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We propose a semiparametrically efficient estimator for α-risk-minimizing portfolio weights.
Based on the work of Bassett et al. (2004), an α-risk-minimizing portfolio optimization is for-
mulated as a linear quantile regression problem. The quantile regression method uses a pseu-
dolikelihood based on an asymmetric Laplace reference density, and asymptotic properties such
as consistency and asymptotic normality are obtained. We apply the results of Hallin et al. (2008)
to the problem of constructing α-risk-minimizing portfolios using residual signs and ranks and
a general reference density. Monte Carlo simulations assess the performance of the proposed
method. Empirical applications are also investigated.

1. Introduction

Since the first formation of Markowitz’s mean-variance model, portfolio optimization and
construction have been a critical part of asset and fund management. At the same time,
portfolio risk assessment has become an essential tool in risk management. Yet there are well-
known shortcomings of variance as a risk measure for the purposes of portfolio optimization;
namely, variance is a good riskmeasure only for elliptical and symmetric return distributions.

The proper mathematical characterization of risk is of central importance in finance.
The choice of an adequate risk measure is a complex task that, in principle, involves deep
consideration of the attitudes of market players and the structure of markets. Recently, value
at risk (VaR) has gained widespread use, in practice as well as in regulation. VaR has been
criticized, however, because as a quantile is no reason to be convex, and indeed, it is easy to
construct portfolios for which VaR seriously violates convexity. The shortcomings of VaR led
to the introduction of coherent risk measures. Artzner et al. [1] and Föllmer and Schied [2]
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question whether VaR qualifies as such a measure, and both find that VaR is not an adequate
measure of risk. Unlike VaR, expected shortfall (or tail VaR), which is defined as the expected
portfolio tail return, has been shown to have all necessary characteristics of a coherent risk
measure. In this paper, we use α-risk as a risk measure that satisfies the conditions of coherent
risk measure (see [3]). Variants of the α-risk measure include expected shortfall and tail VaR.
The α-risk-minimizing portfolio, introduced as a pessimistic portfolio in Bassett et al. [3], can
be formulated as a problem of linear quantile regression.

Since the seminal work by Koenker and Bassett [4], quantile regression (QR) has
becomemore widely used to describe the conditional distribution of a random variable given
a set of covariates. One common finding in the extant literature is that the quantile regression
estimator has good asymptotic properties under various data dependence structures, and for
a wide variety of conditional quantile models and data structures. A comprehensive guide to
quantile regression is provided by Koenker [5].

Quantile regression methods use a pseudolikelihood based on an asymmetric
Laplace reference density (see [6]). Komunjer [7] introduced a class of “tick-exponential”
distribution, which includes an asymmetric Laplace density as a particular case, and showed
that the tick-exponential QMLE reduces to the standard quantile regression estimator of
Koenker and Bassett [4].

In quantile regression, one must know the conditional error density at zero, and
incorrect specification of the conditional error density leads to inefficient estimators. Yet
correct specification is difficult, because reliable shape information may be scarce. Zhao [8],
Whang [9], and Komunjer and Vuong [10] propose efficiency corrections for the univariate
quantile regression model.

This paper describes a semiparametrically efficient estimation of an α-risk-minimizing
portfolio in place of an asymmetric Laplace reference density (a standard quantile regression
estimator), by using any other α-quantile zero reference density f , based on residual ranks
and signs. A

√
n-consistent and asymptotically normal one-step estimator is proposed. Like

all semiparametric estimators in the literature, our method relies on the availability of a√
n-consistent first-round estimator, a natural choice being the standard quantile regression

estimator. Under correct specifications, they attain the semiparametric efficiency bound
associated with f .

The remainder of this paper is organized as follows. In Section 2, we introduce the
setup and definition of an α-risk-minimizing portfolio and present its equivalent formation
under quantile regression settings. Section 3 contains theoretical results for our one-step
estimator, and Section 4 describes its computation and performance. Section 5 gives empirical
applications, and Section 6 our conclusions.

2. α-Risk-Minimizing Portfolio Formulation

“α-risk” can be considered a coherent measure of risk as discussed in Artzner et al. [1]. The
α-risk of X, say ρνα(X), is defined as

ρνα(X) := −
∫1

0
F←X (t)dνα(t) = − 1

α

∫α

0
F←X (t)dt, α ∈ (0, 1), (2.1)

where να(t) := min{t/α, 1} and F←X (α) := inf{x : FX(x) ≥ α} denote the quantile function of a
random variable X with distribution function FX . Here, we recall the definition of expected
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shortfall and the relationship among the tail riskmeasures in finance. The α-expected shortfall
defined for α ∈ (0, 1) as

ES(α)(X) = − 1
α

∫α

0
F←X

(
p
)
dp (2.2)

can be shown to be a risk measure that satisfies the axioms of a coherent measure of risk. It is
worthmentioning that the expected shortfall is closely related but not coincident to the notion
of conditional value at risk CVaR(α) defined in Uryasev [11] and Pflug [12]. We note that
expected shortfall and conditional VaR or tail conditional expectations are identical “extreme”
risk measures only for continuous distributions, that is,

CVaR(α)(X) = TCE(α)(X) = −E[X | X > F←X (α)
]
. (2.3)

To avoid confusion, in this paper, we use the term “α-risk measure” instead of terms like
expected shortfall, CVaR, or tail conditional expectation.

