual assembly process.
To quantify this, a set of four KPIs is developed in this paper. These KPIs point out
the influence of implementing a cognitive interaction system for assembly planning to
the Polylemma of Production and particularly to the ramp-up period within a product
development. The ramp-up process—period between completion of product design (pilot
series release) and attainment of full capacity—is especially in automated production
and assembly systems a planning- and cost-intensive phase. It includes the derivation of
an assembly strategy, the design and possibly modelling of the assembly cell and the
programming of the robots [2]. Here, the CCUmakes an important contribution to minimize
these expenses. The newKPIs therefore concentrate on the comparison of production systems
with and without cognitive interaction systems while general performance measuring
systems for the ramp-up itself already exist [2, 3].

The main contribution of this paper lies in the development and implementation of
key performance indicators that can show the impact of cognitive interaction systems system
on the ramp-up period of highly automated assembly systems using the example of the
cognitive control unit developed within the Cluster of Excellence “Integrative production
technology for high-wage countries” at RWTH Aachen University. The remainder of the
paper is organized as follows: in the next section the ramp-up period in general and possible
improvements of cognitive interaction systems within this step are described. In the first part
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Figure 1: Ramp-up period within the product development process (according to [6–8]).

of Section 3, the idea of the Cluster of Excellence is introduced with a focus on the intended
influence on production economics in high-wage countries centralised in the Polylemma of
Production. Furthermore, the project, in which the presented cognitive interaction system is
developed, is introduced. Section 4 is characterised by the presentation of the methodologies
and strategies of the cognitive control unit. The new KPIs are presented and discussed in the
Sections 5 and 6. The paper concludes in the last section with future research directions.

2. General Aspects of the Ramp-Up Period

The product development process is divided into two stages (Figure 1):

(i) the conceptual design,

(ii) the production.

In the conceptual design stage, at first, the product planning is carried out in
accordance with the market factors and the potential market. During the product planning,
the process of the product development is already started and since these activities are
iterative, they are grouped in a single phase. Furthermore, the joining ability of the single
components is analysed in this phase. The product planning represents the transition between
the idea for a product and its definition [4]. During the product planning and development,
an initial prototype of the product is developed manually or by using a rapid prototyping
technique. Thus, a first impression can be gained about the product and its haptic. In this
phase, aspects of the assembly are already considered, since it is fatal to the assembly of a
product if the individual components do not fit together [5].

As soon as the prototype has reached the desired developmental stage, the pilot series
production starts. From this point on, different processes which form the ramp-up period
flow simultaneously. The process testing and optimisation start with the pilot series. Within
the literature, the pilot series is divided into a preseries, in which the rejection rates may
be higher, and a pilot run, which represents the actual run-up to the production [9]. It ends
with the start of the production that is with the actual ramp-up. This includes all activities
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Figure 2: Characteristic of the ramp-up period with and without the use of cognitive interaction systems
within the assembly system.

for planning, managing, and implementing the start-up, ranging from product and process
development to mass production, including all upstream and downstream processes. The
ramp-up phase involves the market launch and lasts up to the series production by reaching
full capacity [6].

The installation of a cognitive interaction system has particularly influence on the
ramp-up process for the assembly of a product. During the conceptual design stage, the
effort for the planning of one assembly step in the manufacturing of a product is identical
between a production that does not use systems with cognitive capabilities and a production
that falls back to a cognitive interaction system. But starting the actual ramp-up with the
pilot series, the programming and optimisation of a cognitive interaction system is more
complex than the traditional assembly programming (e.g., through teaching of trajectories).
Due to the higher flexibility of cognitive systems, the optimisation, however, can be made
more quickly in a later series manufacturing. This advantage can only outweigh the
disadvantages of increased complexity in the pilot series if multiple products are assembled
on the same production system (utilise economies-of-scope) or a subsequent product change
will be made.

