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The random walk is used as a model expressing equitableness and the effectiveness of various
finance phenomena. Randomwalk is included in unit root process which is a class of nonstationary
processes. Due to its nonstationarity, the least squares estimator (LSE) of random walk does
not satisfy asymptotic normality. However, it is well known that the sequence of partial sum
processes of random walk weakly converges to standard Brownian motion. This result is so-
called functional central limit theorem (FCLT). We can derive the limiting distribution of LSE of
unit root process from the FCLT result. The FCLT result has been extended to unit root process
with locally stationary process (LSP) innovation. This model includes different two types of
nonstationarity. Since the LSP innovation has time-varying spectral structure, it is suitable for
describing the empirical financial time series data. Here we will derive the limiting distributions
of LSE of unit root, near unit root and general integrated processes with LSP innovation. Testing
problem between unit root and near unit root will be also discussed. Furthermore, we will
suggest two kind of extensions for LSE, which include various famous estimators as special
cases.

1. Introduction

Since the random walk is a martingale sequence, the best predictor of the next term
becomes the value of this term. In this sense, the random walk is used as a model
expressing equitableness and the effectiveness of various finance phenomena in economics.
Furthermore, because the random walk is a unit root process, taking the difference of the
random walk, we can recover the independent sequence. However, the information of the
original sequence will be lost by taking the difference when it does not include a unit
root. Therefore, the testing of the existence of unit root in the original sequence becomes
important.
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In this section, we review the fundamental asymptotic results for unit root processes.
Let {εj} be i.i.d. (0, σ2) random variables, where σ2 > 0, and define the partial sum

rj = rj−1 + εj (r0 = 0)

=
j∑

i=1

εi,
(
j = 1, . . . , T

)
,

(1.1)

which is the so-called random walk process. Random walk corresponds to the first-order
autoregressive (AR(1)) model with unit coefficient. Therefore, random walk is included in
unit root (I(1)) processes which is a class of nonstationary processes. Let C = C[0, 1] be the
space of all real-valued continuous functions defined on [0, 1]. For random walk process, we
construct the sequence of the processes of the partial sum {RT} in C as

RT (t) =
1

σ
√
T
rj + T

(
t − j

T

)
1

σ
√
T
εj ,

(
j − 1
T

≤ t ≤ j

T

)
. (1.2)

It is well known that the partial sum process {RT} converge weakly to a standard Brownian
motion on [0, 1], namely,

L(RT ) −→ L(W) as T −→ ∞, (1.3)

whereL(·) denotes the distribution law of the corresponding random elements. This result is
the so-called functional central limit theorem (FCLT) (see Billingsley [1]).

The FCLT result can be extended to the unit root process where the innovation is gen-
eral linear process. We consider a sequence {R̃T} of a stochastic process in C defined by

R̃T (t) =
1√
T
r̃j + T

(
t − j

T

)
1√
T
uj ,

(
j − 1
T

≤ t ≤ j

T

)
, (1.4)

where r̃j =
∑j

i=1ui and {uj} is assumed to be generated by

uj =
∞∑

l=0

αlεj−l, α0 = 1. (1.5)

Here, {εj} is a sequence of i.i.d. (0, σ2) random variables, and {αj} is a sequence of constants
which satisfies

∑∞
l=0l|αl| < ∞; therefore, {uj} becomes stationary process. Using the Beveridge

and Nelson [2] decomposition, it holds (see, e.g., Tanaka [3])

L
(
R̃T

)
−→ L(αW), α =

∞∑

l=0

αl. (1.6)

The asymptotic property of LSE for stationary autoregressive models has been well
established (see, e.g., Hannan [4]). On the other hand, due to its nonstationarity, the
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LSE of random walk does not satisfy asymptotic normality. However, we can derive the
limiting distribution of LSE of unit root process from the FCLT result. For more detailed
understanding about unit root process with i.i.d. or stationary innovation, refer to, for
example, Billingsley [1] and Tanaka [3].