Bassett et al. [3] showed that a portfolio with minimized α-risk can be constructed via
the quantile regression (QR)methods of Koenker and Bassett [4]. QR is based on the fact that
a quantile can be characterized as the minimizer of some expected asymmetric absolute loss
function, namely,

F←X (α) = argmin
θ

E[(α1{X − θ ≥ 0} + (1 − α)1{X − θ < 0})|X − θ|]

=: argmin
θ

E
[
ρα(X − θ)

]
,

(2.4)

where ρα(u) := u(α − 1{u < 0}), u ∈ R is called the check function (see [5]), and 1A is the
indicator function defined by 1A = 1A(ω) := 1 if ω ∈ A, := 0 if ω /∈ A. To construct the
optimal (i.e., α-risk minimized) portfolio, the following lemma is needed.

Lemma 2.1 (Theorem 2 of [3]). Let X be a real-valued random variable with EX = μ <∞, then

min
θ∈R

E
[
ρα(X − θ)

]
= α

(
μ + ρνα(X)

)
. (2.5)

Then, Y = Y (π) = X′π denotes a portfolio consisting of d different assets X :=
(X1, . . . , Xd)

′ with allocation weights π := (π1, . . . , πd)
′ (subject to

∑d
j=1 πj = 1), and the

optimization problem under study is, for some prespecified expected return μ0,

min
π

ρνα
(
X′π

)
subject to E

(
X′π

)
= μ0, 1′dπ = 1. (2.6)

The sample or empirical analogue of this problem can be expressed as

min
b∈Rd

n+1∑
i=1

ρα(Zi − (Awb)i), (2.7)
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where Xij denotes the jth sample value of asset i, Xi := n−1
∑n

j=1 Xij ,

Z = (Z1, . . . , Zn, Zn+1)′ :=
(
X11, . . . , Xn1, κ

(
X1 − μ0

))′
,

Aw :=

⎡
⎢⎢⎢⎢⎢⎣

1 X11 −X21 · · · X11 −Xd1
...

...
. . .

...
1 X1n −X2n · · · X1n −Xdn

0 κ
(
X1 −X2

)
· · · κ

(
X1 −Xd

)

⎤
⎥⎥⎥⎥⎥⎦

=:

⎡
⎢⎢⎢⎢⎣

W′
1
...

W′
n

W′
n+1

⎤
⎥⎥⎥⎥⎦,

(2.8)

with some κ sufficiently large. The minimizer of (2.7), namely,

β̂
(n)

(α) := argmin
b∈Rd

n+1∑
i=1

ρα(Zi − (Awb)i) = argmin
b∈Rd

n+1∑
i=1

ρα
(
Zi −W′

ib
)

(2.9)

and π̂
(n)
1 (α) := 1 − ∑d

i=2 β̂
(n)
i (α), provides the optimal weights yielding the minimal α-risk.

The large sample properties of β̂
(n)

(α), especially its
√
n-consistency, can be implied from the

standard arguments and assumptions in the QR context (see [5]).

LetW
(n)

and Σ̂
(n)
W be the mean vector and the covariance matrix ofWi which are given

by

W
(n)

:=
1

n + 1

n+1∑
i=1

Wi, Σ̂
(n)
W :=

1
n + 1

n+1∑
i=1

(
Wi −W

(n))(
Wi −W

(n))′
, (2.10)

respectively. Here, the (p, q)th element of Σ̂
(n)
W is

σ̂
(n)
W,pq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

(n + 1)2
if p = q = 1,

n(1 − κ)
(n + 1)2

(
X1 −Xp

)
if q = 1, p = 2, . . . , d,

n(1 − κ)
(n + 1)2

(
X1 −Xq

)
if p = 1, q = 2, . . . , d,

σ̂pq +
n(κ − 1)2
(n + 1)2

(
X1 −Xp

)(
X1 −Xq

)
if p, q = 2, . . . , d,

(2.11)

where

σ̂pq :=
1

n + 1

n∑
i=1

(
X1i −Xpi

)(
X1i −Xqi

) − n

n + 1

(
X1 −Xp

)(
X1 −Xq

)
. (2.12)