Due to the fact that a cognitive interaction system is capable of responding to changing
environmental conditions by varying its assembly sequence depending on the requirements
by means of self-optimisation, several products can be manufactured in parallel on the same
assembly cell [10]. In contrast, traditional programmed systems have to be readjusted for
each product and assembly variation. Thereby, cognitive interaction systems can achieve a
broadening of the product range without entailing significantly higher costs in the assembly.

This is especially reflected in the ramp-up period of a new product. Figure 2 shows
the characteristics of a ramp-up process with the use of cognitive interaction systems
within the assembly system and the corresponding phase of a production with traditional
assembly systems. The ramp-up period of a production until reaching the capacity limit
can be approximated by an S-curve (logistic function). The points in time tS1 and tS2

refer to the achievement of maximum series production capacity of each production
system [11].

The S-curve is calculated according to the general equation [11]:

f(t) = C ∗ 1
1 + ec∗(ti−t)

(2.1)



Advances in Decision Sciences 5

with f(t) being ramp-up function, C being maximum capacity, t being time, ti being time of
the inflection point of the ramp-up function, and c being constant.

This equation has a turning point on the site ti, where the slope of the curve is maximal.
At this point, the biggest gain in production volume per time unit is effected, that is,
(∂PV/∂t)|t=ti = max. In the progress of the curve, it is assumed that all optimisation steps
within the production system, excluding the assembly step, are identical for both ramp-
up curves. In a ramp-up process without the use of a cognitive interaction system, this
slope matches the learning curve of operators who participate in the mounting process
and optimise the assembly step. In a system containing a cognitive interaction system, this
learning effect is enforced by the self-optimisation of the system during the process. That
means that such a production system can reach the maximum capacity more quickly (see
Figure 2, left curve).

To concretise these possible advantages of cognitive technical systems within the
ramp-up period the next sections present a precise system with the CCU. First of all the idea
of the Cluster of Excellence is introduced which builds the basis for the development of this
system. Both descriptions are mandatory to follow the creation and discussion of the KPIs in
Sections 5 and 6 in detail.

3. Cluster of Excellence “Integrative Production Technology for
High-Wage Countries”

The aim of the Cluster of Excellence “Integrative production technology for high-wage
countries” at RWTH Aachen University is to assure the production in high-wage countries
by developing basics for sustainable production-scientific strategies and theories, as well as
the necessity of technological approaches. To reach this objective, production in high-wage
countries has to be regarded from different angles of visions and in an integrative manner
[12]. Several institutes of RWTH Aachen University, which are dealing with the diversity of
production engineering, are united under the Cluster of Excellence.

3.1. The Polylemma of Production

Competitive production engineering is particularly important for high-wage countries such
as Germany as other competing countries, for example, in Eastern Europe or Asia, have much
lower-factor costs. The influence of these low-wage countries has a tremendous impact on
high-wage countries’ economy due to all globalisation tendencies. Two dimensions can be
identified within the competition between production companies in high-wage and low-
wage countries: the production-orientated economy and the planning-orientated economy
[13]. The global production industry is confronted with both dichotomies.

Due to low productive factor cost, low-wage countries’ production can compensate
possible economic disadvantages such as long process times, factor consumption, and process
mastering. They predominantly focus on the utilisation of volume effects in production [12].
In contrast, companies in high-wage countries try to exploit the economies of scale by the
usage of relatively expensive productivity factors. However, while these disadvantages of
relatively high unit costs emerge more and more, companies concentrate on customising,
fast adaptions to market needs, and the usage of synergy effects within the production
of related portfolios (economies of scope). In addition, the share of production within the
value chain decreases, which in turn leads to a decrease of the realisable economies of scale.
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Figure 3: The Polylemma of Production ([13]).

Furthermore, the escape into sophisticated niche markets is typically not promising [12]. In
general, companies in high-wage countries have to position themselves in-between scale and
scope [13].