In the above case, the {uj}’s are stationary and hence, have constant variance, while
covariances depend on only time differences. This is referred to as the homogeneous case,
which is too restrictive to interpret empirical data, for example, empirical financial data.
Recently, an important class of nonstationary processes have been proposed by Dahlhaus
(see, e.g., Dahlhaus [5, 6]), called locally stationary processes. In this paper, we alternatively
adopt locally stationary innovation process, which has smoothly changing variance. Since the
LSP innovation has time-varying spectral structure, it is suitable for describing the empirical
financial time series data.

This paper is organized as follows. In the appendix, we review the extension of the
FCLT results to the cases that the innovations are locally stationary process. Namely, we
explain the FCLT for unit root, near unit root, and general integrated processes with LSP
innovations. In Section 2, we obtain the asymptotic distribution of the least squares estimator
for each case of the appendix. In Section 3, we also consider the testing problem for unit root
with LSP innovation. Finally, in Section 4, we discuss the extensions of LSE, which include
various famous estimators as special cases.

2. The Property of Least Squares Estimator

In this section, we investigate the asymptotic properties of least squares estimators for unit
root, near unit root, and I(d) processes with locally stationary process innovations. Testing
problem for unit root is also discussed. For the notations which are not defined in this section,
refer to the appendix.

2.1. Least Squares Estimator for Unit Root Process

Here, we consider the following statistics:

ρ̂ =

∑T
j=2xj−1,Txj,T

∑T
j=2x

2
j−1,T

, (2.1)

obtained from model (A.3), which can be regarded as the least squares estimator (LSE) of
autoregressive coefficient in the first-order autoregressive (AR(1))model xj,T = ρxj−1,T + uj,T .
Define

U1,T =
1

Tσ2

T∑

j=2

xj−1,T
(
xj,T − xj−1,T

)

=
1
2
XT (1)2 − 1

2
X(0)2 − 1

2Tσ2

T∑

j=1

u2
j,T − X(0)u1,T√

Tσ
,

V1,T =
1

T2σ2

T∑

j=2

x2
j−1,T =

1
T

T∑

j=1

XT

(
j

T

)2

− 1
T
XT (1)2,

(2.2)
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then we have

S1,T ≡ T
(
ρ̂ − 1

)
=

U1,T

V1,T
. (2.3)

Let us define a continuous function H1(x) = (H11(x),H12(x)) for x ∈ C, where

H11(x) =
1
2

{
x(1)2 − x(0)2 −

∫1

0

∞∑

l=0

αl(ν)2dν

}
, H12(x) =

∫1

0
x(ν)2dν. (2.4)

It is easy to check

U1,T = H11(XT ) + oP (1), V1,T = H12(XT ) + oP (1). (2.5)

Therefore, the continuous mapping theorem (CMT) leads to L(U1,T , V1,T ) → L(H1(X)) and

L(S1,T ) = L(
T
(
ρ̂ − 1

))

−→ L
(
H11(X)
H12(X)

)
= L

⎛
⎜⎝

(1/2)
{
X(1)2 −X(0)2 − ∫1

0

∑∞
l=0αl(ν)2dν

}

∫1
0 X(ν)2dν

⎞
⎟⎠

= L

⎛
⎜⎝

∫1
0 X(ν)dX(ν) + (1/2)

∫1
0

[{∑∞
l=0αl(ν)

}2 − ∑∞
l=0αl(ν)2

]
dν

∫1
0 X(ν)2dν

⎞
⎟⎠.