Advances in Decision Sciences 5

Let D̂ΣW := diag{σ̂(n)
W,11, . . . , σ̂

(n)
W,dd}. Then the correlation matrix of {Wi}i=1,...,n+1 becomes R :=

D̂−1/2ΣW
Σ̂
(n)
W D̂−1/2ΣW

, and the (p, q)th elemant of R is given by

rpq

=
1 +

(
(n + 1)2/n(κ − 1)2

)
·
(
σ̂pq/

(
X1 −Xp

)(
X1 −Xq

))
(
1+

(
(n+1)2/n(κ−1)2

)
·
(
σ̂pp/

(
X1−Xp

)2
))1/2(

1+
(
(n+1)2/n(κ−1)2

)
·
(
σ̂qq/

(
X1−Xq

)2
))1/2

,

(2.13)

for p, q = 2, . . . , d. The above correlation coefficient can take values close to 1 when n/κ2 is
close to 0 with (X1−Xp)/= 0 and (X1−Xq)/= 0. Hence, the correlation of the estimated portfolio
weights is possibly highly correlated among assets whose samplemeans differ fromX1, while
these problems are ignorable in an asymptotic inference problem if we take κ = O(n1/2).

Thus far, we have seen that the α-risk-minimizing portfolio can be obtained by (2.9),
which was the result of Bassett et al. [3]. In what follows, we show that semiparametrically

efficient inference of the optimal weights β̂
(n)

(α) is feasible. The quantity estimated by (2.9)
can be regarded as a QR coefficient β(α), defined by

F←Zi
(α | wi) := F←Zi|Wi=wi

(α) =: w′iβ(α), (2.14)

where F←
X|S(·) denotes a conditional quantile function, that is, F←

X|S(α) := inf{x : P(X ≤
x|S) ≥ α}. Note that here the QR model (2.14) has a random coefficient regression
(RCR) interpretation of the form Zi = W′

iβ(Ui) with componentwise monotone increasing
function β and random variables Ui that are uniformly distributed over [0, 1], that is,
Ui ∼ Uniform [0, 1] (see [5]). Here, a choice such that β(u) = [β1(u), β2(u), . . . , βd(u)]

′ :=
[b1 +F←ξ (u), b2, . . . , bd]

′ with Fξ the distribution function of some independent and identically
distributed (i.i.d.) n-tuple (ξ1, . . . , ξn) yields

Zi = W′
iβ(Ui) = W′

iβ
(
Fξ(ξi)

)
= W′

i

⎡
⎢⎢⎢⎣

b1 + ξi
b2
...
bd

⎤
⎥⎥⎥⎦. (2.15)

Hence, recalling that the first component ofWi is 1, it follows that, for any fixed α ∈ [0, 1], the
QR coefficient β(α) can be characterized as the parameter b ∈ R

d of a model such as

Zi = W′
ib + ξi, ξi

iid∼ G, (2.16)

where the density g of G is subject to

g ∈ Fα :=

{
f :

∫0

−∞
f(x)dx = α = 1 −

∫∞
0
f(x)dx

}
, (2.17)
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that is, G←(α) = 0. Let us describe this model as (Z(n),A(n),P(n)
Q ), with P(n)

Q := {P (n)
b,g | b ∈

R
d, g ∈ Fα}, where P (n)

b,g denotes the distribution of an observation {Zi}ni=1. This model (2.16)
is a fixed-α submodel of (2.14) and is the parametric submodel throughwhichwewill achieve
semiparametric efficiency.

The model (2.16) is a quantile-restricted linear regression model. But here we have
no knowledge about the true density g, other than that it belongs to Fα, which allows us
to identify b. So, we arbitrarily choose f from Fα and call it the “reference density” and
correspondingly define a “reference model”

Zi = W′
ib + ei, ei

iid∼ F, (2.18)

where the density f of F is subject to f ∈ Fα. The goal of the next section is to construct an
asymptotically efficient version of β̂n(α) based on some feasible f ∈ Fα, that is, attaining the
semiparametric lower bound at correctly specified density f = g that nevertheless remains√
n-consistent under a misspecified density (f /= g).

3. Semiparametrically Efficient Estimation

The procedure that we will apply here to achieve semiparametric efficiency is based on the
invariance principle, as introduced by Hallin and Werker [13]. To this end, first we should
have locally asymptotic normality (LAN; see, e.g., van der Vaart [14]) for a parametric
submodel P (n)

b,g , namely,

log
P
(n)
b+h/

√
n,g

P
(n)
b,g

= h′Δ(n)
b;g +

1
2
h′Ib;gh + oP (1), h ∈ R

d,

Δ(n)
b;g

d−→ N(
0, Ib;g

)
,

(3.1)

where all the stochastic convergences are taken under Pb,g := P
(∞)
b,g . Here, the random vector

Δ(n)
b;g is called the central sequence, and the positive definite matrix Ib;g is the information matrix.

To ensure the LAN condition for model (2.18), the following assumption is required.