An additional competitive disadvantage for high-wage countries emerges on the
planning-oriented economy. Companies often try to optimise processes with sophisticated,
investment-intensive planning methods, and production systems since processes and
production systems do not reach their limit of optimal operating points. This includes a
complex ramp-up management to run production close to these optimal operating points. In
contrast, companies in low-wage countries implement primarily simple, robust value-stream-
oriented process chains and do not concentrate on higher planning activities [12].

The dichotomy scale versus scope on the one hand and the dichotomy value versus
planning orientation on the other hand are the dilemmas, production industry, especially
in high-wage countries, has to face. These dichotomies span the so-called Polylemma of
Production as shown in Figure 3 [13].

A better positioning within this Polylemma of Production is no longer sufficient
to achieve sustainable competition advantages for the production in high-wage countries.
Therefore the aim of the Cluster of Excellence is to possibly resolve both dichotomies
by extending product variability and quality while simultaneously producing at series
manufacturing costs [13].

3.2. The Project “Cognitive Planning and Control System for Production“

The challenge of the typical advanced rationalisation of traditional production systems and
processes in high-wage countries is the implementation of value stream-orientated
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approaches with simultaneously increasing planning efficiency. To face this problem, the
capability of self-optimisation is required. Self-optimisation allows an optimisation of real
production processes without raising preceding planning costs and so optimizing the
ramp-up process [10]. Therefore, within the domain “Self-Optimising Production Systems”
of the mentioned Cluster of Excellence the focus lies on methods and technologies to
enhance cognitive capabilities of production systems as the basis for self-optimisation. New
perspectives of manufacturing and assembly systems are opened up by the application
of existing knowledge to similar situations or new production cases as the core of
self-optimisation [1].

The technological basis of the promising approach to reduce previous planning efforts
by developing a production system that is able to autonomously plan the production during
a running process and that could autonomously react to changes in customer demands
is a novel architecture of the production cell’s numerical control based on a cognitive
architecture [14].

A cognitive interaction system with a cognitive planning and control unit (CCU) is
developed within the project “Cognitive Planning and Control System for Production” to aim
at the automation of the assembly planning process. The basic set-up of the CCU is founded
on the architectures that illustrate human cognition. Therefore, a modularly assembled cogni-
tive architecture for a production technology environment including amodule to store knowl-
edge and a human-machine interface is developed as a framework for the implementation
of cognitive capabilities [15]. According to human cognition, these artificial cognitive capa-
bilities are perception, reasoning, remembering, planning, decision making, learning, and
action [16].

The approach is discussed as part of a scenario, which contains an assembly cell with
two robots (Figure 4): one (Robot 2) is only controlled by the CCU [15, 17]; the other one
(Robot 1) delivers separate parts for the final product in random sequence to a circulating
conveyor belt. The CCU decides whether to pick up the delivered parts or to refuse them. In
case that a part is picked up, it will be put into a buffer area or into the assembly area for
immediate use. The practical assembly scenario, which also forms the basis of this paper, is a
tower of four different coloured Lego bricks (see Figure 6).

This scenario bases on a random block delivery, which is a specialty of this approach
and emphasises the flexibility of such a cognitive interaction system. Handling this kind of
uncertainty in the system is a novelty. As a result, extensive material supply timing and
planning, as it has to be done, for example, with Just in Sequence, is not necessary any more
[18]. Instead the material storing has to be focused but which being cost-intensive than the
whole planning problem [19]. Due to this approach, future states of the system cannot be
predicted. The CCU is therefore facing a nondeterministic planning problem requiring either
an online replanning during the assembly whenever a not expected event occurs or a plan
in advance for all possible delivery sequences. Each of these strategies results in extensive
computations, which lead either to slow responses during the assembly or an unacceptable
amount of preplanning. Therefore, a hybrid approach is followed, which bases on state
graphs [14].