(2.6)

2.2. Least Squares Estimator for Near Unit Root Process

We next consider the least squares estimator ρ̂T for model (A.11) in the case that β(t) ≡ β is a
constant on [0, 1], namely,

yj,T = ρTyj−1,T + uj,T ,
(
j = 1, . . . , T

)
, (2.7)

with ρT = 1 − β/T . Then, we have

ρ̂T = 1 − β̂

T
=

∑T
j=2yj−1,Tyj,T

∑T
j=2y

2
j−1,T

, S2,T ≡ T
(
ρ̂T − 1

)
= −β̂ =

U2,T

V2,T
, (2.8)
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where

U2,T =
1

Tσ2

T∑

j=2

yj−1,T
(
yj,T − yj−1,T

)

=
1
2
YT (1)2 − 1

2
Y (0)2 − 1

2Tσ2

T∑

j=1

(
uj,T − β

T
yj−1,T

)2

− 1√
Tσ

Y (0)
(
u1,T − β

T
y0,T

)

V2,T =
1

T2σ2

T∑

j=2

y2
j−1,T =

1
T

T∑

j=1

YT

(
j

T

)2

− 1
T
YT (1)2.

, (2.9)

Let us define a continuous function H2(x) = (H21(x),H22(x)) for x ∈ C, where

H21(x) =
1
2

{
x(1)2 − x(0)2 −

∫1

0

∞∑

l=0

αl(ν)2dν

}
, H22(x) =

∫1

0
x(ν)2dν. (2.10)

It is easy to check

U2,T = H21(YT ) + oP (1), V2,T = H22(YT ) + oP (1). (2.11)

Therefore, the CMT leads to L(U2,T , V2,T ) → L(H2(Y )) and

L(S2,T ) = L(
T
(
ρ̂ − 1

))
= L

(
−β̂

)

−→ L
(
H21(Y )
H22(Y )

)
= L

⎛
⎜⎝

(1/2)
{
Y (1)2 − Y (0)2 − ∫1

0

∑∞
l=0αl(ν)2dν

}

∫1
0 Y (ν)

2dν

⎞
⎟⎠

= L

⎛
⎜⎝

∫1
0 Y (ν)dY (ν) + (1/2)

∫1
0

[{∑∞
l=0αl(ν)

}2 − ∑∞
l=0αl(ν)2

]
dν

∫1
0 Y (ν)

2dν

⎞
⎟⎠.

(2.12)

2.3. Least Squares Estimator for I(d) Process

Furthermore, we consider the least squares estimator

ρ̂{d} =

∑T
j=2x

{d}
j−1,Tx

{d}
j,T

∑T
j=2

(
x
{d}
j−1,T

)2
, S3,T ≡ T

(
ρ̂{d} − 1

)
=

U3,T

V3,T
, (2.13)
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obtained from model x{d}
j,T = ρx

{d}
j−1,T + x

{d−1}
j,T , where

U3,T =
1

T2d−1σ2

T∑

j=2

x
{d}
j−1,T

(
x
{d}
j,T − x

{d}
j−1,T

)

=
1
2
X

{d}
T (1)2 − 1

2T2

T∑

j=1

{
X

{d−1}
T

(
j

T

)}2

− 1
T
X

{d}
T (0)X{d−1}

T

(
1
T

)

V3,T =
1

T2dσ2

T∑

j=2

(
x
{d}
j−1,T

)2
=

1
T

T∑

j=1

{
X

{d}
T

(
j

T

)}2

− 1
T

{
X

{d}
T (1)

}2
.

(2.14)

Let us define a continuous function H3(x) = (H31(x),H32(x)) for x ∈ C, where

H31(x) =
1
2
x(1)2, H32(x) =

∫1

0
x(ν)2dν. (2.15)

It is easy to check

U3,T = H31

(
X

{d}
T

)
+ oP (1), V3,T = H32

(
X

{d}
T

)
+ oP (1). (2.16)

Therefore, the CMT leads to L(U3,T , V3,T ) → L(H3(X{d−1})) and

L(S3,T ) = L
(
T
(
ρ̂{d} − 1

))

−→ L
(

H31
(
X{d−1})

H32
(
X{d−1})

)

= L
⎛

⎝(1/2)
{
X{d−1}(1)

}2
∫1
0

{
X{d−1}(ν)

}2
dν

⎞

⎠

= L
⎛

⎝
∫1
0 X

{d−1}(ν)dX{d−1}(ν)
∫1
0

{
X{d−1}(ν)

}2
dν

⎞

⎠.