Assumption 3.1. The reference density f has finite Fisher information for location:

0 < If :=
∫∞
−∞

ϕf(x)2f(x)dx =
∫1

0
ϕf(F←(u))2du <∞, where ϕf(x) :=

−f ′(x)
f(x)

. (3.2)

Assumption 3.2. The regression vectors Wi satisfy, under Pb,g ,

W
(n) P−→ μW, Σ̂

(n)
W

P−→ ΣW, (3.3)

for some vector μW and positive definite ΣW, where W
(n)

and Σ̂
(n)
W are defined by (2.10).
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Then, by Theorem 2.1 and Example 4.1 of Drost et al. [15], model (2.18) satisfies the
uniform LAN condition for any bn of the form b + O(n−1/2), with central sequence and
information matrix

Δ(n)
bn;f

=
1√
n + 1

n+1∑
i=1

ϕf(ebn,i)Wi, I∗;f = If
(
ΣW + μWμ′W

)
, (3.4)

where ebn,i denotes the residual (i.e., ebn,i := Zi−W′
ibn). Consequently, we have the contiguity

P
(n)
bn+h/

√
n,f

� P
(n)
bn,f

, and of course P
(n)
bn,f

� P
(n)
b,f as well. Recall that the contiguity P (n) � Q(n)

means that for any sequence S(n), if P (n)(S(n)) → 0, thenQ(n)(S(n)) → 0 also. The reason why
we have specified uniform LAN, rather than LAN at single b, is the one-step improvement,
which will be discussed later.

By following Hallin and Werker [13], a semiparametrically efficient procedure can
be obtained by projecting Δ(n)

bn;f
on some σ-field to which the generating group for {P (n)

bn,f
|

f ∈ Fα} becomes maximal invariant (see, e.g., Schmetterer [16]). For the quantile-restricted
regressionmodel (2.16), such a σ-field is studied byHallin et al. [6] and found to be generated
by signs and ranks of the residuals. Here, let us denote the sign of a residual as Sbn,i, the rank
of a residual as R(n)

bn,i
, and the σ-field generated by them as

B(n)bn
:= σ

(
Sbn,1, . . . , Sbn,n;R

(n)
bn,1

, . . . , R
(n)
bn,n

)
. (3.5)

Then, “good” inference should be based on

Δ
∼
(n)

bn,f
:= E(n)

bn,f

[
Δ(n)

bn,f
| B(n)bn

]
=

1√
n + 1

n+1∑
i=1

E(n)
bn,f

[
ϕf(ebn,i) | B(n)bn

]
Wi

=
1√
n + 1

n+1∑
i=1

E(n)
bn,f

[
ϕf[F←(Ubn,i)] | B(n)bn

]
Wi

=
1√
n + 1

n+1∑
i=1

ϕf[F←(Vbn,i)]Wi + oP (1),

(3.6)

where Ubn,i := F(ebn,i) is i.i.d. uniform on [0, 1] under P (n)
bn,f

and hence approximated by

V
(n)
bn,i

:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α ·
R

(n)
bn,i

N
(n)
bn,L

+ 1
if R(n)

bn,i
≤N

(n)
bn,L

,

α + (1 − α) ·
R

(n)
bn,i
−N(n)

bn,L

n −N(n)
bn,L

+ 1
otherwise,

(3.7)

with N
(n)
bn,L

:= #{i ∈ {1, . . . , n} | Sbn,i ≤ 0}. In short, we are first rewriting the residual ebn,i as
F←(Ubn,i)with realizationsUbn,i of a [0, 1]-uniform random variable, and then approximating
those Ubn,i as V

(n)
bn,i

given {N(n)
bn,L

;R(n)
bn,1

, . . . , R
(n)
bn,n
}.
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Using this rank-based central sequence, we can construct the one-step estimator (see,
e.g., Bickel [17]; Bickel et al. [18]) as follows.

Definition 3.3. For any sequence of estimators θ̂n, the discretized estimator θn is defined to be
the nearest vertex of {θ : θ = (1/

√
n)(i1, i2, . . . , id)

′, ij : integers}.

Definition 3.4. Let β
(n)

(α) be the discretized version of β̂
(n)

(α) defined at (2.9). We define the
(rank-based) one-step estimator of b based on reference density f ∈ Fα as

b̂(n)
f := β

(n)
(α) + Σ̂

−1
fg

Δ
∼
(n)

β
(n)

(α),f√
n

, with Σ̂fg := ÎfgΣW −
f(0)
1 − αμ̂

−
ϕg
μWμ′W, (3.8)

where Îfg and μ̂−ϕg
are consistent estimates of

Ifg :=
∫1

0
ϕf[F←(u)]ϕg[G←(u)]du, (3.9)

μ−ϕg
:= E

[
ϕg

[
g←(U)

] | U ≤ α
] (

=
−g(0)
α

)
, (3.10)

respectively.

Consistent estimates Îfg and μ̂−ϕg
can be obtained in the manner of Hallin et al. [19],

which is done without the kernel estimation of g, though here we omit the details.

Lemma 3.5 (Section 4.1 of [6]). Under Pb,g with g ∈ Fα,

√
n
(
b̂(n)
f − b

)
d−→ N

(
0, Σ−1fgΣffΣ−1fg

)
. (3.11)

Therefore, the one-step estimator b̂(n)
f

defined by (3.8) for b is semiparametrically efficient at f = g.

