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Variance Inflation Factors (VIFs) are reexamined as conditioning diagnostics for models with intercept, with and without centering
regressors to their means as oft debated. Conventional VIFs, both centered and uncentered, are flawed. To rectify matters, two types
of orthogonality are noted: vector-space orthogonality and uncorrelated centered regressors.The key to our approach lies in feasible
Reference models encoding orthogonalities of these types. For models with intercept it is found that (i) uncentered VIFs are not
ratios of variances as claimed, owing to infeasible Reference models; (ii) instead they supply informative angles between subspaces
of regressors; (iii) centered VIFs are incomplete if not misleading, masking collinearity of regressors with the intercept; and (iv)
variance deflation may occur, where ill-conditioned data yield smaller variances than their orthogonal surrogates. Conventional
VIFs have all regressors linked, or none, often untenable in practice. Beyond these, our models enable the unlinking of regressors
that can be unlinked, while preserving dependence among those intrinsically linked. Moreover, known collinearity indices are
extended to encompass angles between subspaces of regressors. To reaccess ill-conditioned data, we consider case studies ranging
from elementary examples to data from the literature.

1. Introduction

Given {Y = X𝛽+𝜖} of full rank with zero-mean, uncorrelated
and homoscedastic errors, the 𝑝 equations {X󸀠X𝛽 = X󸀠Y}
yield the OLS estimators 𝛽̂ for 𝛽 = [𝛽

1
, . . . , 𝛽

𝑝
]
󸀠 as unbiased

with dispersion matrix 𝑉(𝛽̂) = 𝜎
2V and V= [𝑣

𝑖𝑗
] = (X󸀠X)

−1.
Ill-conditioning, as near dependent columns of X, exerts
profound and interlinked consequences, causing “crucial
elements of X󸀠X to be large and unstable,” “creating inflated
variances”; estimates excessive in magnitude, irregular in
sign, and “very sensitive to small changes inX”; and unstable
algorithms having “degraded numerical accuracy.” See [1–3]
for example.

Ill-conditioning diagnostics include the condition number
𝑐
1
(X󸀠X), the ratio of its largest to smallest eigenvalues, and

the Variance Inflation Factors {VIF(𝛽
𝑗
) = 𝑢
𝑗𝑗
𝑣
𝑗𝑗
; 1 ≤ 𝑗 ≤ 𝑝}

with U = X󸀠X, that is, ratios of actual (𝑣
𝑗𝑗
) to “ideal” (1/𝑢

𝑗𝑗
)

variances, had the columns ofX been orthogonal. On scaling
the latter to unit lengths and ordering {VIF(𝛽

𝑗
) = 𝑣

𝑗𝑗
; 1 ≤

𝑗 ≤ 𝑝} as {𝑉
1
≥ 𝑉
2
≥ ⋅ ⋅ ⋅ ≥ 𝑉

𝑝
}, 𝑉
1
is identified in [4] as

“the best single measure of the conditioning of the data.” In
addition, the bounds 𝑉

1
≤ 𝑐
1
(X󸀠X) ≤ 𝑝(𝑉

1
+ ⋅ ⋅ ⋅ + 𝑉

𝑝
) of [5]

apply also in stepwise regression as in [6–9].
Users deserve to be apprised not only that data are

ill conditioned, but also about workings of the diagnostics
themselves. Accordingly, we undertake here to rectify long-
standing misconceptions in the use and properties of VIFs,
necessarily retracing through several decades to their begin-
nings.

To choose a model, with or without intercept, is sub-
stantive, is specific to each experimental paradigm, and is
beyond the scope of the present study. Whatever the choice,
fixed in advance in a particular setting, these models follow
on specializing 𝑝 = 𝑘 + 1, then 𝑝 = 𝑘, respectively, as
𝑀
0
: {Y = X

0
𝜃 + 𝜖} with intercept, and M

𝑤
: {Y = X𝛽 + 𝜖}

without, where X
0
= [1
𝑛
,X]; X = [X

1
,X
2
, . . . ,X

𝑘
] comprise

vectors of regressors; and 𝜃
󸀠

= [𝛽
0
,𝛽
󸀠

] with 𝛽
0
as inter-

cept and 𝛽󸀠 = [𝛽
1
, . . . , 𝛽

𝑘
] as slopes. The VIFs as defined

are essentially undisputed for models in 𝑀w, as noted in
[10], serving to gage effects of nonorthogonal regressors
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as ratios of variances. In contrast, a yet unresolved debate
surrounds the choice of conditioning diagnostics for mod-
els in 𝑀

0
, namely, between uncentered regressors giving

VIF
𝑢
s for [𝛽

0
, 𝛽
1
, . . . , 𝛽

𝑘
] and regressors X

𝑖
centered to their

means, giving VIF
𝑐
s for [𝛽

1
, . . . , 𝛽

𝑘
]. Specifically, {VIF

𝑢
(𝛽
𝑗
) =

𝑢
𝑗𝑗
𝑣
𝑗𝑗
; 𝑗 = 0, 1, . . . , 𝑘} on taking U = X󸀠

0
X
0
and V =

(X󸀠0X0)
−1. In contrast, letting R = [𝑅

𝑖𝑗
] be the correlation

matrix for 𝛽̂ = [𝛽
1
, . . . , 𝛽

𝑘
]
󸀠

and R−1 = [𝑅
𝑖𝑗
] its inverse, then

centered versions are {VIF
𝑐
(𝛽
𝑗
) = 𝑅
𝑗𝑗
; 1 ≤ 𝑗 ≤ 𝑘} for slopes

only.
It is seen here that (i) these differ profoundly in regard

to their respective concepts of orthogonality; (ii) objectives
and meanings differ accordingly; (iii) sharp divisions trace to
muddling these concepts; and (iv) this distinction assumes
a pivotal role here. Over time a large body of widely held
beliefs, conjectures, intrinsic propositions, and conventional
wisdom has accumulated, much from flawed logic, some to
be dispelled here. The key to our studies is that VIFs, to
be meaningful, must compare actual variances to those of
an “ideal” second-moment matrix as reference, the latter to
embody the conjectured type of orthogonality. This differs
between centered and uncentered diagnostics and for both
types requires the reference matrix to be feasible. An outline
follows.

Our undertaking consists essentially of four parts.
The first is a literature survey of some essentials of ill-
conditioning, to include the divide between centered and
uncentered diagnostics and conventional VIFs. The struc-
ture of orthogonality is examined next. Anomalies in
usage, meaning, and interpretation of conventional VIFs are
exposed analytically and through elementary and transparent
case studies. Long-standing but ostensible foundations in
turn are reassessed and corrected through the construction
of “Reference models.” These are moment arrays constrained
to encode orthogonalities of the types considered. Neither
array returns the conventional VIF

𝑢
s nor VIF

𝑐
s. Direct

rules for finding the amended Reference models are given,
preempting the need for constrained numerical algorithms.
Finally, studies of ill-conditioned data from the literature are
reexamined in light of these findings.

2. Preliminaries

2.1. Notation. Designate byR𝑝 the Euclidean 𝑝-space. Matri-
ces and vectors are set in bold type; the transpose and inverse
of A are A󸀠 and A−1; and A(𝑖𝑗) refers on occasion to the
(𝑖, 𝑗) element of A. Special arrays are the identity I

𝑝
; the unit

vector 1
𝑝
= [1, 1, . . . , 1]

󸀠
∈ R𝑝; the diagonal matrix D

𝑎
=

Diag(𝑎
1
, . . . , 𝑎

𝑝
); and B

𝑛
= (I
𝑛
− 𝑛
−11
𝑛
1󸀠
𝑛
), as idempotent of

rank 𝑛 − 1. The Frobenius norm of x ∈ R𝑝 is ‖x‖ = (x󸀠x)1/2.
ForX of order (𝑛×𝑝) and rank 𝑝 ≤ 𝑛, a generalized inverse is
designated as X†; its ordered singular values as 𝜎(X) = {𝜉

1
≥

𝜉
2

≥ ⋅ ⋅ ⋅ ≥ 𝜉
𝑝

> 0}; and by S
𝑝
(X) ⊂ R𝑛 the subspace of

R𝑛 spanned by the columns of X. By accepted convention
its condition number is 𝑐

2
(X) = 𝜉

1
/𝜉
𝑝
, specifically, 𝑐

2
(X) =

[𝑐
1
(X󸀠X)]

1/2. For our model {Y = X𝛽 + 𝜖}, with dispersion

𝑉(𝜖)=𝜎2I
𝑛
, we take 𝜎

2
= 1.0 unless stated otherwise, since

variance ratios are scale invariant.

2.2. Case Study 1: A First Look. That anomalies pervade
conventional VIF

𝑢
s and VIF

𝑐
s may be seen as follows. Given

𝑀
0
: {𝑌
𝑖
= 𝛽
0
+𝛽
1
𝑋
1
+𝛽
2
𝑋
2
+𝜖
𝑖
} the designX

0
= [1
5
,X
1
,X
2
]

of order (5 × 3),U=X󸀠
0
X
0
, and its inverse V=(X󸀠

0
X
0
)
−1 as in

X󸀠
0
= [

[

1 1 1 1 1

0 0.5 0.5 1 1

−1 1 1 0 0

]

]

, U = [

[

5 3 1

3 2.5 1

1 1 3

]

]

,

V = [

[

0.72222 −0.88889 0.05556

−0.88889 1.55556 −0.22222

0.05556 −0.22222 0.38889

]

]

.

(1)

Conventional centered and uncentered VIFs are

[VIF
𝑐
(𝛽
1
) ,VIF

𝑐
(𝛽
2
)] = [1.0889, 1.0889] , (2)

[VIF
𝑢
(𝛽
0
),VIF

𝑢
(𝛽
1
),VIF

𝑢
(𝛽
2
)]= [3.6111, 3.8889, 1.1667] ,

(3)

respectively, the former for slopes only and the latter taking
reciprocals of the diagonals of X󸀠

0
X
0
as reference.

A Critique. The following points are basic. Note first that
model (1) is nonorthogonal in both the centered and uncen-
tered regressors.

Remark 1. The VIF
𝑢
s are not ratios of variances and thus fail

to gage relative increases in variances owing to nonorthog-
onal columns of X

0
. This follows since the first row and

column of the second-moment matrix X󸀠
0
X
0
= U are fixed

and nonzero by design, so that taking X󸀠
0
X
0
to be diagonal as

reference cannot be feasible.

Remark 1 runs contrary to assertions throughout the liter-
ature. In consequence, for models in 𝑀

0
the mainstay VIF

𝑢
s

in recent vogue are largely devoid of meaning. Subsequently
these are identified instead with angles quantifying degrees of
multicollinearity among the regressors.

On the other hand, feasible Reference models for all
parameters, as identified later for centered and uncentered
data in Definition 13, Section 4.2, give

[VF
𝑐
(𝛽
0
),VF
𝑐
(𝛽
1
),VF
𝑐
(𝛽
2
)]= [0.9913, 1.0889, 1.0889] ,

(4)

[VF
𝑣
(𝛽
0
),VF
𝑣
(𝛽
1
),VF
𝑣
(𝛽
2
)]= [0.7704, 0.8889, 0.8889]

(5)

in lieu of conventional VIF
𝑐
s and VIF

𝑢
s, respectively. The

former comprise corrected VIF
𝑐
s, extended to include the

intercept. Both sets in fact are genuine variance inflation
factors, as ratios of variances in themodel (1), relative to those
in Reference models feasible for centered and for uncentered
regressors, respectively.