(2.17)

The equality above is due to (d − 1)-times differentiability of X{d−1}.

3. Testing for Unit Root

In the analysis of empirical financial data, the existence of the unit root is an important
problem. However, as we see in the previous section, the asymptotic results between unit
root and near unit root processes are quite different (the drift term appeared in the limiting
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process of near unit root). Therefore, we consider the following testing problem against the
local alternative hypothesis:

H0 : ρ = 1 H1 : ρ = 1 − β

T
. (3.1)

We should assume that σ2 is a unit to identify the models. Let the statistics S1,T be constructed
in (2.3). Recall that, as T → ∞, under H0,

L(S1,T ) −→ L

⎛
⎜⎝

∫1
0 X(ν)dX(ν) + (1/2)

∫1
0

[{∑∞
l=0αl(ν)

}2 − ∑∞
l=0αl(ν)2

]
dν

∫1
0 X(ν)2dν

⎞
⎟⎠

= L

⎛
⎜⎝

U

V
+

∫1
0

[{∑∞
l=0αl(ν)

}2 − ∑∞
l=0αl(ν)2

]
dν

2
∫1
0 X(ν)2dν

⎞
⎟⎠,

(3.2)

where

U =
∫1

0
X(ν)dX(ν), V =

∫1

0
X(ν)2dν. (3.3)

Since {∑∞
l=0αl(ν)}2,

∑∞
l=0αl(ν)

2 are unknown, we construct a test statistic

Zρ = T
(
ρ̂ − 1

)
+
(1/T)

∑T
j=1û

2
j,T − (1/T)

∑T
t=1f̂(t/T, 0)

2(1/T2)
∑T

j=2x
2
j−1,T

, (3.4)

where ûj,T = xj,T − xj−1,T . A nonparametric time-varying spectral density estimator f̂(u, λ) is
given by

f̂(u, λl) = M

∫
K

(
M

(
λl − μk

))
IN

(
u, μk

)
dμk

≈ 2πM
T

T/4πM+l∑

k=−T/4πM+l

K
(
M

(
λl − μk

))
IN

(
u, μk

)
,

(3.5)

where λl = (2π/T)l − π , l = 1, . . . , T − 1 and μk = (2π/T)k − π , k = 1, . . . , T − 1. Here, IN(u, λ)
is the local periodogram around time u given by

IN(u, λ) =
1

2πN

∣∣∣∣∣

N∑

s=1

h
( s

N

)
û[uT]−N/2+s,Te

−iλs
∣∣∣∣∣

2

, (3.6)
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where [·] denotes Gauss symbol and, for real number a, [a] is the greatest integer that is less
than or equal to a. Furthermore, we employ the following kernel functions and the orders of
bandwidth for smoothing in time and frequency domain, respectively,

K(x) = 6
(
1
4
− x2

)
, x ∈

[
−1
2
,
1
2

]
, h(x) = {6x(1 − x)}1/2, x ∈ [0, 1],

M = T1/6, N = T5/6,

(3.7)

which are optimal in the sense that they minimize the mean squared error of nonparametric
estimator (see Dahlhaus [6]); however, we simply multiply the orders of bandwidth by the
constants equal to one. Then, it can be established that, under H0,

L(
Zρ

) −→ L
(
U

V

)
. (3.8)

We now have to deal with statistics for which numerical integration must be elaborated. Let
R be such a statistic, which takes the form R = U/V . Using Imhof’s [7] formula gives us
distribution function of R,

FR(x) = P(R ≤ x) = P(xV −U ≥ 0) =
1
2
+

1
π

∫1

0

1
s
Im

{
φ(s;x)

}
ds, (3.9)

where φ(s;x) is the characteristic function of xV −U, namely,

φ(−is;x) = E
[
exp{s(xV −U)}] = E

[
exp

{
s

(
x

∫1

0
X(ν)2dν −

∫1

0
X(ν)dX(ν)

)}]
. (3.10)

However, so far we do not have the explicit form of the distribution function of the estimator.
Therefore, we cannot perform a numerical experiment except for the clear simple cases. It
includes the complicated problem in the differential equation and requires one further paper
for solution.