In our original notation, the above statement can be rewritten as, for some α ∈ (0, 1)

fixed,
√
n(b̂(n)

f
− β(α)) d→ N(0, Σ−1

fg
ΣffΣ−1fg).

Recall that the standard QR estimator, defined at (2.9), is asymptotically normal (see
Koenker [5]):

√
n

(
β̂
(n)

(α) − β(α)
)

d−→ N
(
0, D−1

)
, (3.12)

where

D :=
g2(0)

α(1 − α)D0, with D0 = lim
n→∞

1
n + 1

n+1∑
i=1

WiW′
i. (3.13)
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Denote the true portfolio weight with respect to risk probability α by π = (1 − 1′d−1π2(α),
π2(α)

′)′, where π2(α) = (π2(α), . . . , πd(α))
′, and its standard quantile regression and our one-

step estimators by π̂(QR) := (1 − 1′
d−1β̂

(n)
2 (α), β̂

(n)
2 (α)′)

′
and π̂ (OS)

f
:= (1 − 1′

d−1b̂
(n)
f,2 , b̂

(n)′

f,2 )
′
, respec-

tively. Denote the block matrix of the covariance matrix of standard quantile and one-step
estimators by

D−1 =
(
D11 D12

D′12 D22

)
, Σ−1fgΣffΣ−1fg =

(
Σ11 Σ12

Σ′12 Σ22

)
, (3.14)

where submatrices D22 and Σ22 are (d − 1) × (d − 1) symmetric matrices for the covariance
of portfolio weights π2. Then we obtain the variances of the α-risk-minimizing portfolio
constructed by the standard quantile, and the one-step estimators are stated in the following
proposition. Since direct evaluation gives the following statement, we skip its proof.

Proposition 3.6. The asymptotic conditional variances of an α-risk-minimizing portfolio using the
standard quantile regression and one-step estimators given at X = x are, respectively,

Var
(
X′π̂(QR) | X = x =

[
x1, x′2

]′) = x2
1 · tr

[
1d−11′d−1D22

]
+ 2x1 · tr

[
1d−1x′2D22

]
+ tr

[
x2x′2D22

]
,

Var
(
X′π̂(OS)

f | X = x =
[
x1, x′2

]′) = x2
1 · tr

[
1d−11′d−1Σ22

]
+ 2x1 · tr

[
1d−1x′2Σ22

]
+ tr

[
x2x′2Σ22

]
,

(3.15)

where x2 = (x2, . . . , xd)
′.

For any positive definite matrices A and B, we say A ≤ B if B − A is nonnegative
definite. To compare the efficiency of the standard quantile regression estimator and the one-
step estimator, we need to show that Σ−1fgΣffΣ−1fg ≤ D−1. To see this, as in Section 3 of Koenker
and Zhao [20], let us consider

Σ :=

(
ΣfgΣ−1ffΣfg Σfg

Σfg ΣfgD−1Σfg

)
. (3.16)

Note that Σ is a nonnegative definite matrix. If Σ−1fgDΣ−1fg is a positive definite, then there exists
orthogonal matrix P, such that

P′ΣP =

(
ΣfgΣ−1ffΣfg 0

0 ΣfgD−1Σfg − Σff

)
, (3.17)
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so ΣfgD−1Σfg − Σff is nonnegative definite. Hence, D−1 − Σ−1fgΣffΣ−1fg is nonnegative definite
if Σfg is nonsingular. This result assures that the one-step estimator is asymptotically more
efficient than the standard quantile regression estimator. From this result, it is easy to see that

Var
(
X′π̂(OS)

f
| X = x

)
≤ Var

(
X′π̂(QR) | X = x

)
. (3.18)

Also, by taking expectation on both sides, the same inequality holds for unconditional
variances.

4. Numerical Studies

In this section, we examine the finite sample properties of the proposed one-step estimator
described in Section 3 for the cases where α = 0.1 and 0.5. Our simulations are performed
with two data generating processes to focus on the underlying true density g and how the
choice of the reference density f might affect the finite sample performances.

The first data-generating process (DGP1) is the same as that investigated by Bassett
et al. [3]. For DGP1, we consider the construction of an α-minimizing portfolio from four
independently distributed assets, that is, asset 1 is normally distributed with mean 0.05 and
standard deviation 0.02. Asset 2 is a reversed χ2

3 density with location and scale chosen so
that its mean and variance are identical to those of asset 1. Asset 3 is normally distributed
with mean 0.09 and standard deviation 0.05. Finally, asset 4 has a χ2

3 density with identical
mean and standard deviation to asset 3. DGP2 is a four-dimensional normal distribution
with mean vectors the same as those of DGP1, and covariance matrix Σ = [σij]i,j=1,...,4 with
diagΣ = (0.02, 0.02, 0.05, 0.05) and σi,j for i /= j is σiiσjjρ. Here, we set ρ = 0.5, which indicates
that the asset returns have correlation 0.5. Notice that both DGP1 and DGP2 have the same
mean and variance structures. The underlying true conditional densities of u = Z − A′wb for
DGP1 and DGP2 are a mixture of the normal χ2

3 and reversed χ2
3 distribution and the normal

distributions, respectively. A simulation of the estimator, for sample, size n = 100, 500, and
1000 consists of 1000 replications. We choose prespecified expected return μ0 at 0.07.