This example flagrantly contravenes conventional wis-
dom: (i) variances for slopes are inflated in (4), but for the



Advances in Decision Sciences 3

intercept deflated, in comparison with the feasible centered
reference. Specifically, 𝛽

0
is estimated here with greater

efficiency VF
𝑐
(𝛽
0
) = 0.9913 in the initial design (1), despite

nonorthogonality of its centered regressors. (ii) Variances are
uniformly smaller in the model (1) than in its feasible uncen-
tered reference from (5), thus exhibiting Variance Deflation,
despite nonorthogonality of the uncentered regressors. A
full explication of the anatomy of this study appears later.
In support, we next examine technical details needed in
subsequent developments.

2.3. Types of Orthogonality. The ongoing divergence between
centered and uncentered diagnostics traces in part to mean-
ing ascribed to orthogonality. Specifically, the orthogonality
of columns of X in 𝑀

𝑤
refers unambiguously to the vector-

space concept X
𝑖
⊥ X
𝑗
, that is, X󸀠

𝑖
X
𝑗

= 0, as does the
notion of collinearity of regressors with the constant vector
in 𝑀
0
. We refer to this as 𝑉-orthogonality, in short 𝑉⊥. In

contrast, nonorthogonality in 𝑀
0
often refers instead to the

statistical concept of correlation among columns of X when
scaled and centered to their means. We refer to its negation
as 𝐶-orthogonality, or 𝐶

⊥. Distinguishing between these
notions is fundamental, as confusion otherwise is evident. For
example, it is asserted in [11, p.125] that “the simple correlation
coefficient 𝑟

𝑖𝑗
does measure linear dependency between 𝑥

𝑖

and 𝑥
𝑗
in the data.”

2.4. The Models 𝑀
0
. Consider 𝑀

0
: {Y = X

0
𝜃 + 𝜖}, X

0
=

[1
𝑛
,X], 𝜃󸀠 = [𝛽

0
,𝛽󸀠], together with

X󸀠
0
X
0
= [

𝑛 𝑛X󸀠

𝑛X X󸀠X
] , (X󸀠

0
X
0
)
−1

= [
𝑐
00

c
01

c󸀠
01

G ] , (6)

where 𝑛X󸀠 = 1󸀠
𝑛
X, 𝑐
00

= [𝑛 − 𝑛
2X󸀠(X󸀠X)

−1X]
−1, C =

(X󸀠X−𝑛XX󸀠) =X󸀠B
𝑛
X, andG = C−1 from block-partitioned

inverses. In later sections, we often will denote the mean-
centeringmatrix 𝑛XX󸀠 byM. In particular, the centered form
{X → Z = B

𝑛
X} arises exclusively in models with intercept,

with or without reparametrizing (𝛽
0
,𝛽) → (𝛼,𝛽) in the

mean-centered regressors, where 𝛼 = 𝛽
0
+𝛽
1
𝑋
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘
𝑋
𝑘
.

Scaling Z to unit column lengths gives Z󸀠Z in correlation
form with unit diagonals.

3. Historical Perspective

Our objective is an overdue revision of the tenets of variance
inflation in regression. To provide context, we next survey
extenuating issues from the literature. Direct quotations are
intended not to subvert stances taken by the cited authors.
Models in 𝑀

0
are at issue since, as noted in [10], centered

diagnostics have no place in𝑀
𝑤
.

3.1. Background. Aspects of ill-conditioning span a consid-
erable literature over many decades. Regarding {Y = X𝛽 +
𝜖}, scaling columns of X to equal lengths approximately
minimizes the condition number 𝑐

2
(X) [12, p.120] based on

[13]. Nonetheless, 𝑐
2
(X) is cast in [9] as a blunt instrument for

ill-conditioning, prompting the need for VIFs and other local
constructs. Stewart [9] credits VIFs in concept to Daniel and
in name to Marquardt.

Ill-conditioning points beyond OLS in view of difficulties
cited earlier. Remedies proffered in [14, 15] include trans-
forming variables, adding new data, and deleting variable(s)
after checking critical features of the reduced model. Other
intended palliatives include Ridge and Partial Least Squares,
as compared in [16]; Principal Components regression; Sur-
rogate models as in [17]. All are intended to return reduced
standard errors at the expense of bias. Moreover, Surrogate
solutions more closely resemble those from an orthogonal
system than Ridge [18]. Together the foregoing and other
options comprise a substantial literature as collateral to, but
apart from, the present study.

3.2. To Center. Advocacy for centering includes the follow-
ing.

(i) VIFs often are defined categorically as the diagonals
of the inverse of the correlation matrix of scaled and
centered regressors; see [4, 9, 11, 19] for example.
These are VIF

𝑐
s, widely adopted without justification

as default to the exclusion of VIF
𝑢
s.

(ii) It is asserted [4] that “centering removes the nones-
sential ill-conditioning, thus reducing the variance
inflation in the coefficient estimates.”

(iii) Centering is advocated when predictor variables are
far removed from origins on the basic data scales [10,
11].

3.3. Not to Center. Advocacy for uncentered diagnostics
includes the following caveats from proponents of centering.

(i) Uncentered data should be examined only if an esti-
mate of the intercept is of interest [9, 10, 20].

(ii) “If the domain of prediction includes the full range
from the natural origin through the range of data, the
collinearity diagnostics should not bemean centered”
[10, p.84].

Other issues against centering derive in part from numer-
ical analysis and work by Belsley.

(i) Belsley [1] identifies 𝑐
2
(X) for a system {Y = X𝛽+𝜖} as

“the potential relative change in the LS solution b that
can result from a small relative change in the data.”

(ii) These require structurally interpretable variables as
“ones whose numerical values and (relative) differ-
ences derive meaning and interpretability from
knowledge of the structure of the underlying ‘reality’
being modeled” [1, p.75].

(iii) “There is no such thing as ‘nonessential’ ill-condi-
tioning,” and “mean-centering can remove from the
data the information needed to assess conditioning
correctly” [1, p.74].

(iv) “Collinearity with the intercept can quite generally
corrupt the estimates of all parameters in the model
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whether or not the intercept is itself of interest and
whether or not the data have been centered” [21, p.90].

(v) An example [22, p.121] gives severely ill-conditioned
data perfectly conditioned in centered form: “center-
ing alters neither” inflated variances nor extremely
sensitive parameter estimates in the basic data; more-
over, “diagnosing the conditioning of the centered
data (which are perfectly conditioned) would com-
pletely overlook this situation, whereas diagnostics
based on the basic data would not.”

(vi) To continue from [22], ill-conditioning persists in
the propagation of disturbances, in that “a 1 percent
relative change in theX

𝑖
’s results in over a 40% relative

change in the estimates,” despite perfect conditioning
in centered form, and “knowledge of the effect of
small relative changes in the centered data is not
meaningful for assessing the sensitivity of the basic LS
problem,” since relative changes and their meanings
in centered anduncentered data oftendiffermarkedly.

(vii) Regarding choice of origin, “(1) the investigator must
be able to pick an origin against which small relative
changes can be appropriately assessed and (2) it is the
data measured relative to this origin that are relevant
to diagnosing the conditioning of the LS problem”
[22, p.126].

Other desiderata pertain.

(i) “Because rewriting the model (in standardized vari-
ables) does not affect any of the implicit estimates, it
has no effect on the amount of information contained
in the data” [23, p.76].

(ii) Consequences of ill-advised diagnostics can be
severe. Degraded numerical accuracy traces to near
collinearity of regressors with the constant vector.
In short, centering fails to prevent a loss in numer-
ical accuracy; centered diagnostics are unable to
discern these potential accuracy problems, whereas
uncentered diagnostics are seen to work well. Two
widely used statistical packages, SAS and SPSS-X,
fail to detect this type of ill-conditioning through
use of centered diagnostics and thus return highly
inaccurate coefficient estimates. For further details
see [3].

On balance, formodels in𝑀
0
the jury is out regarding the

use of centered or uncentered diagnostics, to include VIFs.
Even Belsley [1] (and elsewhere) concedes circumstances
where centering does achieve structurally interpretable mod-
els. Of note is that the foregoing listed citations to Belsley
apply strictly to condition numbers 𝑐

2
(X); other purveyors of

ill-conditioning, specifically VIFs, are not treated explicitly.

3.4. A Synthesis. It bears notice that (i) the origin, how-
ever remote from the cluster of regressors, is essential for
prediction, and (ii) the prediction variance is invariant to
parametrizing in centered or uncentered forms. Additional
remarks are codified next for subsequent referral.

Remark 2. Typically 𝑌 represents response to input vari-
ables {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑘
}. In a controlled experiment, levels

are determined beforehand by subject-matter considerations
extraneous to the experiment, to include minimal values.
However remote the origin on the basic data scales, it seems
informative in such circumstances to identify the origin
with these minima. In such cases the intercept is often of
singular interest, since 𝛽

0
is then the standard against which

changes in 𝑌 are to be gaged as regressors vary. We adopt this
convention in subsequent studies from the archival literature.

Remark 3. In summary, the divergence in views, whether
to center or not, appears to be that critical aspects of ill-
conditioning, known and widely accepted for models in𝑀

𝑤
,

have been expropriated over decades, mindlessly and without
verification, to apply point-by-point for models in𝑀

0
.

4. The Structure of Orthogonality

This section develops the foundations for Reference models
capturing orthogonalities of types 𝑉

⊥ and 𝐶
⊥. Essential

collateral results are given in support as well.

4.1. Collinearity Indices. Stewart [9] reexamines ill-condi-
tioning from the perspective of numerical analysis. Details
follow, where X is a generic matrix of regressors having
columns {x

𝑗
; 1 ≤ 𝑗 ≤ 𝑝} and X† = (X󸀠X)

−1X󸀠 is the
generalized inverse of note, having {x†

𝑗
; 1 ≤ 𝑗 ≤ 𝑝} as

its typical rows. Each corresponding collinearity index 𝜅 is
defined in [9, p.72] as

{𝜅
𝑗
=
󵄩󵄩󵄩󵄩󵄩
x
𝑗

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
x†
𝑗

󵄩󵄩󵄩󵄩󵄩
; 1 ≤ 𝑗 ≤ 𝑝} , (7)

constructed so as to be scale invariant. Observe that ‖x†
𝑗
‖
2 is

found along the principal diagonal of [(X†)(X†)󸀠] = (X󸀠X)
−1.