4. Extensions of LSE

In this section, we consider the extensions of LSE ρ̂T for near random walk model yj,T =
ρTyj−1,T + uj,T , ρT = 1 − β/T .
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4.1. Ochi Estimator

Ochi [8] proposed the class of estimators of the following form, which are the extensions of
LSE for autoregressive coefficient:

ρ̂
(θ1,θ2)
T = 1 − β̂(θ1,θ2)

T
=

∑T
j=2yj−1,Tyj,T

∑T−1
j=2 y

2
j,T + θ1y

2
1,T + θ2y

2
T,T

, θ1, θ2 ≥ 0,

S4,T = T
(
ρ̂
(θ1,θ2)
T − 1

)
= −β̂(θ1,θ2) =

U4,T

V4,T
,

(4.1)

where

U4,T =
1

Tσ2

⎧
⎨

⎩

T∑

j=2

yj−1,Tyj,T −
T−1∑

j=2

y2
j,T − θ1y

2
1,T − θ2y

2
T,T

⎫
⎬

⎭

=

{
1
2
(1 − 2θ1) +

β

T
(2θ1 − 1) +

β2

T2 (1 − θ1)

}
Y (0)2

+
1
2
(1 − θ2)YT (1)2 − 1

2
1

Tσ2

T∑

j=1

(
uj,T − β

T
yj−1,T

)2

+
1√
Tσ

{
1 − 2θ1 +

2β
T
(θ1 − 1)

}
u1,TY (0) +

1
Tσ2 (1 − θ1)u′

1,T2,

V4,T =
1

T2σ2

⎧
⎨

⎩

T−1∑

j=2

y2
j,T + θ1y

2
1,T + θ2y

2
T,T

⎫
⎬

⎭

=
1
T

T∑

j=1

YT

(
j

T

)2

+ (θ1 − 1)
1
T
YT

(
1
T

)2

+ (θ2 − 1)
1
T
YT (1)2.

(4.2)

This class of estimators includes LSE ρ̂
(1,0)
T , Daniels’s estimator ρ̂

(1/2,1/2)
T , and Yule-Walker

estimator ρ̂(1,1)T as the special cases.
Define for x ∈ C, H4(x) = (H41(x),H42(x)),

H41(x) =
1
2

{
(1 − 2θ1)x(0)2 + (1 − 2θ2)x(1)2 −

∫1

0

∞∑

l=0

αl(ν)2dν

}
,

H42(x) =
∫1

0
x(ν)2dν,

(4.3)

then we see that H4(x) is continuous and

U4,T = H41(YT ) + oP (1), V4,T = H42(YT ) + oP (1). (4.4)
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From the CMT, we obtain L(U4,T , V4,T ) → L(H4(Y )), and therefore,

L(S4,T ) = L
(
T
(
ρ̂
(θ1,θ2)
T − 1

))
= L

(
−β̂(θ1,θ2)

)
−→ L

(
H41(Y )
H42(Y )

)
, (4.5)

where

H41(Y ) =
1
2

{
(1 − 2θ1)Y (0)2 + (1 − 2θ2)Y (1)2 −

∫1

0

∞∑

l=0

αl(ν)2dν

}

= (1 − 2θ2)
∫1

0
Y (ν)dY (ν) + (1 − θ1 − θ2)Y (0)2

+
1
2

∫1

0

⎡

⎣(1 − 2θ2)

{ ∞∑

l=0

αl(ν)