For each scenario, we computed standard quantile regression estimates β̂
(n)

(α) with
corresponding portfolio weights π̂ (QR) = (1 −∑d

j=2 β̂
(n)
j (α), β̂(n)2 (α), . . . , β̂(n)

d
(α)), and our one-

step estimates are defined by (3.8) for various choices of the reference density f and actual
density g in the α-minimizing portfolio allocation problem.

To make the problem a pure location model, we set the variance of the estimated

residual to have one, that is, û = ũ/
√
Var(ũ), where ũ = [ũi]i=1,...,n+1 = Zi − (Awb

(n)
(α))i.

The true density g can be estimated by the kernel estimator for DGP1,

ĝ(u) =
1

(n + 1)h

n+1∑
i=1

K

(
u − ûi

h

)
, (4.1)

where K is a kernel function, and h is a bandwidth. The first derivative g ′(u) is estimated by

ĝ ′(u) =
1

(n + 1)h2

n+1∑
i=1

K′
(
u − û
h

)
. (4.2)
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As for the DGP2, the actual density g becomes normal because the portfolio is constructed by
normally distributed returns. We use the normal distribution (N), the asymmetric Laplace
distribution (AL), the logistic distribution (LGT), and the asymmetric power distribution
(APD)with λ = 1.5 for the reference density f .

The density function of the asymmetric power distribution introduced by Komunjer
[7] is given by

f(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ1/λ
α,λ

Γ(1 + 1/λ)
exp

[
−δα,λ

αλ
|u|λ

]
if u ≤ 0,

δ1/λ
α,λ

Γ(1 + 1/λ)
exp

[
− δα,λ

(1 − α)λ
|u|λ

]
if u > 0,

(4.3)

where 0 ≤ α < 1, λ > 0, and

δα,λ =
2αλ(1 − α)λ
αλ + (1 − α)λ

. (4.4)

When α = 0.5, the APD pdf is symmetric around zero. In this case, the APD density reduces
to the standard generalized power distribution (GPD) [21, pages 194-195]. Special cases of
the GPD include uniform (λ =∞), Gaussian (λ = 2), and Laplace (λ = 1) distributions. When
α/= 0.5, the APD pdf is asymmetric. Special cases include asymmetric Laplace (λ = 1), the
two-piece normal (λ = 2) distributions.

For a given sample size, we compute simulated mean and standard deviation of π̂ (QR)

and π̂(OS)
f

and the relative efficiency Var(π̂(OS)
f,i

)/Var(π̂(QR)
i ) for i = 1, . . . , 4.

Table 1 gives the results of the relative efficiencies for DGP 1. When α = 0.1, we see
that the efficiency gains of one-step estimators with asymmetric Laplace reference density
are large compared with other reference densities with n = 1000, while these efficiency gains
are less when sample size is n = 100. When α = 0.5, relative efficiency of assets 3 and 4
with asymmetric Laplace reference density is minimum, while for assets 1 and 2, relative
efficiency with normal reference density is minimum. This is because of the covariance

structure of Σ̂
(n)
W defined by (2.10). As can be seen in Section 2, if μ1 /=μp and μ1 /=μq, the

(p, q)th element of the correlation matrix defined by (2.13) has a value close to unity. In this
case, the asymptotic variance of the usual quantile regression estimator becomes large, which
leads to unsatisfactorily large variances in assets 3 and 4. However, the asymptotic variance
of our one-step estimator does not have such problems.

Table 2 gives the results of the relative efficiencies for DGP2. In line with efficiency
at a correctly specified reference density f = N, we see that the relative efficiency is
minimal for all assets and sample sizes with α = 0.1 and 0.5. Even though we misspecify
the reference density f /=N, there exists some sort of efficiency gain except for assets 1 and
2 of the asymmetric Laplace reference density with n = 100 and α = 0.1. Efficiency gains
for the normal reference density and logistic reference density are almost the same because
the underlying true density is a symmetric normal distribution, and the asymmetric power
reference density with λ = 1.5 outperforms the asymmetric Laplace reference density.