WhenX(𝑛×𝑘) inX
0
= [1
𝑛
,X] is centered and scaled, Section

3 of [9] shows that the centered collinearity indices 𝜅
𝑐
satisfy

{𝜅
2

𝑐𝑗
= VIF

𝑐
(𝛽
𝑗
); 1 ≤ 𝑗 ≤ 𝑘}. In 𝑀

0
with parameters (𝛽

0
,

𝛽), values corresponding to ‖x†
𝑗
‖
2 from X†

0
= (X󸀠
0
X
0
)
−1X󸀠
0

lie along the principal diagonal of (X󸀠
0
X
0
)
−1; the uncentered

collinearity indices 𝜅
𝑢
now satisfy {𝜅

2

𝑢𝑗
= ‖x
𝑗
‖
2
⋅ ‖x†
𝑗
‖
2

; 𝑗 =

0, 1, . . . , 𝑘}. In particular, since x
0

= 1
𝑛
, we have 𝜅

2

𝑢0
=

𝑛‖x†
0
‖
2. Moreover, in𝑀

0
it follows that the uncentered VIF

𝑢
s

are squares of the collinearity indices, that is, {VIF
𝑢
(𝛽
𝑗
) =

𝜅
2

𝑢𝑗
; 𝑗 = 0, 1, . . . , 𝑘}. Note the asymmetry that VIF

𝑐
s exclude

the intercept, in contrast to the inclusive VIF
𝑢
s. That the

label Variance Inflation Factors for the latter is a misnomer is
covered in Remark 1. Nonetheless, we continue the familiar
notation {VIF

𝑢
(𝛽
𝑗
) = 𝜅
2

𝑢𝑗
; 𝑗 = 0, 1, . . . , 𝑘}.

Transcending the essential developments of [9] are con-
nections between collinearity indices and angles between
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subspaces. To these ends choose a typical x
𝑗
in X
0
, and

rearrange X
0
as [x
𝑗
,X
[𝑗]
]. We next seek elements of

Q󸀠
𝑗
(X󸀠
0
X
0
)
−1

Q
𝑗
= [

x󸀠
𝑗
x
𝑗

x󸀠
𝑗
X
[𝑗]

X󸀠
[𝑗]
x
𝑗
X󸀠
[𝑗]
X
[𝑗]

]

−1

(8)

as reordered by the permutation matrix Q
𝑗
. From the clock-

wise rule the (1, 1) element of the inverse is

[x󸀠
𝑗
(I
𝑛
− P
𝑗
) x
𝑗
]
−1

= [x󸀠
𝑗
x
𝑗
− x󸀠
𝑗
P
𝑗
x
𝑗
]
−1

=
󵄩󵄩󵄩󵄩󵄩
x†
𝑗

󵄩󵄩󵄩󵄩󵄩

2 (9)

in succession for each {𝑗 = 0, 1, . . . , 𝑘}, where P
𝑗

=

X
[𝑗]
[X󸀠
[𝑗]
X
[𝑗]
]
−1X󸀠
[𝑗]

is the projection operator onto the sub-
space S

𝑝
(X
[𝑗]
) ⊂ R𝑛 spanned by the columns of X

[𝑗]
. These

in turn enable us to connect {𝜅2
𝑢𝑗
; 𝑗 = 0, 1 . . . , 𝑘}, and similarly

for centered values {𝜅2
𝑐𝑗
; 𝑗 = 1 . . . , 𝑘}, to the geometry of ill-

conditioning as follows.

Theorem 4. For models in 𝑀
0
let {VIF

𝑢
(𝛽
𝑗
) = 𝜅

2

𝑢𝑗
; 𝑗 = 0,

1, . . . , 𝑘} be conventional uncentered VIF
𝑢
s in terms of Stew-

art’s [9] uncentered collinearity indices. These in turn quantify
the extent of collinearities between subspaces through angles (in
𝑑𝑒𝑔 as follows.

(i) Angles between (x
𝑗
,S
𝑝
(X
[𝑗]
)) are given by 𝜃

𝑗
=

arccos[(1−1/𝜅2uj)
1/2

], in succession for {𝑗 = 0, 1, . . . , 𝑘}.

(ii) In particular, 𝜃
0

= arccos[(1 − 1/𝜅2u0)
1/2

] quantifies
the degree of collinearity between the regressors and the
constant vector.

(iii) Similarly let B
𝑛
X = Z = [z

1
, . . . , z

𝑘
] be regressors

centered to their means, rearrange as [z
𝑗
,Z
[𝑗]
], and let

{VIF
𝑐
(𝛽
𝑗
) = 𝜅

2

𝑐𝑗
; 𝑗 = 1, . . . , 𝑘} be centered VIF

𝑐
s in

terms of Stewart’s centered collinearity indices. Then
angles (in deg) between (z

𝑗
,S
𝑝
(Z
[𝑗]
)) are given by

{𝜃
𝑗
= arccos[(1 − 1/𝜅2cj)

1/2
]; 1 ≤ j ≤ k}.

Proof. From the geometry of the right triangle formed by
(x
𝑗
,P
𝑗
x
𝑗
), the squared lengths satisfy ‖x

𝑗
‖
2

= ‖P
𝑗
x
𝑗
‖
2
+

‖x
𝑗
− P
𝑗
x
𝑗
‖
2, where ‖x

𝑗
− P
𝑗
x
𝑗
‖
2

= RS
𝑗
is the residual sum

of squares from the projection. It follows that the principal
angle between (x

𝑗
,P
𝑗
x
𝑗
) is given by

cos (𝜃
𝑗
)=

x󸀠
𝑗
P
𝑗
x
𝑗

󵄩󵄩󵄩󵄩󵄩
x
𝑗

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
P
𝑗
x
𝑗

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩
P
𝑗
x
𝑗

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
x
𝑗

󵄩󵄩󵄩󵄩󵄩

=√1 −
RS
𝑗

󵄩󵄩󵄩󵄩󵄩
x
𝑗

󵄩󵄩󵄩󵄩󵄩

2
=√1 −

1

𝜅2
𝑢𝑗

(10)

for {𝑗 = 0, 1, . . . , 𝑘}, to give conclusion (i). Conclusion
(ii) follows on specializing (x

0
,P
0
x
0
) with x

0
= 1
𝑛
and

P
0
= X(X󸀠X)

−1X󸀠. Conclusion (iii) follows similarly from the
geometry of the right triangle formed by (z

𝑗
,P
𝑗
z
𝑗
), where P

𝑗

now is the projection operator onto the subspace S
𝑝
(Z
[𝑗]
) ⊂

R𝑛 spanned by the columns of Z
[𝑗]
, to complete our proof.

Remark 5. Rules of thumb in common use for problematic
VIFs include those exceeding 10 or even 4; see [11, 24] for
example. In angular measure these correspond, respectively,
to 𝜃
𝑗
< 18.435 deg and 𝜃

𝑗
< 30.0 deg.

4.2. Reference Models. We seek as Reference feasible models
encoding orthogonalities of types 𝑉

⊥ and 𝐶
⊥. The keys

are as follows: (i) to retain essentials of the experimental
structure and (ii) to alter what may be changed to achieve
orthogonality. For a model in𝑀

𝑤
with moment matrix X󸀠X,

our opening paragraph prescribes as reference the model
R
𝑉

= D = Diag(𝑑
11
, . . . , 𝑑

𝑝𝑝
), as diagonal elements of

X󸀠X, for assessing 𝑉
⊥-orthogonality. Moreover, on scaling

columns of X to equal lengths, R
𝑉
is perfectly conditioned

with 𝑐
1
(R
𝑉
) = 1.0. In addition, every model in 𝑀

𝑤
clearly

conforms with its Reference, in the sense that R
𝑉
is positive

definite, as distinct from models in𝑀
0
to follow.

Consider again models in 𝑀
0
as in (6); let C = (X󸀠X −

M) withM = 𝑛XX󸀠 as the mean-centering matrix; and again
letD = Diag(𝑑

11
, . . . , 𝑑

𝑘𝑘
) comprise the diagonal elements of

X󸀠X.

(i) 𝑉⊥Reference Model.The uncentered VIF
𝑢
s in𝑀

0
, defined

as ratios of diagonal elements of (X󸀠
0
X
0
)
−1 to reciprocals of

diagonal elements of X󸀠
0
X
0
, appear to have seen exclusive

usage, apparently in keepingwithRemark 3.However, the fol-
lowing disclaimermust be registered as the formal equivalent
of Remark 1.

Theorem 6. Statements that conventional VIF
𝑢
s quantify var-

iance inflation owing to nondiagonalX󸀠
0
X
0
are false for models

in𝑀
0
having X ̸= 0.

Proof. Since the Reference variances are reciprocals of diag-
onal elements of X󸀠

0
X
0
, this usage is predicated on the false

postulate that X󸀠
0
X
0
can be diagonal for X ̸= 0. Specifically,

[1
𝑛
,X] are linearly independent, that is, 1󸀠

𝑛
X = 0, if and only

if X has been mean centered beforehand.

To the contrary, Gunst [25] purports to show that
VIF
𝑢
(𝛽
0
) registers genuine variance inflation, namely, the

price to be paid in variance for designing an experiment
having X ̸= 0, as opposed to X = 0. Since variances for
intercepts are Var(⋅ | X = 0) = 𝜎

2
/𝑛 and Var(⋅ | X ̸= 0) =

𝜎
2
𝑐
00

≥ 𝜎
2
/𝑛 from (6), their ratio is shown in [25] to be

𝜅
2

𝑢0
= 𝑛𝑐
00

≥ 1 in the parlance of Section 2.3. We concede this
to be a ratio of variances but, to the contrary, not a VIF, since
the parameters differ. In particular, Var(𝛽

0
| X ̸= 0) = 𝜎

2
𝑐
00
,

whereas Var(𝛼̂ | X ̸= 0) = 𝜎
2
/𝑛, with 𝛼 = 𝛽

0
+ 𝛽
1
𝑋
1
+

⋅ ⋅ ⋅ + 𝛽
𝑘
𝑋
𝑘
in centered regressors. Nonetheless, we still find

the conventional VIF
𝑢
(𝛽
0
) to be useful for purposes to follow.

Remark 7. Section 3 highlights continuing concern in regard
to collinearity of regressors with the constant vector.
Theorem 4(ii) and expression (10) support the use of 𝜃

0
=

arccos[(1 − 1/𝜅2u0)
1/2

] as an informative gage on the extent of
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this occurrence. Specifically, the smaller the angle, the greater
the extent of such collinearity.

Instead of conventional VIF
𝑢
s given the foregoing dis-

claimer, we have the following amended version as Reference
for uncentered diagnostics, altering whatmay be changed but
leaving X ̸= 0 intact.

Definition 8. Given a model in 𝑀
0
with second-moment

matrixX󸀠
0
X
0
, the amendedReferencemodel for assessing𝑉⊥-

orthogonality is R
𝑉

= [ 𝑛 𝑛X
󸀠

𝑛X D
] with D = Diag(𝑑

11
, . . . , 𝑑

𝑘𝑘
)

as diagonal elements of X󸀠X, provided that R
𝑉
is positive

definite. We identify a model to be 𝑉
⊥-orthogonal when

X󸀠
0
X
0
= R
𝑉
.

As anticipated, a prospective R
𝑉

fails to conform to
experimental data if not positive definite. These and further
prospects are covered in the following, where 𝜙

𝑖
designates

the angle between {(1
𝑛
,X
𝑖
); 𝑖 = 1, . . . , 𝑘}.

Lemma 9. Take R
𝑉

as a prospective Reference for 𝑉
⊥-

orthogonality.

(i) In order that R
𝑉
maybe positive definite, it is necessary

that {𝑛X󸀠D−1X < 1}, that is, that {𝑛∑
𝑘

𝑖=1
(𝑋
2

𝑖
/𝑑
𝑖𝑖
) < 1}.

(ii) Equivalently, it is necessary that∑𝑘
𝑖=1

cos2(𝜙
𝑖
) < 1,with

𝜙
𝑖
as the angle between {(1

𝑛
,Xi); 𝑖 = 1, . . . , 𝑘}.