The project’s focus lies on evaluating the concept and methodology of this novel
automation approach. To understand the basic ideas of the CCU, the next section will present
the underlying assembly strategy including the determinations on which the assembly rules
of the CCU are built.
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4. The Cognitive Control Unit

The main idea of the cognitive control unit is to autonomously plan and control the assembly
of a product solely by its CAD description and so help improve the ramp-up. Hence, it
will be possible to decrease the planning effort in advance and to increase the flexibility of
manufacturing and assembly systems [15]. Therefore several different approaches, which are
suitable for the application on planning problems, are of great interest in the field of artificial
intelligence. While generic planners like the ones by Hoffmann [20], Castellini et al. [21],
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and Hoffmann and Brafman [22] are not able to compute any solution within an acceptable
time in the field of assembly planning concerning geometrical analysis, other planners are
especially designed for assembly planning, for example, the widely used Archimedes System
[23]. To find optimal plans, it uses AND/OR-graphs and an “assembly by disassembly“
strategy. The approach of Thomas follows the same strategy, but uses only geometric
information of the final product as input [24]. Nevertheless, both approaches are not
adequate enough to deal with uncertainty. Another system developed by Zaeh andWiesbeck
[25] follows an approach which is similar to the CCU apart from the fact that it only plans and
does not control the assembly. In this field, the CCU is a sophisticated system on the way to
self-optimisation.

The CCU is able to take over tasks from an operator, for example, repetitive, dangerous
and not-too-complex operations, as it is capable to process procedural knowledge encoded
in production rules and to control multiple robots. As knowledge-based behaviour as
well as skill-based behaviour cannot be modelled and simulated by the CCU, it will
cooperate with the operator on a rule-based level of cognitive control [14, 26]. The task
of the CCU consists of the planning and the controlling of the assembly of a product that
is described by its CAD data while the assembly actions are executed by the assembly
robots. After receiving an accordant description entered by a human operator, the system
plans and executes the assembly autonomously by means of a hybrid planner. With
regard to the cooperation between the CCU and an operator it is crucial that the human
operator understands the assembly plan developed by the CCU. Furthermore, a robot
control which is based on human decision processes will lead to a better understanding
regarding the behaviour of the technical system which is referred to as cognitive
compatibility [1].

4.1. Hybrid Planner

The planning process of the CCU is separated into two assembly parts to allow fast reaction
times: the Offline Planner, executed prior to the assembly, and the Online Planner, executed
in a loop during the assembly (Figure 5). The Offline Planner allows computation times of up
to several hours. Its task is to precalculate all feasible assembly sequences—from the single
parts to the desired product. The output is a graph representing these sequences. This graph is
transmitted to the Online Planner whose computation time must not exceed several seconds.
Its task is to map repeatedly the current system state to a state contained in the graph during
assembly. In a further step, the Online Planner extracts an assembly sequence that transforms
the latest state into a goal state containing the finished product. Thus, the proposed procedure
follows a hybrid approach [14].

A solution space for the assembly sequence planning problem is derived during
the offline planning phase. As mentioned above, an “assembly by disassembly” strategy
is applied to generate an assembly graph, which is first generated as an AND/OR-graph
and which is then transformed into a state graph that can be efficiently interpreted during
online planning [27]. Therefore, a description of the assembled product’s geometry and its
constituting parts, possibly enriched with additional mating directions or mating operation
specifications, is used. The geometric data is read by the CCU from a CAD file. The
main concept of this strategy is a recursive analysis of all possibilities of an assembly or
subassembly [28]. Any assembly or subassembly is separated into two further subassemblies
until only single parts remain. All related properties of the product’s assembly are stored.
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Additionally, instances can be used to describe functional aspects. This will be relevant if
additional data apart from the part geometries is taken into account by the assembly planner
[24].

All data of the separation evaluators is stored in the state graph. Figure 6 shows
the state graph of the used scenario. The information contains static operation costs and
mating operation descriptions for each assembly that might be active during assembly. All
transition steps are represented by edges enhanced with the named costs. Each state contains
the passive assembly, to which other parts may be added, starting with the empty one at the
bottom up to the final product at the top.