Figure 1 plots the kernel densities for the estimated portfolio weights for DGP2 with
α = 0.5 and n = 1000. We see that the standard quantile regression estimators have long
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Table 1: Var(π̂(OS)
f

)/Var(π̂ (QR)) for DGP 1 [3]: in this case, we estimate an unknown g (which must be
N-χ2 mixed) using the kernel method.

f
π

π1 (.1) π2 (.1) π3 (.1) π4 (.1) π1 (.5) π2 (.5) π3 (.5) π4 (.5)

n = 100
AL 1.1054 1.1088 1.0036 1.0082 1.0211 1.0193 0.9925 0.9570
N 0.9773 0.9826 0.9093 0.9331 0.9412 0.9383 0.9227 0.9490
LGT 0.9731 0.9788 0.9017 0.9289 0.9458 0.9436 0.9228 0.9463
APD1.5 0.9851 0.9838 0.9827 0.9893 0.9517 0.9492 0.9273 0.9471

n = 500
AL 1.0266 1.0068 0.9549 0.9871 0.9596 0.9563 0.3626 0.5478
N 0.9762 0.9778 0.8966 0.9340 0.9186 0.9138 0.7522 0.8285
LGT 0.9739 0.9769 0.8893 0.9301 0.9255 0.9225 0.7277 0.8102
APD1.5 0.9765 0.9712 0.9773 0.9896 0.9291 0.9262 0.6922 0.7842

n = 1000
AL 0.8702 0.9084 0.5621 0.8193 0.9150 0.8985 0.2225 0.3614
N 0.9416 0.9485 0.8680 0.9112 0.7850 0.7714 0.4019 0.5214
LGT 0.9453 0.9532 0.8640 0.9085 0.8101 0.7981 0.4043 0.5199
APD1.5 0.9290 0.9296 0.9242 0.9645 0.8206 0.8077 0.3572 0.4806

Table 2: Var(π̂(OS)
f

)/Var(π̂ (QR)) for DGP2 (multinormal). In this case, residual density is a normal
distribution. Hence, we adopt g =N.

f
π

π1 (.1) π2 (.1) π3 (.1) π4 (.1) π1 (.5) π2 (.5) π3 (.5) π4 (.5)

n = 100
AL 1.0890 1.0996 0.7311 0.7221 0.7428 0.7584 0.6652 0.6370
N 0.5891 0.6013 0.4105 0.4199 0.5896 0.6010 0.5451 0.5347
LGT 0.6153 0.6280 0.4113 0.4229 0.6026 0.6154 0.5503 0.5356
APD1.5 0.8512 0.8603 0.6120 0.6069 0.6076 0.6204 0.5580 0.5420

n = 500
AL 0.8970 0.8814 0.7742 0.7402 0.6944 0.7030 0.6235 0.5965
N 0.5090 0.4993 0.4883 0.4648 0.5618 0.5666 0.5169 0.4949
LGT 0.5184 0.5096 0.4892 0.4678 0.5703 0.5761 0.5321 0.5086
APD1.5 0.7271 0.7183 0.6746 0.6423 0.5723 0.5784 0.5317 0.5099

n = 1000
AL 0.8836 0.8633 0.8015 0.8712 0.8778 0.8612 0.6726 0.7390
N 0.4800 0.4655 0.4861 0.5095 0.7071 0.6944 0.5746 0.6261
LGT 0.4897 0.4750 0.4939 0.5198 0.7238 0.7094 0.5831 0.6347
APD1.5 0.7144 0.7041 0.6617 0.7088 0.7261 0.7126 0.5845 0.6395

tails on both sides for all assets, whereas one-step estimators have a narrower interval
and higher peak at the true weight. This confirms that the one-step estimators are more
semiparametrically efficient than the standard ones.
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Figure 1: Kernel density plots for the portfolio weights. Panels (a) to (d) correspond to the kernel
density for assets 1 to 4, respectively. The density shows the standard quantile estimator (QR; solid
line); the estimator with an asymmetric Laplace distribution reference density (AL; dashed line);
normal distribution (N; dotted line); logistic distribution (LGT; dotted-dashed line); asymmetric power
distribution (APD; long dashed line).

5. Empirical Application

We apply our methodology to weekly log returns of the 96 stocks of the TOPIX large
100 index. The samples run from January 5, 2007, to December 2, 2011, for a total of 257
observations. The stock prices are adjusted to take into account events such as stock splits on
individual securities. Preliminary tests reveal that most log return series have high values of
kurtosis and negative values of skewness in general, which indicates that the log returns are
non-Gaussian.

We computed the optimal portfolio allocations for α = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and
0.5. We set κ = 1000 and μ = −0.002, which is the third quartile of the average log-
return distribution. For the first-round estimates, we used the standard quantile regression
estimator, and for the one-step estimates, we chose a normal distribution as a reference
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Figure 2: Empirical cumulative distribution function of the α-risk-minimizing portfolio based on the
standard quantile regression estimator (thin line) and one-step estimator (thick line) for α = 0.1, 0.2, 0.3,
and 0.5, which corresponds to (a) to (d), respectively.

density. Since we do not have enough information about the shape of the portfolio
distributions for the various choices of α, the actual density g is estimated by the kernel
method.