(iii) The Reference variance for 𝛽
0
is Var(𝛽

0
| X󸀠X = D) =

[𝑛(1 − 𝑛X󸀠D−1X)]
−1.

(iv) The Reference variances for slopes are given by

{Var (𝛽
𝑖
| X󸀠X = D) =

1

𝑑
𝑖𝑖

[1 +
𝛾𝑋
2

𝑖

𝑑
𝑖𝑖

] ; 1 ≤ 𝑖 ≤ 𝑘} , (11)

where 𝛾 = 𝑛/(1 − 𝑛X󸀠D−1X).

Proof. The clockwise rule for determinants gives |R
𝑉
| =

|D|[𝑛 − 𝑛
2X󸀠D−1X]. Conclusion (i) follows since |D| > 0.

The computation

cos (𝜙
𝑖
) =

1󸀠
𝑛
X
𝑖

󵄩󵄩󵄩󵄩1𝑛
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩X𝑖

󵄩󵄩󵄩󵄩
=

1󸀠
𝑛
X
𝑖

√𝑛𝑑
𝑖𝑖

= √
𝑛𝑋
2

𝑖

𝑑
𝑖𝑖

, (12)

in parallel with (10), gives conclusion (ii). Using the clockwise
rule for block-partitioned inverses, the (1, 1) element of R−1

𝑉

is given by conclusion (iii). Similarly, the lower right block of
R−1
𝑉
, of order (𝑘 × 𝑘), is the inverse of H = D − 𝑛XX󸀠. On

identifying a = b = X, 𝛼 = 𝑛, and {𝑎
∗

𝑖
= 𝑎
𝑖
/𝑑
𝑖𝑖
} in Theorem

8.3.3 of [26], we have that H−1 = D−1 + 𝛾D−1XX󸀠D−1.
Conclusion (iv) follows on extracting its diagonal elements,
to complete our proof.

Corollary 10. For the case 𝑘 = 2, in order that R
𝑉
maybe

positive definite, it is necessary that 𝜙
1
+ 𝜙
2
> 90 deg.

Proof. Beginning with Lemma 9(ii), compute

cos (𝜙
1
+ 𝜙
2
)

= cos𝜙
1
cos𝜙
2
− sin𝜙

1
sin𝜙
2

= cos𝜙
1
cos𝜙
2
−[1−(cos2𝜙

1
+cos2𝜙

2
)+cos2𝜙

1
cos2𝜙
2
]
1/2

,

(13)

which is <0 when 1 − (cos2𝜙
1
+ cos2𝜙

2
) > 0.

Moreover, the matrix R
𝑉
itself is intrinsically ill conditioned

owing to X ̸= 0, its condition number depending on X. To
quantify this dependence, we have the following, where
columns of X have been standardized to common lengths
{|X
𝑖
| = 𝑐; 1 ≤ 𝑖 ≤ 𝑘}.

Lemma 11. Let R
𝑉
= [ 𝑛 T󸀠

T 𝑐I
𝑘

] as in Definition 8, with T = 𝑛X,
D = 𝑐I

𝑘
, and 𝑐 > 0.

(i) The ordered eigenvalues of R
𝑉
are [𝜆

1
, 𝑐, . . . , 𝑐, 𝜆

𝑝
],

where 𝑝 = 𝑘 + 1 and (𝜆
1
, 𝜆
𝑝
) are the roots of 𝜆 ∈

[(𝑛 + 𝑐) ± √(𝑛 − 𝑐)
2
+ 4𝜏2]/2 and 𝜏

2
= T󸀠T.

(ii) The roots are positive, andR
𝑉
is positive definite, if and

only if (𝑛𝑐 − 𝜏
2
) > 0.

(iii) If R
𝑉

is positive definite, its condition number is
𝑐
1
(R
𝑉
) = 𝜆
1
/𝜆
𝑝
and is increasing in 𝜏

2.

Proof. Eigenvalues are roots of the determinantal equation

Det [(𝑛 − 𝜆) T󸀠
T (𝑐 − 𝜆) I

𝑘

]

= 0 ⇐⇒ (𝑐 − 𝜆)
𝑘−1

[(𝑛 − 𝜆) (𝑐 − 𝜆) − T󸀠T] = 0

(14)

from the clockwise rule, giving (𝑘 − 1) values {𝜆 = 𝑐} and two
roots of the quadratic equation {𝜆

2
− (𝑛 + 𝑐)𝜆 + 𝑛𝑐 − 𝜏

2
= 0},

to give conclusion (i). Conclusion (ii) holds since the product
of roots of the quadratic equation is (𝑛𝑐 − 𝜏

2
) and the greater

root is positive. Conclusion (iii) follows directly, to complete
our proof.

(𝑖𝑖) 𝐶
⊥ Reference Model. As noted, the notion of 𝐶

⊥-or-
thogonality applies exclusively for models in 𝑀

0
. Accord-

ingly, as Reference we seek to alter X󸀠X so that the matrix
comprising sums of squares and sums of products of devia-
tions from means, thus altered, is diagonal. To achieve this
canon of 𝐶

⊥-orthogonality, and to anticipate notation for
subsequent use, we have the following.

Definition 12. (i) For a model in 𝑀
0
with second-moment

matrix X󸀠
0
X
0
and inverse as in (6), let C

𝑤
= (W − M), and

identify an indicator vector G = [𝑔
12
, 𝑔
13
, . . . , 𝑔

1𝑘
, 𝑔
23
, . . .,

𝑔
2𝑘
, . . . , 𝑔

𝑘−1,𝑘
] of order ((𝑘 − 1) × (𝑘 − 2)) in lexicographic

order, where {𝑔
𝑖𝑗
= 0; 𝑖 ̸= 𝑗} if the (𝑖, 𝑗) element of C

𝑤
is zero

and {𝑔
𝑖𝑗
= 1; 𝑖 ̸= 𝑗} if the (𝑖, 𝑗) element ofC

𝑤
is (X󸀠
𝑖
X
𝑗
−𝑛𝑋
𝑖
𝑋
𝑗
),

that is, unchanged from C = (X󸀠X − 𝑛XX󸀠) = Z󸀠Z, with
Z = B

𝑛
X as the regressors centered to their means.
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(ii) In particular, the Reference model in𝑀
0
for assessing

𝐶
⊥-orthogonality is R

𝐶
= [ 𝑛 𝑛X

󸀠

𝑛X W
] such that C

𝑤
= (W −

M) and its inverse G from (6) are diagonal, that is, taking
W = [𝑤

𝑖𝑗
] such that {𝑤

𝑖𝑖
= 𝑑
𝑖𝑖
; 1 ≤ 𝑖 ≤ 𝑘} and {𝑤

𝑖𝑗
=

𝑚
𝑖𝑗
; for all 𝑖 ̸= 𝑗} or equivalently, G = [0, 0, . . . , 0]. In this

case, we identify the model to be 𝐶⊥-orthogonal.

Recall that conventional VIF
𝑐
s for [𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑘
] are

ratios of diagonal elements of (Z󸀠Z)−1 to reciprocals of
the diagonal elements of the centered Z󸀠Z. Apparently this
rests on the logic that 𝐶⊥-orthogonality in 𝑀

0
implies that

Z󸀠Z is diagonal. However, the converse fails and instead is
embodied in R

𝐶
∈ 𝑀
0
. In consequence, conventional VIF

𝑐
s

are deficient in applying only to slopes, whereas the VF
𝑐
s

resulting from Definition 12(ii) apply informatively for all of
[𝛽
0
, 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑘
].

Definition 13. Designate VF
𝑣
(⋅) and VF

𝑐
(⋅) as Variance Fac-

tors resulting from Reference models of Definition 8 and
Definition 12(ii), respectively. On occasion these represent
Variance Deflation in addition to VIFs.

Essential invariance properties pertain. Conventional
VIF
𝑐
s are scale invariant; see Section 3 of [9].We see next that

they are translation invariant as well. To these ends we shift
the columns of X=[X

1
,X
2
, . . . ,X

𝑘
] to a new origin through

{X → X − L = H}, where L = [𝑐
1
1
𝑛
, 𝑐
2
1
𝑛
, . . . , 𝑐

𝑘
1
𝑛
]. The

resulting model is

{Y = (𝛽
0
1
𝑛
+ L𝛽) +H𝛽 + 𝜖}

⇐⇒ {Y = (𝛽
0
+ 𝜓) 1

𝑛
+H𝛽 + 𝜖} ,

(15)

thus preserving slopes, where𝜓 = c󸀠𝛽=(𝑐
1
𝛽
1
+𝑐
2
𝛽
2
+⋅ ⋅ ⋅+𝑐

𝑘
𝛽
𝑘
).

Corresponding to X
0
= [1
𝑛
,X] is U

0
= [1
𝑛
,H] and to X󸀠

0
X
0

and its inverse are

U󸀠
0
U
0
= [

𝑛 1󸀠
𝑛
H

H󸀠1
𝑛

H󸀠H] , (U󸀠
0
U
0
)
−1

= [
𝑏
00

b
01

b󸀠
01

G ] (16)

in the form of (6).This pertains to subsequent developments,
and basic invariance results emerge as follows.

Lemma 14. Consider {Y = 𝛽
0
1
𝑛
+ X𝛽 + 𝜖} together with the

shifted version {Y = (𝛽
0
+ 𝜓)1

𝑛
+ H𝛽 + 𝜀}, both in 𝑀

0
. Then

the matrices G appearing in (6) and (16) are identical.

Proof. Rules for block-partitioned inverses again assert that
G of (16) is the inverse of

(H󸀠H − 𝑛
−1H󸀠1

𝑛
1󸀠
𝑛
H) = H󸀠 (I

𝑛
− 𝑛
−11
𝑛
1󸀠
𝑛
)H

= H󸀠B
𝑛
H = X󸀠B

𝑛
X

(17)

since B
𝑛
L = 0, to complete our proof.

These facts in turn support subsequent claims that cen-
tered VIF

𝑐
s are translation and scale invariant for slopes 𝛽̂

󸀠

=

[𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑘
], apart from the intercept 𝛽

0
.

4.3. A Critique. Again we distinguish VIF
𝑐
s and VIF

𝑢
s from

centered and uncentered regressors.The following comments
apply.

(C1) A design is either 𝑉⊥ or 𝐶⊥-orthogonal, respectively,
according as the lower right (𝑘×𝑘) blockX󸀠X ofX󸀠

0
X
0
,

orC = (X󸀠X−𝑛XX󸀠) from expression (6), is diagonal.
Orthogonalities of type 𝑉⊥ and 𝐶

⊥ are exclusive and
hence work at crossed purposes.

(C2) In particular, 𝐶⊥-orthogonality holds if and only if
the columns of X are 𝑉

⊥-nonorthogonal. If X is 𝐶⊥-
orthogonal, then for 𝑖 ̸= 𝑗, C

𝑤
(𝑖𝑗) = X󸀠

𝑖
X
𝑗
− 𝑛𝑋
𝑖
𝑋
𝑗
=

0 and X󸀠
𝑖
X
𝑗

̸= 0. Conversely, if X indeed is 𝑉
⊥-

orthogonal, so that X󸀠X = D= Diag(𝑑
11
, . . . , 𝑑

𝑘𝑘
),

then (D − 𝑛XX󸀠) cannot be diagonal as Reference, in
which case the conventional VIF

𝑐
s are tenuous.