The Online Planner derives the assembly plan during the assembly process. It uses the
state graph provided by the Offline Planner as well as information about the current robot
cell’s situation. This approach is similar to the system developed by [25], in which assembly
task instructions for a human operator are reactively generated.

The GraphAnalyser receives the generated state graph from the offline planning phase
and the actual world state describing the current situation of the assembly. Afterwards,
the graph analyser maps this world state onto the matching state contained in the state
graph. If this node and the “goal-node” are identical, the assembly has been completed
and the process ends. Otherwise, the state graph is updated. Dynamic costs in terms of
the availability of necessary parts are assigned to the state graphs edges—in addition to the
costs, which already have been assigned to the edges during offline planning [14]. After this
procedure, the optimal path to the goal-node is calculated using the A∗ search algorithm,
which represents the optimal assembly plan for the given current situation [29]. This path is
tested for parallelization and sent to the Cognitive Control component, which executes the
assembly in a further step.

The Cognitive Control component receives the assembly sequence, triggers the
accordant robot commands, and communicates with the human operator so that the latter
can operate, for example, in case of unforeseen changes. This component is based on Soar,
a cognitive framework for decision finding that aims on modelling the human decision
process [30]. Soar contains several production rules which are stored in the knowledge base.
Furthermore, human assembly strategies are developed and implemented in the component
to generate a higher degree of machine transparency and to enhance cognitive compatibility
[26]. Thus, this component implements the cognitive capability of decision making so that
the CCU in general is able to optimise its performance according to different delivered target
states.

In this section, the background of the cognitive interaction system with regard to the
planning algorithm and the possibilities of decision making within the technical system was
described. The next section points out how this approach can help to improve the ramp-up
process by defining KPIs for cognitive interaction systems.

5. Key Performance Indicators

In order to measure the influence of a cognitive interaction system on the ramp-up process,
four key performance indicators were developed. As described in the previous sections, the
reduction of planning efforts prior to the assembly is a main objective of cognitive interaction
systems like the CCU. This approach enables a faster ramp-up for assembly and thereby
comprises at best an increase of production volume during this phase. This has on the one
hand a positive effect on the validity of the data generated and beyond that on the quality



12 Advances in Decision Sciences

of the final production process. In addition, the increased flexibility allows not only a static
assembly strategy like traditional automated systems, but the possibility to act adaptively
within the framework of the generated plan. The four KPIs which show these advantages
within the triple constraint (cost, time and quality) are:

(i) KPE: planning effort (Section 5.1),

(ii) KAPV: acceleration of production volume growth (Section 5.2),

(iii) KIPV: increase of production volume (Section 5.3),

(iv) KPQ: plan quality (Section 5.4).

The contribution to the ramp-up process and the Polylemma of Production technology
is determined by the comparison of the KPIs with and without the use of a cognitive
interaction system to control an assembly of components of simple geometry like the scenario
described in Section 3.2 [11]. All KPIs are defined in a way that the larger the value, the more
superior is the cognitive system compared to the traditional one. The turning point where
both systems are equal is—depending on the context of the precise KPI—0 or 1.

5.1. Planning Effort

The first KPI, the planning effort, refers to the phase of mounting and initial programming
of the cognitive interaction system within an assembly system. The initial filing and
maintenance of the knowledge base in a cognitive interaction system represents significantly
more work compared to programming a traditional assembly system, for example, by
teaching the robot. This effort is too high for a production system that is designed only
for one product since a traditional assembly system can be programmed very quickly for
a specified manufacturing step and this programming has to be adjusted only marginally
during production. However, if the assembly system needs to be able to assemble a wide
range of products with small batches, a traditional assembly system has to be repeatedly
reprogrammed and optimised. In contrast, an assembly system with a cognitive interaction
system can be adapted with little effort on a new product.