Figure 2 plots the cumulative distribution functions of the α-risk-minimizing
portfolios obtained by the standard quantile regression estimates and one-step estimates for
α = 0.1, 0.2, 0.3, and 0.5. Summary statistics for the distributions of the different portfolios are
reported in Table 3.

Figure 2 and Table 3 clearly show that the optimal α-risk-minimizing portfolio
manages to reduce the occurrence of events in the left tail when α is small for both standard
QR estimates and one-step estimates. The standard deviation of the one-step estimates of an
α-minimizing portfolio is smaller than that of the standard QR estimates. We can also observe
that the range of a constructed portfolio with one-step estimates is much smaller than that
of standard QR estimates, due to the semiparametric efficiency properties of our one-step
estimators. When α becomes large, the difference in the standard deviation of the constructed
portfolio between standard QR estimates and one-step estimates tends to become large.
Hence, efficiency gains are large for α = 0.5, which is the mean absolute deviation portfolio.
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Figure 3: Efficient frontiers for an α-risk-minimizing portfolio based on the standard quantile regression
estimator and the one-step one. The lines with triangles and circles represent the pair of obtained standard
deviation andmean for the portfolio with α = 0.5 and 0.1, respectively. The solid and dashed lines represent
risks and returns for the standard quantile regression and one-step portfolios, respectively.

Table 3: Summary statistics for the α-minimizing-portfolios using quantile regressionmethods X′π̂(QR) and
one-step estimates X′π̂(OS)

f
.

α
X′π̂(QR) X′π̂(OS)

f

Min Max Mean Std. dev. Q(α) Min max Mean Std. dev. Q(α)

0.01 −0.0210 0.0557 −0.0020 0.0187 −0.0210 −0.0210 0.0555 −0.0020 0.0186 −0.0209
0.05 −0.0192 0.0756 −0.0020 0.0196 −0.0192 −0.0202 0.0733 −0.0020 0.0192 −0.0194
0.1 −0.0190 0.0649 −0.0020 0.0196 −0.0190 −0.0227 0.0606 −0.0020 0.0189 −0.0191
0.2 −0.0959 0.0708 −0.0020 0.0189 −0.0149 −0.0944 0.0624 −0.0020 0.0179 −0.0146
0.3 −0.1247 0.0512 −0.0020 0.0171 −0.0078 −0.1200 0.0487 −0.0020 0.0163 −0.0077
0.4 −0.1307 0.0545 −0.0020 0.0173 −0.0038 −0.1230 0.0482 −0.0020 0.0162 −0.0040
0.5 −0.1011 0.0605 −0.0020 0.0171 −0.0012 −0.0958 0.0537 −0.0020 0.0158 −0.0013
Note: the corresponding summary statistics of the TOPIX log returns for minimum, maximum, mean, and standard
deviation are −0.2202, 0.0924, −0.0032, and 0.0328, respectively. Also, quantiles for the TOPIX log returns for α =
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 are −0.0981, −0.0536, −0.0158, −0.0068, and 0.0006, respectively.

Another interesting finding is that the standard QR-constructed portfolios have high-density
peaks at the required quantiles for all values of α, whereas the portfolio constructed by one-
step estimates has a quite moderate density reduction at the required quantiles.

Consistent with economic intuition, higher risk aversion is associated with a shorter
left tail. In the case where α ≤ 0.1, maximum loss is limited to less than −0.02. This result
is particularly striking given that the sample includes the stock market crash of October
2008 due to the US subprime mortgage crisis and the bankruptcy of Lehman Brothers, which
resulted in a weekly loss of more than −0.220 for TOPIX. The sample also includes the stock
market crash of March 2011 due to the catastrophic earthquake and tsunami that hit Japan,
which resulted in a weekly loss of −0.104.

Figure 3 presents empirical efficient frontiers corresponding to the standard quantile
regression-based portfolios and one-step estimates of a portfolio with α = 0.1 and 0.5.



16 Advances in Decision Sciences

Figure 3 clearly illustrates that the standard quantile regression-based portfolio is completely
inefficient, far from the one-step frontier.

6. Summary and Conclusions

This paper considered a semiparametrically efficient estimation of an α-risk-minimizing
portfolio. A one-step estimator based on residual signs and ranks was proposed, and
simulations were performed to compare the finite sample relative efficiencies for the standard
quantile regression estimators and the one-step one. These simulations confirmed our
theoretical findings. An empirical application to construct a portfolio using 96 Japanese stocks
was investigated and confirms that the one-step α-risk-minimizing portfolio has smaller
variance that is obtained by the standard quantile regression estimator.

Further research topics include (1) construction of portfolios without short-sale
constraints and (2) extending the results to the covariates of time series with heteroskedastic
returns. For the former, we impose nonnegativity of the weights by using a penalty function
containing a term that diverges to infinity as any of the weights becomes negative (see [22]).
For the latter, we refer to Hallin et al. [6] and Taniai [23].
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