(C3) Conventional VIF
𝑢
s, based on uncentered X in 𝑀

0

with X ̸= 0, do not gage variance inflation as claimed,
founded on the false tenet that X󸀠

0
X
0
can be diagonal.

(C4) To detect influential observations and to classify high
leverage points, case–influence diagnostics, namely
{𝑓
𝑗𝐼

= VIF
𝑗(−𝐼)

/VIF
𝑗
; 1 ≤ 𝑗 ≤ 𝑘}, are studied in [27]

for assessing the impact of subsets on variance infla-
tion. Here VIF

𝑗
is from the full data and VIF

𝑗(−𝐼)
on

deleting observations in the index set 𝐼. Similarly, [28]
proposes using VIF

(𝑖)
on deleting the 𝑖th observation.

In the present context these would gain substance on
modifying VF

𝑣
and VF

𝑐
accordingly.

5. Case Study 1: Continued

5.1. The Setting. We continue an elementary and transparent
example to illustrate essentials. Recall𝑀

0
: {𝑌
𝑖
= 𝛽
0
+𝛽
1
𝑋
1
+

𝛽
2
𝑋
2
+𝜖
𝑖
} of Section 2.2, the designX

0
= [1
5
,X
1
,X
2
] of order

(5 × 3), and U = X󸀠0X0 and its inverse V = (X󸀠
0
X
0
)
−1, as in

expressions (1). The design is neither 𝑉⊥ nor 𝐶⊥ orthogonal
since neither the lower right (2 × 2) block of X󸀠

0
X
0
nor the

centered Z󸀠Z is diagonal. Moreover, the uncentered VIF
𝑢
s as

listed in (3) are not the vaunted relative increases in variances
owing to nonorthogonal columns of X

0
. Indeed, the only

opportunity for 𝑉
⊥-orthogonality here is between columns

[X
1
,X
2
].

Nonetheless, from Section 4.1 we utilize Theorem 4(i)
and (10) to connect the collinearity indices of [9] to angles
between subspaces. Specifically, Minitab recovered values
for the residuals {RS

𝑗
= ‖x

𝑗
− P
𝑗
x
𝑗
‖
2
; 𝑗 = 0, 1, 2}; fur-

ther computations proceed routinely as listed in Table 1. In
particular, the principal angle 𝜃

0
between the constant vector

and the span of the regressor vectors is 𝜃
0
= 31.751 deg, as

anticipated in Remark 7.

5.2. 𝑉⊥-Orthogonality. For subsequent reference let 𝐷(𝑥) be
a design as in (1) but with second-moment matrix:

U (𝑥) = [

[

5 3 1

3 2.5 𝑥

1 𝑥 3

]

]

. (18)
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Table 1: Values for residuals RS
𝑗
= ‖x
𝑗
− P
𝑗
x
𝑗
‖
2, for ‖X

𝑗
‖
2, for 𝜅2

𝑢𝑗
= VI F

𝑢
(𝛽
𝑗
), for (1 − 1/𝜅

2

𝑢𝑗
)
1/2, and for 𝜃

𝑗
, for 𝑗 = 0, 1, 2.

𝑗 RS
𝑗

‖X
𝑗
‖
2

𝜅
2

𝑗
(1 − 1/𝜅

2

𝑢𝑗
)
1/2

𝜃
𝑗
(deg)

0 1.3846 5.0 3.6111 0.8503 31.751
1 0.6429 2.5 3.8889 0.8619 30.470
2 2.5714 3.0 1.1667 0.3780 67.792

Invoking Definition 8, we seek a 𝑉
⊥-orthogonal Reference

with moment matrix U(0) having X󸀠
1
X
2

= 0, that is, 𝐷(0).
This is found constructively on retaining [1

5
, ∙,X
2
] in X

0
,

but replacing X
1
by X0
1

= [1, 0.5, 0.5, 1, 0]
󸀠, as listed in

Table 2, giving the design 𝐷(0) with columns [1
5
,X0
1
,X
2
] as

Reference.
Accordingly, R

𝑉
= U(0) is “as 𝑉

⊥-orthogonal as it can
get,” given the lengths and sums of (X

1
,X
2
) as prescribed

in the experiment and as preserved in the Reference model.
Lemma 9, with X=[0.6, 0.2]

󸀠 and D= Diag(2.5, 3), gives
X󸀠D−1X = 0.157333 and 𝛾 = 5/(1 − 5X󸀠D−1X) =

23.4375. Applications of Lemma 9(iii)-(iv) in succession give
the reference variances

Var (𝛽
0
| X󸀠X = D) = [5 (1 − 5X󸀠D−1X)]

−1

= 0.9375,

Var (𝛽
1
|X󸀠X=D)=

1

𝑑
11

[1+
𝛾𝑋
2

1

𝑑
11

]=
2

5
[1+

0.72𝛾

5
]=1.7500,

Var (𝛽
2
|X󸀠X=D)=

1

𝑑
22

[1+
𝛾𝑋
2

2

𝑑
22

]=
1

3
[1+

0.04𝛾

3
]=0.4375.

(19)

As Reference, these combine with actual variances from
𝑉 = [𝑉

𝑖𝑗
] at (1), giving VF

𝑣
for the original designX

0
relative

to R
𝑉
. For example, VF

𝑣
(𝛽
0
) = 0.7222/0.9375 = 0.7704, with

𝑉
11

= 0.7222 from (1), and 0.9375 from (19). This contrasts
with VIF

𝑢
(𝛽
0
) = 3.6111 in (3) as in Section 2.2 and Table 2,

it is noteworthy that the nonorthogonal design 𝐷(1) yields
uniformly smaller variances than the 𝑉

⊥-orthogonal R
𝑉
,

namely,𝐷(0).
Further versions {𝐷(𝑥); 𝑥 ∈ [−0.5, 0.0, 0.5, 0.6, 1.0, 1.5]}

of our basic design are listed for comparison in Table 2, where
𝑥 = X󸀠

1
X
2
for the various designs. The designs themselves are

exhibited on transposing rowsX󸀠
1
= [𝑋
11
, 𝑋
12
, 𝑋
13
, 𝑋
14
, 𝑋
15
]

from Table 2, and substituting each into the template X0
0

=

[1
5
, ∙,X
2
]. The design 𝐷(2) was constructed but not listed

since its X󸀠
0
X
0
is not invertible. Clearly these are actual

designs amenable to experimental deployment.

5.3. 𝐶⊥-Orthogonality. Continuing X
0

= [1
5
,X
1
,X
2
] and

invoking Definition 12(ii), we seek a 𝐶
⊥-orthogonal

Reference having the matrix C
𝑤

as diagonal. This is

identified as 𝐷(0.6) in Table 2. From this the matrix R
𝐶
and

its inverse are

R
𝐶
= [

[

5 3 1

3 2.5 0.6

1 0.6 3

]

]

,

R−1
𝐶

= [

[

0.7286 −0.8572 −0.0714

−0.8571 1.4286 0.0

−0.0714 0.0 0.3571

]

]

.

(20)

The variance factors are listed in (4) where, for example,
VF
𝑐
(𝛽
2
) = 0.3889/0.3571 = 1.0889. As distinct from conven-

tional VIF
𝑐
s for 𝛽

1
and 𝛽

2
only, our VF

𝑐
(𝛽
0
) here reflects

Variance Deflation,wherein 𝛽
0
is estimated more precisely in

the initial 𝐶⊥-nonorthogonal design.
A further note on orthogonality is germane. Suppose

that the actual experiment is 𝐷(0) yet, towards a thorough
diagnosis, the user evaluates the conventional VIF

𝑐
(𝛽
1
) =

1.2250 = VIF
𝑐
(𝛽
2
) as ratios of variances of 𝐷(0) to 𝐷(0.6)

from Table 2. Unfortunately, their meaning is obscured since
a design cannot at once be 𝑉⊥ and 𝐶

⊥-orthogonal.
As in Remark 2, we next alter the basic designX

0
at (1) on

shifting columns of themeasurements to [0, 0] asminima and
scaling to have squared lengths equal to 𝑛 = 5. The resulting
X
0
follows directly from (1). The new matrix U = X

󸀠

0X0 and
its inverse V are

U = [

[

5 4.2426 4.2426

4.2426 5 4

4.2426 4 5

]

]

,

V = [

[

1 −0.4714 −0.4714

−0.4714 0.7778 −0.2222

−0.4714 −0.2222 0.7778

]

]

(21)

giving conventional VIF
𝑢
s as [5, 3.8889, 3.8889]. Against 𝐶⊥-

orthogonality, this gives the diagnostics

[VF
𝑐
(𝛽
0
) ,VF
𝑐
(𝛽
1
) ,VF
𝑐
(𝛽
2
)] = [0.8140, 1.0889, 1.0889]

(22)

demonstrating, in comparison with (4), that VF
𝑐
s, apart from

𝛽
0
, are invariant under translation and scaling, a consequence

of Lemma 14.
We further seek to compare variances for the shifted

and scaled (X
1
,X
2
) against 𝑉⊥-orthogonality as Reference.

However, from U = X󸀠
0
X
0
at (21) we determine that 𝑋

1
=

0.84853 = 𝑋
2
and 5[(𝑋

2

1
/5) + (𝑋

2

2
/5)] = 1.4400. Since

the latter exceeds unity, we infer from Lemma 9(i) that
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Table 2: Designs {𝐷(𝑥); 𝑥 ∈ [−0.5, 0.0, 0.5, 0.6, 1.0, 1.5]}, obtained by substitutingX0
1
= [𝑋
11
, 𝑋
12
, 𝑋
13
, 𝑋
14
, 𝑋
15
]
󸀠 in [15, ∙,X2] of order (5×3),

and corresponding variances {Var (𝛽
0
),Var (𝛽

1
),Var (𝛽

2
)}.

Design 𝑋
11

𝑋
12

𝑋
13

𝑋
14

𝑋
15

Var (𝛽
0
) Var (𝛽

1
) Var (𝛽

2
)

𝐷(−0.5) 1.0 0.0 0.5 1.0 0.5 1.9333 3.7333 0.9333
𝐷(0.0) 1.0 0.5 0.5 1.0 0.0 0.9375 1.7500 0.4375
𝐷(0.5) 0.5 1.0 0.0 1.0 0.5 0.7436 1.4359 0.3590
𝐷(0.6) 0.6091 0.5793 0.6298 1.1819 0.000 0.7286 1.4286 0.3570
𝐷(1.0) 0.0 0.5 0.5 1.0 1.0 0.7222 1.5556 0.3889
𝐷(1.5) 0.0 1.0 0.5 0.5 1.0 0.9130 2.4348 0.6087

𝑉
⊥-orthogonality is incompatible with this configuration

of the data, so that the VF
𝑣
s are undefined. Equivalently,

on evaluating 𝜙
1

= 𝜙
2

= 22.90 deg and 𝜙
1
+ 𝜙
2

=

45.80 < 90 deg, Corollary 10 asserts that R
𝑉
is not positive

definite. This appears to be anomalous, until we recall
that 𝑉⊥-orthogonality is invariant under rescaling, but not
recentering the regressors.