The key performance indicator KPE is based on Schilberg [31] and is calculated from
the sum over n different products to be assembled by the efforts of the programming of the
system, respectively, the creation of the knowledge base and the optimisation of the assembly:

KPE = 1 −

⎛
⎜⎜⎝
∑n

i=1 PEicognitive

n∑
i=1
PEitraditional

⎞
⎟⎟⎠. (5.1)

With KPE being Key performance indicator of the planning effort, PEicognitive being Planning
effort of an assembly systemwith a cognitive interaction system, and PEitraditional being Planning
effort of a traditional assembly system.

The interval in which the KPI ranges is [−∞, +1]. The extreme value −∞ of the interval
will be reached if the planning effort for PEitraditional is arbitrarily small or if PEicognitive is an
arbitrary large value. The other extreme value of 1 will be reached if PEicognitive is 0 [11].

By the automated assembly planning within the cognitive interaction system, this
system only has to be reprogrammed if the assembly of the product to be manufactured
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contains steps that were not previously stored in the cognitive interaction system (e.g.,
if a new tool is available, which results in new possible operations). By the independent
planning of the assembly process, under constraints which have passed by the operator
to the cognitive interaction system, no new operation sequences have to be programmed.
The adaptive adjustment of the assembly sequence can even ensure an assembly with a not-
previously known component supply which is impossible in a traditional assembly system.
When a new sequence of steps is to be executed, the assembly system has to be reprogrammed
and optimised, which represents a significant amount of work. This does not allow flexible
responds of the assembly system to changes in product manufacturing or in the assembly
sequence. In Figure 7, an example of this comparison is illustrated.

5.2. Acceleration of Production Volume Growth

The second KPI, acceleration of production volume growth, is determined by comparing the
maximum increase in production volume per time unit at the site ti.

Therefore, the KPI is calculated as

KAPV =

(
(∂PV/∂t)|cognitive
(∂PV/∂t)|traditional

)
− 1. (5.2)

with KAPV being key performance indicator for acceleration of production volume growth,
(∂PV/∂t)|cognitive being slope at the inflection point of the production system with cognitive
interaction systems, and (∂PV/∂t)|traditional being slope at the inflection point of the traditional
production system.

By forming the quotient, the KPI ranges in the interval [−1, +∞]. A value of −1
means that the production volume growth of a production system with cognitive interaction
systems is 0, so there is no production. The other extreme value means that the production
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volume growth with a cognitive interaction system is arbitrarily large, respectively, and the
production increase of a traditional production system is 0. This value is never reached
because it would mean a discontinuity in the S-curve, which has to be differentiable by
definition [11].

In case of a congruence of the inflection points of the ramp-up function f(t) for both
production systems, it is sufficient to determine the key performance indicator KAPV if one
production system dominates the other one. If the two inflection points do not match, it
may happen that a production system, which has a steeper gradient but realises this at a
significantly later time, possibly has a worse overall production volume. Figure 8 shows such
an issue. The points in time ti1 and ti2 describe the inflection points with the maximum slope
of the two curves.

5.3. Increase of Production Volume

In this case, a third KPI, namely the increase of total production volume during ramp-
up, should be consulted. It is calculated by integrating over the starting function f(t) in a
given period. By the quotient, a direct comparison of production systems with and without
cognitive interaction systems can be made.

Therefore, the KPI is calculated as:

KIPV =

∫ tS1
t0

fcognitive(t)dt
∫ tS2
t0

ftraditional(t)dt
(5.3)

with KIPV being key performance indicator of the increase of production volume, t0 being
start of production, and tSi being time of series production with full capacity (see Figure 2).

Under the condition that the integral of f(t) > 0, a cognitive system is superior to a
traditional system if the KPI takes a value >1. The key performance indicatorKAPV represents
therefore the necessary condition for the superiority of a production system with cognitive
interaction systems in the assembly, while the key performance indicatorKIPV is the sufficient
condition for a real improvement [11]. This consideration is only meaningful if both times to
volume differ from each other marginally. Otherwise the “faster” production system would
always be preferred since time is often the critical variable in the ramp-up phase.
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5.4. Plan Quality

The fourth KPI is the plan quality, which is borrowed from one criterion for evaluation of
planners on the International Planning Competition (IPC) [32]. It is determined from the
number of assembly steps required to manufacture a product. In a traditional system, either
the assembly sequence is fully optimised and programmed in advance or a heuristic-based
optimisation is used by the employee during programming. Depending on the complexity of
the product to be assembled, the optimal assembly sequencemay not be found in a reasonable
time. In the context of this scenario and further scenarios which were analysed within the
project, the CCU is able to generate the entire assembly graph in the Offline Planner. At
this point no heuristics have to be used but such applications are possible. Thus, this KPI
is defined with regard to more complex products where heuristics are relevant.