}2

−
∞∑

l=0

αl(ν)2
⎤

⎦dν,

H42(Y ) =
∫1

0
Y (ν)2dν.

(4.6)

4.2. Another Extension of LSE

Next, we suggest another class of estimators which are also the extensions of LSE. Define for
θ(u)(∈ C) with continuous derivative θ′(u) = (∂/∂u)θ(u),

ρ̂θT = 1 − β̂θ
T

=

∑T
j=2θ

((
j − 1

)
/T

)
yj−1,Tyj,T

∑T
j=2θ

((
j − 1

)
/T

)
y2
j−1,T

, S5,T = T
(
ρ̂θT − 1

)
= −β̂θ =

U5,T

V5,T
, (4.7)

where

U5,T =
1

Tσ2

T∑

j=2

θ

(
j − 1
T

)
yj−1,T

(
yj,T − yj−1,T

)

= −1
2

T∑

j=1

{
θ

(
j

T

)
− θ

(
j − 1
T

)}
YT

(
j

T

)2

+
1
2
θ(1)YT (1)2 − 1

2
θ(0)Y (0)2

− 1
2

1
Tσ2

T∑

j=1

θ

(
j

T

)(
uj,T − β

T
yj−1,T

)2

+
1

2Tσ2
θ

(
1
T

)(
u1,T − β

T
y0,T

)2

+
1

2Tσ2
θ(0)

{
u1,T

(
u1,T + 2y0,T

) − 2β
T
y0,T

(
y0,T + u1,T

)
+
β2

T2
y2
0,T

}
,

V5,T =
1

T2σ2

T∑

j=2

θ

(
j − 1
T

)
y2
j−1,T =

1
T

T∑

j=1

θ

(
j

T

)
YT

(
j

T

)2

− 1
T
θ(1)YT (1)2.

(4.8)

If we take the taper function as θ(u), this estimator corresponds to the local LSE.
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Define for x ∈ C, H5(x) = (H51(x),H52(x)),

H51(x) = −1
2

{∫1

0
θ′(ν)x(ν)2dν − θ(1)x(1)2 + θ(0)x(0)2

}

− 1
2

{∫1

0
θ(ν)

∞∑

l=0

αl(ν)2dν

}
,

H52(x) =
∫1

0
θ(ν)x(ν)2dν,

(4.9)

where θ′(u) = (∂/∂u)θ(u), then we see that H5(x) is continuous and

U5,T = H51(YT ) + oP (1), V5,T = H52(YT ) + oP (1). (4.10)

From the CMT, we obtain L(U5,T , V5,T ) → L(H5(Y )), and therefore,

L(S5,T ) = L
(
T
(
ρ̂θT − 1

))
= L

(
−β̂θ

)
−→ L

(
H51(Y )
H52(Y )

)
≡ L

(
Yθ

)
, (4.11)

where

H51(Y ) = −1
2

{∫1

0
θ′(ν)Y (ν)2dν − θ(1)Y (1)2 + θ(0)Y (0)2

}

− 1
2

{∫1

0
θ(ν)

∞∑

l=0

αl(ν)2dν

}
,

H52(Y ) =
∫1

0
θ(ν)Y (ν)2dν.

(4.12)

The integration by part leads to

Yθ =
(1/2)

{∫1
0 θ(ν)dY

(1)(ν) − ∫1
0 θ(ν)

∑∞
l=0αl(ν)2dν

}

∫1
0 θ(ν)Y (ν)

2dν
, (4.13)

with Y (1)(t) = Y (t)2. Hence, using Ito’s formula,

dY (1)(t) = d
{
Y (t)2

}
= 2Y (t)dY (t) +

{ ∞∑

l=0

αl(t)

}2

dt, (4.14)
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we have

Yθ =

∫1
0 θ(ν)Y (ν)dY (ν) + (1/2)

∫1
0 θ(ν)

[{∑∞
l=0αl(ν)

}2 − ∑∞
l=0αl(ν)2

]
dν

∫1
0 θ(ν)Y (ν)

2dν
. (4.15)

Appendices

In this appendix, we review the extensions of functional central limit theorem to the cases
that innovations are locally stationary processes, which are used for the main results of this
paper.