5.4. A Critique. We reiterate apparent ambiguity ascribed
in the literature to orthogonality. A number of widely held
guiding precepts has evolved, as enumerated in part in our
opening paragraph and in Section 3. As in Remark 3, these
clearly have been taken to apply verbatim forX

0
andX󸀠

0
X
0
in

𝑀
0
, to be paraphrased in part as follows.
(P1) Ill-conditioning espouses inflated variances; that is,

VIFs necessarily equal or exceed unity.
(P2) 𝐶⊥-orthogonal designs are “ideal” in that VIF

𝑐
s for

such designs are all unity; see [11] for example.
We next reassess these precepts as they play out under
𝑉
⊥ and 𝐶

⊥ orthogonality in connection with Table 2.
(C1) For models in 𝑀

0
having X ̸= 0, we reiterate that

the uncentered VIF
𝑢
s at expression (3), namely

[3.6111, 3.8889, 1.1667], overstate adverse effects on
variances of the 𝑉⊥-nonorthogonal array, since X󸀠

0
X
0

cannot be diagonal. Moreover, these conventional
values fail to discern that the revised values for VF

𝑣
s

at (5), namely, [0.7704, 0.8889, 0.8889], reflect that
[𝛽
0
, 𝛽
1
, 𝛽
2
] are estimated with greater efficiency in the

𝑉
⊥-nonorthogonal array𝐷(1).

(C2) For 𝑉
⊥-orthogonality, the claim P1 thus is false by

counterexample.TheVFs at (5) areVarianceDeflation
Factors for design 𝐷(1), where X󸀠

1
X
2
= 1, relative to

the 𝑉⊥-orthogonal𝐷(0).
(C3) Additionally, the variances {Var[𝛽

0
(𝑥)], Var[𝛽

1
(𝑥)],

Var[𝛽
2
(𝑥)]} in Table 2 are all seen to decrease from

𝐷(0) : [0.9375, 1.7500, 0.4375] → 𝐷(1) : [0.7222,
1.5556, 0.3889] despite the transition from the 𝑉

⊥-
orthogonal 𝐷(0) to the 𝑉

⊥-nonorthogonal 𝐷(1).
Similar trends are confirmed in other ill-conditioned
data sets from the literature.

(C4) For 𝐶
⊥-orthogonal designs, the claim P2 is false by

counterexample. Such designs need not be “ideal,”
as 𝛽
0
may be estimated more efficiently in a 𝐶

⊥-
nonorthogonal design, as demonstrated by the VF

𝑐
s

for 𝛽
0
at (4) and (22). Similar trends are confirmed

elsewhere, as seen subsequently.

(C5) VFs for 𝛽
0
are critical in prediction, where prediction

variances necessarily depend on Var(𝛽
0
), especially

for predicting near the origin of the system of coor-
dinates.

(C6) Dissonance between 𝑉
⊥ and 𝐶

⊥ is seen in Table 2,
where 𝐷(0.6), as 𝐶

⊥-orthogonal with X󸀠
1
X
2

= 0.6,
is the antithesis of 𝑉⊥-orthogonality at 𝐷(0), where
X󸀠
1
X
2
= 0.

(C7) In short, these transparent examples serve to dispel
the decades-old mantra that ill-conditioning neces-
sarily spawns inflated variances formodels in𝑀

0
, and

they serve to illuminate the contributing structures.

6. Orthogonal and Linked Arrays

A genuine 𝑉
⊥-orthogonal array was generated as eigenvec-

tors E = [E
1
,E
2
, . . . ,E

8
] from a positive definite (8 × 8)

matrix (see Table 8.3 of [11, p.377]) using PROC IML of the
SAS programming package. The columns [X

1
,X
2
,X
3
], as the

second through fourth columns of Table 3, comprise the first
three eigenvectors scaled to length 8. These apply for models
in 𝑀
𝑤
and 𝑀

0
to be analyzed. In addition, linked vectors

(Z
1
,Z
2
,Z
3
) were constructed as Z

1
= 𝑐(0.9E

1
+ 0.1E

2
),

Z
2

= 𝑐(0.9E
2
+ 0.1E

3
), and Z

3
= 𝑐(0.9E

3
+ 0.1E

4
), where

𝑐 = √8/0.82. Clearly these arrays, as listed in Table 3, are not
archaic abstractions, as both are amenable to experimental
implementation.

6.1. The Model 𝑀
0
. We consider in turn the orthogonal and

the linked series.

6.1.1. Orthogonal Data. Matrices X󸀠
0
X
0
and (X󸀠

0
X
0
)
−1 for the

orthogonal data under model𝑀
0
are listed in Table 4, where

variances occupy diagonals of (X󸀠
0
X
0
)
−1. The conventional

uncentered VIF
𝑢
s are [1.20296, 1.02144, 1.12256, 1.05888].

Since X ̸= 0, we find the angle between the constant and
the span of the regressor vectors to be 𝜃

0
= 65.748 deg as

in Theorem 4(ii). Moreover, the angle between X
1
and the

span of [1
𝑛
,X
2
,X
3
], namely, 𝜃

1
= 81.670 deg, is not 90 deg

because of collinearity with the constant vector, despite the
mutual orthogonality of [X

1
,X
2
,X
3
]. Observe here thatX󸀠

0
X
0



10 Advances in Decision Sciences

Table 3: Basic 𝑉⊥-orthogonal design X0 = [18, X1 , X2, X3], and a linked design Z0 = [18, Z1 , Z2, Z3], of order (8 × 4).

Orthogonal (X
1
,X
2
,X
3
) Linked (Z

1
,Z
2
,Z
3
)

1
8

X
1

X
2

X
3

1
8

Z
1

Z
2

Z
3

1 −1.084470 0.056899 0.541778 1 −1.071550 0.116381 0.653486
1 −1.090010 −0.040490 0.117026 1 −1.087820 −0.027320 0.116086
1 0.979050 0.002564 2.337454 1 0.973345 0.260677 2.199687
1 −1.090230 0.016839 0.170711 1 −1.081700 0.035588 0.070694
1 0.127352 2.821941 −0.071670 1 0.438204 2.796767 −0.070710
1 1.045409 −0.122670 −1.476870 1 1.025468 −0.285010 −1.618560
1 1.090803 −0.088970 0.043354 1 1.074306 −0.083640 0.176928
1 1.090739 −0.092300 0.108637 1 1.073875 −0.079740 0.244567

Table 4: Matrices X󸀠0X0 and (X󸀠0X0)
−1 for the orthogonal data under model𝑀

0
.

X󸀠
0
X
0

(X󸀠
0
X
0
)
−1

8 1.0686 2.5538 1.7704 0.1504 −0.0201 −0.0480 −0.0333
1.0686 8 0 0 −0.0201 0.1277 0.0064 0.0044
2.5538 0 8 0 −0.0480 0.0064 0.1403 0.0106
1.7704 0 0 8 −0.0333 0.0044 0.0106 0.1324

already is 𝑉⊥-orthogonal; accordingly, R
𝑉
= X󸀠
0
X
0
; and thus

the VF
𝑣
s are all unity.

In view of dissonance between 𝑉
⊥ and 𝐶

⊥ orthogonality,
the sums of squares and products for the mean-centered X
are

X󸀠B
𝑛
X = [

[

7.8572 −0.3411 −0.2365

−0.3411 7.1847 −0.5652

−0.2365 −0.5652 7.6082

]

]

, (23)

reflecting nonnegligible negative dependencies, to distin-
guish the 𝑉

⊥-orthogonal X from the 𝐶
⊥-nonorthogonal

matrix Z = B
𝑛
X of deviations.

To continue, we suppose instead that the 𝑉⊥-orthogonal
model was to be recast as 𝐶

⊥-orthogonal. The Reference
model and its inverse are listed in Table 5. Variance factors,
as ratios of diagonal elements of (X󸀠

0
X
0
)
−1 in Table 4 to those

of R−1
𝐶

in Table 5, are

[VF
𝑐
(𝛽
0
) ,VF
𝑐
(𝛽
1
) ,VF
𝑐
(𝛽
2
) ,VF
𝑐
(𝛽
3
)]

= [1.0168, 1.0032, 1.0082, 1.0070] ,

(24)

reflecting negligible differences in precision. This parallels
results reported in Table 2 comparing 𝐷(0) to 𝐷(0.6) as
Reference, except for larger differences in Table 2, namely,
[1.2868,1.2250,1.2250].

6.1.2. Linked Data. For the Linked Data under model 𝑀
0
,

the matrix Z󸀠0Z0 follows routinely from Table 3; its inverse
(Z󸀠
0
Z
0
)
−1 is listed in Table 6. The conventional uncentered

VIF
𝑢
s are now [1.20320, 1.03408, 1.13760, 1.05480]. These

again fail to gage variance inflation since Z󸀠
0
Z
0
cannot be

diagonal. From (10) the principal angle between the constant
vector and the span of the regressor vectors is 𝜃

0
= 65.735

degrees.

Remark 15. Observe that the choice for R
𝐶
may be posed as

seeking R
𝐶

= U(𝑥) such that R−1
𝐶
(2, 3) = 0.0, then solving

numerically for 𝑥 using Maple for example. However, the
algorithm in Definition 12(ii) affords a direct solution: that
C
𝑤
should be diagonal stipulates its off-diagonal element as

X󸀠
1
X
2
− 3/5 = 0, so that X󸀠

1
X
2
= 0.6 in R

𝐶
at expression (20).

To illustrate Theorem 4(iii), we compute cos(𝜃) = (1 −

1/1.0889)
1/2 = 0.2857 and 𝜃 = 73.398 deg as the angle between

the vectors [X
1
,X
2
] of (1) when centered to their means. For

slopes in 𝑀
0
, [9] shows that {VIF

𝑐
(𝛽
𝑗
) < VIF

𝑢
(𝛽
𝑗
); 1 ≤

𝑖 ≤ 𝑘}. This follows since their numerators are equal, but
denominators are reciprocals of lengths of the centered and
uncentered regressor vectors. To illustrate, numerators are
equal for VIF

𝑢
(𝛽
3
) = 0.3889/(1/3) = 1.1667 and for

VIF
𝑐
(𝛽
3
) = 0.3889/(1/2.8) = 1.0889, but denominators are

reciprocals of X󸀠
2
X
2
= 3 and ∑

5

𝑗=1
(𝑋
2𝑗

− 𝑋
2
)
2
= 2.8.

(𝑖) 𝑉
⊥ Reference Model. To rectify this malapropism, we seek

in Definition 8 a model R
𝑉
as Reference. This is found on

setting all off-diagonal elements of Z󸀠
0
Z
0
to zero, excluding

the first row and column. Its inverse R−1
𝑉

is listed in Table 6.
The VF

𝑣
s are ratios of diagonal elements of (Z󸀠

0
Z
0
)
−1 on the

left to diagonal elements of R−1
𝑉

on the right, namely,

[VF
𝑣
(𝛽
0
) ,VF
𝑣
(𝛽
1
) ,VF
𝑣
(𝛽
2
) ,VF
𝑣
(𝛽
3
)]

= [0.9697, 0.9991, 0.9936, 0.9943].

(25)

Against conventional wisdom, it is counter-intuitive that
[𝛽
0
, 𝛽
1
, 𝛽
2
, 𝛽
3
] are all estimated with greater precision in the

𝑉
⊥-nonorthogonal model Z󸀠

0
Z
0
than in the 𝑉

⊥-orthogonal
model R

𝑉
of Definition 8. As in Section 5.4, this serves again

to refute the tenet that ill-conditioning espouses inflated
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Table 5: Matrices R
𝐶
and R−1

𝐶
for checking 𝐶

⊥-orthogonality in the orthogonal data X0 under model𝑀
0
.