As described before, in a cognitive interaction system, it may also be necessary to
resort to a heuristic to solve the planning problem in a reasonable time in a corresponding
product complexity. This planning can be continued during the production, which means
that the cognitive interaction system starts with an assembly sequence that was found
using a heuristic. Then during the process the system is able to derive a better assembly
sequence in parallel by using relaxing heuristics and by conducting a broader search
within the AND/OR-graph. If the number of components is below a threshold, all possible
decompositions of the AND/OR-graph can be saved and a guaranteed optimal solution of
the planning problem can be found [11]. Figure 9(a) shows the entire AND/OR-graph of a
tower of four Lego bricks. In Figure 9(b), an assembly sequence using a heuristic is shown,
in which only those nodes of the graph with the lowest costs are expanded.

The plan quality of the traditional and the cognitive assembly system is identical in
this case, provided that the same resources for computing capacity and time exist. However,
the cognitive assembly system is able to perform a broader search during the actual assembly
and thus to create the optimal assembly plan (Figure 9(c)). In this example, this would mean
a sum of costs of 40 instead of 50 although the first analysis step of the optimal solution is
considerably larger than the one of the heuristic. The plan quality of a cognitive interaction
system is thus at least as good as a traditional assembly system and is able to achieve a better
plan quality which is expressed by a lower sum of costs in the assembly graph through an
ongoing continuation of the planning.

The KPI is calculated as

KPQ =
n∑
i=0

Citraditional −
m∑
i=0

Cicognitive (5.4)

with KPQ being Key performance indicator of the plan quality, n being number of assembly
steps with traditional production system, m being number of assembly steps with cognitive
interaction system, Citraditional being costs on optimal path with traditional production system,
and Cicognitive being costs on optimal path with cognitive interaction system.

Hence, KPQ is never less than zero. In addition, the cognitive interaction system
has the ability to adjust the assembly sequence depending on the availability of the single
components. The optimal assembly sequence that was found during this process has been
created under the terms of a deterministic supply of components respectively the availability
of all components and assemblies required. With regard to the possibility of dynamic
allocation of the new edge costs within the assembly graph in case of storage of all possible
decompositions, the cognitive assembly system is able to adapt the assembly sequence
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Figure 9: Comparison of the plan quality.

dynamically and to ensure the optimal plan quality in a dynamic environment at any time
during assembly.

6. Discussion

Against the background of the Polylemma of Production and improving the ramp-up process,
the four KPIs presented in Section 5 are designed to identify the enhancements by using
cognitive interaction systems with respect to traditional production systems. The main
objective of the mentioned Cluster of Excellence is to develop new production theories
and methods in order to resolve the Polylemma of Production inter alia by improving the
ramp-up period and to measure the improvements reached by these innovations. Here, the
KPIs provide a significant contribution. They cover the three dimensions costs (KPE), time
(KAPV and KIPV) and quality (KPQ), and thus represent any expected significant changes by
comprising cognitive interaction systems like the CCU.

As pointed out in the last section, the indicators are defined in the following way: the
larger the value is, the more superior is the cognitive system compared to the traditional one
with a turning point by 0 or 1. It is expected that the indicatorsKAPV andKIPV are greater than
the turning point. By automating the ramp-up process with the use of the CCU, it speeds up.
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The production can be ramped up more quickly so thatKAPV increases. Furthermore, it is not
necessary to carry out an intensive programming before the assembly cell can be launched.
Instead, new production rules have to be implemented as well as to fill up the knowledge
base and teach the system to optimize it. This can be done in parallel to the installation of the
assembly cell so that the entire process is moved forward and KIPV increases as well. Thus, a
certain dependency exists between the two indicators.