A. FCLT for Locally Stationary Processes

Hirukawa and Sadakata [9] extended the FCLT results to the unit root processes which have
locally stationary process innovations. Namely, they derived the FCLT for unit root, near unit
root, and general integrated processes with LSP innovations. In this section, we briefly review
these results which are applied in previous sections.

A.1. Unit Root Process with Locally Stationary Disturbance

First, we introduce locally stationary process innovation. Let {uj,T} be generated by the
following time-varying MA (∞)model:

uj,T =
∞∑

l=0

αl

(
j

T

)
εj−l :=

∞∑

l=0

αl

(
j

T

)
Llεj = α

(
j

T
, L

)
εj , (A.1)

where L is the lag-operator which acts as Lεj = εj−1 and α(u, L) =
∑∞

l=0αl(u)Ll, and time-
varying MA coefficients satisfy

∞∑

l=0

l sup
0≤u≤1

|αl(u)| < ∞,
∞∑

l=0

l sup
0≤u≤1

∣∣∣∣
∂

∂u
αl(u)

∣∣∣∣ < ∞. (A.2)

Then, these {uj,T}’s become locally stationary processes (see Dahlhaus [5], Hirukawa and
Taniguchi [10]). Using this innovation process, define the partial sum {xj,T} as

xj,T = xj−1,T + uj,T = x0,T +
j∑

i=1

ui,T , (A.3)

where x0,T = σ
√
TX(0), X(0) ∼ N(γX, δ2

X) and is independent of {εj}.
We consider a sequence {XT} of partial sum stochastic processes in C defined by

XT (t) =
1

σ
√
T
xj,T + T

(
t − j

T

)
1

σ
√
T
uj,T ,

(
j − 1
T

≤ t ≤ j

T

)
. (A.4)
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Now, we define on R × C

h
(1)
t

(
x, y

)
= x + α(t, 1)y(t) −

∫ t

0
α′(ν, 1)y(ν)dν,

α(t, 1) =
∞∑

l=0

αl(t), α′(t, 1) =
∂

∂t
α(t, 1) =

∞∑

l=0

∂

∂t
αl(t).

(A.5)

Then, we can obtain

L(XT ) −→ L
{
h(1)(X(0),W)

}
≡ L(X). (A.6)

The integration by parts leads to

X(t) = X(0) + α(t, 1)W(t) −
∫ t

0
α′(ν, 1)W(ν)dν

= X(0) +
∫ t

0
α(ν, 1)dW(ν),

dX(t) = α(t, 1)dW(t).

(A.7)

Note that the time-varying MA (∞) process uj,T in (A.1) has the spectral representation

uj,T =
∫π

−π
A

(
j

T
, λ

)
eijλdξ(λ), (A.8)

where ξ(λ) is the spectral measure of i.i.d. process {εj} which satisfies εj =
∫π
−π eijλdξ(λ), and

the transfer function A(t, λ) is given by

A(t, λ) =
∞∑

l=0

αl(t)e−ilλ, A(t, 0) =
∞∑

l=0

αl(t) = α(t, 1). (A.9)

Therefore, stochastic differential in (A.7) can be written as

dX(t) = A(t, 0)dW(t). (A.10)

A.2. Near Unit Root Process with Locally Stationary Disturbance

In this section, we consider the following near unit root process {yj,T}with locally stationary
disturbance:

yj,T = ρj,Tyj−1,T + uj,T ,
(
j = 1, . . . , T

)

=
j∏

i=1

ρi,Ty0,T +
j∑

i=1

(
j∏

k=i+1

ρk,T

)
ui,T ,

(A.11)
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where {uj,T} is generated from the time-varying MA (∞) model in (A.1), ρj,T = 1 − (1/T)
β(j/T), β(t) ∈ C[0, 1], y0,T =