R
𝐶

R−1
𝐶

8 1.0686 2.5538 1.7704 0.1479 −0.0170 −0.0444 −0.0291
1.0686 8 0.3411 0.2365 −0.0170 0.1273 0 0
2.5538 0.3411 8 0.5652 −0.0444 0 0.1392 0
1.7704 0.2365 0.5652 8 −0.0291 0 0 0.1314

Table 6: Matrices (Z󸀠0Z0)
−1 and R−1

𝑉
for checking 𝑉

⊥-orthogonality for the linked data under model𝑀
0
.

(Z󸀠
0
Z
0
)
−1 R−1

𝑉

0.1504 −0.0202 −0.0461 −0.0283 0.1551 −0.0261 −0.0530 −0.0344
−0.0202 0.1293 −0.00797 0.0053 −0.0261 0.1294 0.0089 0.0058
−0.0461 −0.0079 0.1422 −0.0054 −0.0530 0.0089 0.1431 0.0117
−0.0283 0.0053 −0.0054 0.1319 −0.0344 0.0058 0.0117 0.1326

variances for models in𝑀
0
, that is, that VFs necessarily equal

or exceed unity.
(𝑖𝑖) 𝐶

⊥ Reference Model. Further consider variances, were
the Linked Data to be centered. As in Definition 12(ii),
we seek a Reference model R

𝐶
such that C

𝑤
= (W −

M) is diagonal. The required R
𝐶

and its inverse are
listed in Table 7. Since variances in the Linked Data are
[0.15040, 0.12926, 0.14220, 0.13185] from Table 6 and Refer-
ence values appear as diagonal elements of R−1

𝐶
on the right

in Table 7, their ratios give the centered VF
𝑐
s as

[VF
𝑐
(𝛽
0
) ,VF
𝑐
(𝛽
1
) ,VF
𝑐
(𝛽
2
) ,VF
𝑐
(𝛽
3
)]

= [0.9920, 1.0049, 1.0047, 1.0030] .

(26)

We infer that changes in precision would be negligible, if
instead the Linked Data experiment was to be recast as a 𝐶⊥-
orthogonal experiment.

As in Remark 15, the reference matrix R
𝐶
is constrained

by the first and second moments from X󸀠
0
X
0
and has free

parameters {𝑥
1
, 𝑥
2
, 𝑥
3
} for the {(2, 3), (2, 4), (3, 4)} entries.

The constraints for 𝐶
⊥-orthogonality are {R−1

𝐶
(2, 3) =

R−1
𝐶
(2, 4) = R−1

𝐶
(3, 4) = 0}. Although this system of

equations can be solved with numerical software such as
Maple, the algorithm stated in Definition 12 easily yields the
direct solution given here.

6.2. The Model 𝑀
𝑤
. For the Linked Data take {𝑌

𝑖
= 𝛽
1
𝑍
𝑖1
+

𝛽
2
𝑍
𝑖2

+ 𝛽
3
𝑍
𝑖3

+ 𝜖
𝑖
; 1 ≤ 𝑖 ≤ 8} as {Y = Z𝛽 + 𝜖},

where the expected response at {𝑍
1

= 𝑍
2

= 𝑍
3

= 0}

is 𝐸(𝑌) = 0.0, and there is no occasion to translate the
regressors.The lower right (3 × 3) submatrix ofZ󸀠

0
Z
0
(4 × 4)

from 𝑀
0
is Z󸀠Z; its inverse is listed in Table 8. The ratios

of diagonal elements of (Z󸀠Z)−1 to reciprocals of diagonal
elements of Z󸀠Z are the conventional uncentered VIF

𝑢
s,

namely, [1.0123, 1.0247, 1.0123]. Equivalently, scaling Z󸀠Z to
have unit diagonals and inverting gives C−1 as in Table 8; its
diagonal elements are the VIF

𝑢
s.Throughout Section 6, these

comprise the only correct interpretation of conventional
VIF
𝑢
s as genuine variance ratios.

7. Case Study: Body Fat Data

7.1. The Setting. Body fat and morphogenic measurements
were reported for 𝑛 = 20 human subjects in Table D.11 of
[29, p.717]. Response and regressor variables are𝑌: amount of
body fat; X

1
: triceps skinfold thickness; X

2
: thigh circumfer-

ence; and X
3
: mid-arm circumference, under𝑀

0
: {𝑌
𝑖
= 𝛽
0
+

𝛽
1
𝑋
1
+𝛽
2
𝑋
2
+𝛽
3
𝑋
3
+ 𝜖
𝑖
}. From the original data as reported

the condition number of X󸀠
0
X
0
is 1,039,931, and the VIF

𝑢
s are

[271.4800, 446.9419, 63.0998, 77.8703]. On scaling columns
of X to equal column lengths {‖X

𝑖
‖ = 5.0; 𝑖 = 1, 2, 3}, the

resulting condition number of the revisedX󸀠
0
X
0
is 2, 969.6518,

and the uncenteredVIF
𝑢
s are as before from invariance under

scaling.
Against complaints that regressors are remote from their

natural origins, we center regressors to [0, 0, 0] as origin on
subtracting the minimal element from each column as in
Remark 2, and scaling these to {‖X

𝑖
‖ = 5.0; 𝑖 = 1, 2, 3}.

This is motivated on grounds that centered diagnostics, apart
from VIF

𝑐
(𝛽
0
), are invariant under shifts and scalings from

Lemma 14. In addition, under the new origin [0, 0, 0], 𝛽
0

assumes prominence as the baseline response against which
changes due to regressors are to be gaged. The original data
are available on the publisher’s web page for [29].

Taking these shifted and scaled vectors as columns
of X = [X

1
,X
2
,X
3
] in the revised X

0
= [1

𝑛
,X],

values for X󸀠
0
X
0

and its inverse are listed in Table 9.
The condition number of X󸀠

0
X
0

is now 113.6969 and
its VIF

𝑢
s are [6.7756,17.9987,4.2782,17.4484]. Additionally,

from Theorem 4(ii) we recover the angle 𝜃
0
= 22.592 deg to

quantify collinearity of regressors with the constant vector.
In addition, the scaled and centered correlationmatrix for

X is

R = [

[

1.0 0.0847 0.8781

0.0847 1.0 0.1424

0.8781 0.1424 1.0

]

]

(27)

indicating strong linkage between mean-centered versions of
(X
1
,X
3
).Moreover, the experimental design is neither𝑉⊥ nor

𝐶
⊥-orthogonal, since neither the lower right (3 × 3) block of

X󸀠
0
X
0
nor the centered matrixC = (X󸀠X−𝑛XX󸀠) is diagonal.
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Table 7: Matrices R
𝐶
and R−1

𝐶
for checking 𝐶

⊥-orthogonality in the linked data under model𝑀
0
.

R
𝐶

R−1
𝐶

8 1.3441 2.7337 1.7722 0.1516 −0.0216 −0.0484 −0.0291
1.3441 8 0.4593 0.2977 −0.0216 0.1286 0 0
2.7337 0.4593 8 0.6056 −0.0484 0 0.1415 0
1.7722 0.2977 0.6056 8 −0.0291 0 0 0.1314

Table 8: Matrices (Z󸀠Z)−1 and C−1 for the linked data under model𝑀
𝑤
.

(Z󸀠Z)−1 C−1

0.1265 −0.0141 0.0015 1.0123 −0.1125 0.0123
−0.0141 0.1281 −0.0141 −0.1125 1.0247 −0.1125
0.0015 −0.0141 0.1265 0.0123 −0.1125 1.0123

(𝑖) 𝑉
⊥ Reference Model. To compare this with a 𝑉

⊥-or-
thogonal design, we turn again to Definition 8. However,
evaluating the test criterion in Lemma 9(𝑖) shows that this
configuration is not commensurate with 𝑉

⊥-orthogonality,
so that the VF

𝑣
s are undefined. Comparisons with 𝐶

⊥-
orthogonal models are addressed next.
(𝑖𝑖) 𝐶
⊥ Reference Model. As in Definition 12(ii), the centering

matrix is

𝑛XX󸀠 = [

[

18.8889 18.9402 18.7499

18.9402 18.9916 18.8007

18.7499 18.8007 18.6118

]

]

. (28)

To check against 𝐶⊥-orthogonality, we obtain the matrix W
of Definition 12(ii) on replacing off-diagonal elements of the
lower right (3 × 3) submatrix ofX󸀠

0
X
0
by corresponding off-

diagonal elements of 𝑛XX󸀠. The result is the matrix R
𝐶
and

its inverse as given in Table 10, where diagonal elements of
R−1
𝐶

are the Reference variances. The VF
𝑐
s, found as ratios

of diagonal elements of (X󸀠
0
X
0
)
−1 relative to those of R−1

𝐶
,

are listed in Table 12 under G = [0, 0, 0], the indicator of
Definition 12(i) for this case.

7.2. Variance Factors and Linkage. Traditional gages of ill-
conditioning are patently absurd on occasion. By convention
VIFs are “all or none,” wherein Reference models entail
strictly diagonal components. In practice some regressors
are inextricably linked: to get, or even visualize, orthogonal
regressors may go beyond feasible experimental ranges,
require extrapolation beyond practical limits, and challenge
credulity. Response functions so constrained are described in
[30] as “picket fences.” In such cases, taking C to be diagonal
as its 𝐶⊥ Reference is moot, at best an academic folly, abetted
in turn by default in standard software packages. In short,
conventional diagnostics here offer answers to irrelevant
questions. Given pairs of regressors irrevocably linked, we
seek instead to assess effects on variances for other pairs
that could be unlinked by design. These comments apply
especially to entries under G = [0, 0, 0] in Table 12.

To proceed, we define essential ill-conditioning as regres-
sors inextricably linked, necessarily to remain so and as
nonessential if regressors could be unlinked by design. As a

followup to Section 3.2, for X ̸= 0 we infer that the constant
vector is inextricably linked with regressors, thus accounting
for essential ill-conditioning not removed by centering,
contrary to claims in [4]. Indeed, this is the essence of
Definition 8.

Fortunately, these limitations may be remedied through
Reference models adapted to this purpose. This in turn
exploits the special notation and trappings of Definition 12(i)
as follows. In addition toG = [0, 0, 0], we iterate for indicators
G = [𝑔

12
, 𝑔
13
, 𝑔
23
] taking values in {[1, 0, 0], [0, 1, 0], [0, 0, 1],

[1, 1, 0], [1, 0, 1], [0, 1, 1]}. Values of VF
𝑐
s thus obtained are

listed in Table 12. To fix ideas, the Reference R
𝐶
for G =

[1, 0, 0], that is, for the constraint R
𝐶
(2, 3) = X󸀠

0
X
0
(2, 3) =

19.4533, is given in Table 11, together with its inverse. Found
as ratios of diagonal elements of (X󸀠

0
X
0
)
−1 relative to those of

R−1
𝐶

in Table 11, VF
𝑐
s are listed in Table 12 underG = [1, 0, 0].