The planning efforts prior to the assembly change in their manner as indicated. Instead
of programming the robots, a lot of work in educating the system has to be done when
implementing a total new product and its assembly cell. In this case, at the present time,
no conclusion can be drawn on the amount of total costs so that KPE can either be positive or
negative. The advantage of cognitive interaction systems consists in their flexibility to handle
different variants of a product in one assembly cell at the same time. Here, at the best, no
additional costs are generated so thatKPE is expected to be greater than zero. Since costs and
time are interdependent, KAPV and KIPV will increase as well.

The plan quality of a cognitive interaction system is, as pointed out in Section 5.4, at
least as good as a traditional assembly system (KPQ ≥ 0). While in contemporary automated
systems only the previously implemented assembly sequence is followed, the CCU and
comparable systems can optimise themselves in the process due to their cognitive capabilities
in terms of planning strategies and, if necessary, additionally used heuristics. This superiority
increases the more the system is used as its database grows and as it learns from previous
tasks for the generation of the plan, which results in a higher quality. The only way the plan
quality of the traditional system can increase is a reprogramming (see Figure 7) due to human
learning. This results in an increase of the other KPIs based on more efforts and a setback in
the ramp-up process.

Overall, the KPIs are capable of representing the impact of the CCU to the ramp-
up period of an assembly system. In case that KPE and KPQ point out the superiority of
the cognitive interaction system, it is less cost-intensive and more flexible and robust than
traditional automated systems. So an improvement of the ramp-up process has been reached
and quantified. To prove these assumptions, several business and technology cases will be
performed in the next funding period of the Cluster of Excellence while, up to now, the
assembly cell (see Figure 4) and the CCU have been implemented and the four KPIs have
been developed. These generated data will form the basis for supporting the decision making
to apply cognitive systems in industry.

7. Conclusion

This paper proposes a set of KPIs which can determine the advantages of a cognitive
interaction system in contrast to traditional automated systems to improve the ramp-up
period of an assembly system. A precise cognitive interaction system in the domain of
assembly planning systems is presented, which is the first self-optimising system in this
domain. It comprises several cognitive capabilities implemented in the cognitive control unit
(CCU) by a hybrid approach for assembly tasks, which enables robots to decide on their
action during assembly autonomously.

To measure the systems’ advantages involved, a set of key performance indicators
is developed in this paper which can show the impact of this cognitive interaction system.
These KPIs concentrate on the main improvements being achieved during the ramp-up phase
of the assembly and its construction and sequence planning. The interaction of the four
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KPIs “planning effort,” “acceleration of production volume growth,” “increase of production
volume,” and “plan quality” evaluate the improvements in attaining the final production
volume and in reducing the planning effort during ramp-up as well as the enhancement of
the quality of the derived plan by means of the self-optimising capability of the CCU. These
are developed in the context presented in this paper but designed to highlight the impact of
cognitive interaction systems on production economics in general.

With respect to future research, there are plans to fill these KPIs with life, while in
this paper the theoretical background for the next step has been set. Therefore, industrial
applications are to be performed and analysed by comparing the assembly of a product
including its ramp-up with the use of the CCU on the one hand and with the traditional
approach on the other hand. Therein, possible weaknesses can be detected and resolved. This
practical testingmay then be shifted to other cognitive interaction systems to demonstrate the
transferability of the set of KPIs. The challenge of fundamental research like the technological
innovations developed within this Cluster of Excellence often comprises the persuasion of
industry of the high performance of such solutions and the implementation or the launch of
a product out of this. However, companies need reliable predictions on the applicability and
economic efficiency. At this, the developed KPIs can play a major role as they provide exactly
this required evidence in the examined topic.
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