√
TσY (0), and Y (0) ∼ N(γY , δY ) is independent of {εj} and

X(0). Then, we define a sequence {YT} of partial sum processes in C as

YT (t) =
1

σ
√
T
yj,T + T

(
t − j

T

)
yj,T − yj−1,T

σ
√
T

,

(
j − 1
T

≤ t ≤ j

T

)
. (A.12)

Define on R
2 × C

h
(2)
t

(
x, y, z

)
= e−

∫ t
0 β(ν)dν

(
y − x

) −
∫ t

0
β(ν)e−

∫ t
ν β(s)dsz(ν)dν + z(t). (A.13)

Then, we can obtain

L(YT ) −→ L
{
h(2)(X(0), Y (0), X)

}
≡ L(Y ). (A.14)

The integration by parts and Ito’s formula lead to

Y (t) = e−
∫ t
0 β(s)ds

(
Y (0) −X(0) −

∫ t

0
β(ν)e

∫ν
0 β(s)dsX(ν)dν

)
+X(t)

= e−
∫ t
0 β(s)ds

(
Y (0) +

∫ t

0
e
∫ν
0 β(μ)dμdX(ν)

)

= e−
∫ t
0 β(s)ds

(
Y (0) +

∫ t

0
e
∫ν
0 β(μ)dμα(ν, 1)dW(ν)

)
,

dY (t) = −β(t)Y (t) + α(t, 1)dW(t)

= −β(t)Y (t) +A(t, 0)dW(t)

= −β(t)Y (t) + dX(t).

(A.15)

A.3. I(d) Process with Locally Stationary Disturbance

Let I(d) process {x{d}
j,T } be generated by

(1 − L)dx{d}
j,T = uj,T ,

(
j = 1, . . . , T

)
, (A.16)

with x
{d}
−d+1,T = · · · = x

{d}
0,T = 0, and {uj,T} being the time-varying MA (∞) process in (A.1). Note

that the relation (A.16) can be rewritten as

(1 − L)x{d}
j,T = x

{d−1}
j,T . (A.17)



Advances in Decision Sciences 15

Then, we construct the partial sum process {X{d}
T } as

X
{d}
T (t) =

1
Td−1

{
1

σ
√
T
x
{d}
j,T + T

(
t − j

T

)
1

σ
√
T
x
{d−1}
j,T

}
, (A.18)

for (j − 1)/T ≤ t ≤ j/T , d ≥ 2, and X
{1}
T (t) ≡ XT (t), where the partial sum process {XT}

is defined in (A.4). Let us first discuss weak convergence to the onefold integrated process
{X{1}} defined by

X{1}(t) =
∫ t

0
X(ν)dν =

∫ t

0

{
X(0) +

∫ν

0
α
(
μ, 1

)
dW

(
μ
)}

dν. (A.19)

For d = 2, the partial sum process in (A.18) becomes

X
{2}
T (t) =

1
T

{
j∑

i=1

XT

(
i

T

)
+ T

(
t − j

T

)
XT

(
j

T

)}
,

(
j − 1
T

≤ t ≤ j

T

)
. (A.20)

Define on C

h
(3)
t (x) =

∫ t

0
x(ν)dν. (A.21)

Then, we can see that

L
(
X

{2}
T

)
−→ L

{
h(3)(X)

}
= L

{
X{1}

}
. (A.22)

For the general integer d, define the d-fold integrated process {X{d}} by

X{d}(t) =
∫ t

0
X{d−1}(ν)dν, X{0}(t) = X(t). (A.23)

From the similar argument in the case of d = 2, we can see that the partial sum process {X{d}
T }

satisfies

L
(
X

{d}
T

)
−→ L

{
h(3)

(
X{d−1}

)}
= L

{
X{d−1}

}
. (A.24)
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