In short, R
𝐶
is “as 𝐶

⊥-orthogonal as it could be” given the
constraint. Other VF

𝑐
s in Table 12 proceed similarly. For all

cases in Table 12, excluding G = [0, 1, 1], 𝛽
0
is estimated

with greater efficiency in the original model than any of the
postulated Reference models.

As in Remark 15, the reference matrix R
𝐶

for G =

[1, 0, 0] is constrained by X󸀠
1
X
2

= 19.4533, to be retained,
whereas X󸀠

1
X
3

= 𝑥
1
and X󸀠

2
X
3

= 𝑥
2
are to be determined

from {R−1
𝐶
(2, 4) = R−1

𝐶
(3, 4) = 0}. Although this system

can be solved numerically as noted, the algorithm stated in
Definition 12 easily yields the direct solution given here.

Recall 𝑋
1
: triceps skinfold thickness; 𝑋

2
: thigh cir-

cumference; and 𝑋
3
: mid-arm circumference; and from

(27) that (𝑋
1
, 𝑋
3
) are strongly linked. Invoking the cutoff

rule [24] for VIFs in excess of 4.0, it is seen for G =

[0, 0, 0] in Table 12 that VF
𝑐
(𝛽
1
) and VF

𝑐
(𝛽
3
) are excessive,

where [X
1
,X
2
,X
3
] are forced to be mutually uncorrelated

as Reference. Remarkably similar values are reported for
G ∈ {[1, 0, 0], [ 0, 0, 1], [1, 0, 1]}, all gaged against intractable
Reference models wherein (𝑋

1
, 𝑋
3
) are postulated to be

uncorrelated, however, incredibly.
On the other hand, VF

𝑐
s for G ∈ {[0, 1, 0], [1, 1, 0],

[0, 1, 1]} in Table 12 are likewise comparable, where (X
1
,X
3
)

are allowed to remain linked at X󸀠
1
X
3
= 24.2362. Here the

VF
𝑐
s reflect negligible changes in efficiency of the estimates
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Table 9: Matrices X󸀠0X0 and (X󸀠0X0)
−1 for the body fat data under model𝑀

0
centered to minima and scaled to equal lengths.

X󸀠
0
X
0

(X󸀠
0
X
0
)
−1

20 19.4365 19.4893 19.2934 0.3388 −0.1284 −0.1482 −0.0203
19.4365 25 19.4533 24.2362 −0.1284 0.7199 0.0299 −0.6224
19.4893 19.4533 25 19.6832 −0.1482 0.0299 0.1711 −0.0494
19.2934 24.2362 19.6832 25 −0.0203 −0.6224 −0.0494 0.6979

Table 10: Matrices R
𝐶
and R−1

𝐶
for the body fat data, adjusted to give off-diagonal elements the value 0.0, with code G = [0, 0, 0].

R
𝐶

R−1
𝐶

20 19.4365 19.4893 19.2934 0.5083 −0.1590 −0.1622 −0.1510
19.4365 25 18.9402 18.7499 −0.1590 0.1636 0 0
19.4893 18.9402 25 18.8007 −0.1622 0 0.1664 0
19.2934 18.7499 18.8007 25 −0.1510 0 0 0.1565

in comparison with the originalX󸀠
0
X
0
, where [X

1
,X
2
,X
3
] are

all linked. In summary, negligible changes in overall efficiency
would accrue on recasting the experiment so that (X

1
,X
2
)

and (X
2
,X
3
) were pairwise uncorrelated.

Table 12 conveys further useful information on noting
that VFs, as ratios, are multiplicative and divisible. For
example, take the model codedG = [1, 1, 0], whereX󸀠

1
X
2
and

X󸀠
1
X
3
are retained at their initial values under X󸀠

0
X
0
, namely,

19.4533 and 24.2362 from Table 9, with (X
2
,X
3
) unlinked.

Now taking G = [0, 1, 0] as reference, we extract the VFs
on dividing elements in Table 12 at G = [0, 1, 0], by those of
G = [1, 1, 0]. The result is

[VF (𝛽
0
) ,VF (𝛽

1
) ,VF (𝛽

2
) ,VF (𝛽

3
)]

= [
0.9196

0.9848
,
1.0073

1.0057
,
1.0282

1.0208
,
1.0208

1.0208
]

= [0.9338, 1.0017, 1.0072, 1.0000] .

(29)

8. Conclusions

Our goal is clarity in the actual workings of VIFs as ill-
conditioning diagnostics, thus to identify and rectifymiscon-
ceptions regarding the use of VIFs for models X

0
= [1
𝑛
,X]

with intercept. Would-be arbiters for “correct” usage have
divided between VIF

𝑐
s for mean-centered regressors and

VIF
𝑢
s for uncentered data. We take issue with both. Conven-

tional but clouded vision holds that (i) VIF
𝑢
s gage variance

inflation owing to nonorthogonal columns of X
0
as vectors

in R𝑛; (ii) VIFs ≥ 1.0; and (iii) models having orthogonal
mean-centered regressors are “ideal” in possessing VIF

𝑐
s of

value unity. Reprising Remark 3, these properties, widely and
correctly understood for models in𝑀

𝑤
, appear to have been

expropriated without verification for models in𝑀
0
hence the

anomalies.
Accordingly, we have distinguished vector-space orthog-

onality (𝑉⊥) of columns of X
0
, in contrast to orthogonality

(𝐶⊥) of mean-centered columns of X. A key feature is the
construction of second-moment arrays as Reference models
(R
𝑉
,R
𝐶
), encoding orthogonalities of these types, and their

Variance Factors as VF
𝑣
’s and VF

𝑐
’s, respectively. Contrary

to convention, we demonstrate analytically and through case
studies that (i󸀠) VIF

𝑢
s do not gage variance inflation; (ii󸀠)

VFs ≥ 1.0 need not hold, whereas VF < 1.0 represents
Variance Deflation; and (iii󸀠) models having orthogonal
centered regressors are not necessarily “ideal.” In particular,
variance deflation occurs when ill-conditioned data yield
smaller variances than corresponding orthogonal surrogates.

In short, our studies call out to adjudicate the prolonged
dispute regarding centered and uncentered diagnostics for
models in𝑀

0
. Our summary conclusions follow.

(S1) The choice of a model, with or without intercept, is
a substantive matter in the context of each exper-
imental paradigm. That choice is fixed beforehand
in a particular setting, is structural, and is beyond
the scope of the present study. Snee and Marquardt
[10] correctly assert that VIFs are fully credited
and remain undisputed in models without intercept:
these quantities unambiguously retain the meanings
originally intended, namely, as ratios of variances to
gage effects of nonorthogonal regressors. For models
with intercept the choice is between centered and
uncentered diagnostics, which is to be weighed as
follows.

(S2) ConventionalVIF
𝑐
s apply incompletely to slopes only,

not necessarily grasping fully that a system is ill
conditioned. Of particular concern is missing evi-
dence on collinearity of regressors with the intercept.
On the other hand, if 𝐶

⊥-orthogonality pertains,
then VF

𝑐
s may supplant VIF

𝑐
s as applicable to all of

[𝛽
0
, 𝛽
1
, . . . , 𝛽

𝑘
]. Moreover, the latter may reveal that

VF
𝑐
(𝛽
0
) < 1.0, as in cited examples and of special

import in predicting near the origin of the coordinate
system.

(S3) Our VF
𝑣
s capture correctly the concept apparently

intended by conventional VIF
𝑢
s. Specifically, if 𝑉⊥-

orthogonality pertains, then VF
𝑣
s, as genuine ratios

of variances, may supplant VIF
𝑢
s as now discredited

gages for variance inflation.
(S4) Returning to Section 3.2, we subscribe fully, but for

different reasons, to Belsley’s and others’ contention
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Table 11: Matrices R
𝐶
and R−1

𝐶
for the body fat data, adjusted to give off-diagonal elements the value 0.0 except X󸀠1X2; code G = [1, 0, 0].

R
𝐶

R−1
𝐶

20 19.4365 19.4893 19.2934 0.4839 −0.1465 −0.1497 −0.1510
19.4365 25 19.4533 18.7499 −0.1465 0.1648 −0.0141 0
19.4893 19.4533 25 18.8007 −0.1497 −0.0141 0.1676 0
19.2934 18.7499 18.8007 25 −0.1510 0 0 0.1565

Table 12: Summary VF
𝑐
s for the body fat data centered to minima and scaled to common lengths, identified with varying G = [𝑔

12
, 𝑔
13
, 𝑔
23
]

from Definition 12.

Elements of G VF
𝑐
s

𝑔
12

𝑔
13

𝑔
23

𝛽
0

𝛽
1

𝛽
2

𝛽
3

0 0 0 0.6665 4.3996 1.0282 4.4586

1 0 0 0.7002 4.3681 1.0208 4.4586

0 1 0 0.9196 1.0073 1.0282 1.0208

0 0 1 0.7201 4.3996 1.0073 4.3681

1 1 0 0.9848 1.0057 1.0208 1.0208

1 0 1 0.7595 4.3681 1.0003 4.3681

0 1 1 1.0248 1.0073 1.0073 1.0160

that uncentered VIF
𝑢
s are essential in assessing ill-

conditioned data. In the geometry of ill-conditioning,
these should be retained in the pantheon of regres-
sion diagnostics, not as now debunked gages of
variance inflation, but as more compelling angular
measures of the collinearity of each column of X

0
=

[1
𝑛
,X
1
,X
2
, . . . ,X

𝑘
], with the subspace spanned by

remaining columns.
(S5) Specifically, the degree of collinearity of regressors

with the intercept is quantified by 𝜃
0
deg which,

if small, is known to “corrupt the estimates of all
parameters in the model whether or not the intercept
is itself of interest and whether or not the data have
been centered” [21, p.90].This in turnwould appear to
elevate 𝜃

0
in importance as a critical ill-conditioning

diagnostic.
(S6) In contrast, Theorem 4(iii) identifies conventional

VIF
𝑐
s with angles between a centered regressor and

the subspace spanned by remaining centered regres-
sors. For example,

𝜃
1
= arccos([

[

1 −
1

VIFc ( “𝛽1)
]

]

1/2

) (30)

is the angle between the centered vector Z
1
= B
𝑛
X
1

and the remaining centered vectors. These lie in the
linear subspace of R𝑛 comprising the orthogonal
complement to 1

𝑛
∈ R𝑛 and thus bear on the

geometry of ill-conditioning in this subspace.
(S7) Whereas conventional VIFs are “all or none,” to

be gaged against strictly diagonal components, our
Reference models enable unlinking what may be
unlinked, while leaving other pairs of regressors
linked. This enables us to assess effects on variances

attributed to allowable partial dependencies among
some but not other regressors.

In conclusion, the foregoing summary points to limita-
tions in modern software packages. Minitab v.15, 𝑆𝑃𝑆𝑆 v.19,
and 𝑆𝐴𝑆 v.9.2 are standard software packages which compute
collinearity diagnostics returning, with the default options,
the centered VIFs {VIF

𝑐
(𝛽
𝑗
); 1 ≤ 𝑗 ≤ 𝑘}. To compute

the uncentered VIF
𝑢
s, one needs to define a variable for

the constant term and perform a linear regression using the
options of fitting without an intercept. On the other hand,
computations for VF

𝑐
s and VF

𝑣
s, as introduced here, require

additional if straightforward programming, for example,
Maple and PROC IML of the SAS System, as utilized here.
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