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Abstract. Consider a series system consisting of n components of k types. Whenever a unit fails,
it is replaced immediately by a new one to keep the system working. Under the assumption that
all the life lengths of the components are independent and exponentially distributed and that the
replacement policies depend only on the present state of the system at each failure, the system
may be represented by a birth and death process. The existence of the optimum replacement
policies are discussed and the e-optimal policies are derived. If the past experience of the system
can also be utilized, the process is not a Markov process. The optimum Bayesian policies are
derived and the properties of the resulting process are studied. Also, the stochastic processes
are simulated and the probability of absorption, the mean time to absorption and the average
proportion of the retrograde motion are approximated.
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1. Introduction

Suppose we have k types of components. Assume that all the life lengths of the
components are independent and exponentially distributed with unknown constant
failure rates A1, A2, -+, Ax. Since the rank order of these k failure rates is assumed
to be completely unknown, the natural problem arises of how to select the most
reliable components associated with the smallest failure rate.

The decision problem could be classified in the areas of multiple comparisons,
ranking and selection and reliability theory, but especially in the area of ranking
and selection. The simplest model hereby is to operate separately & components,
one from each type. When a component fails, we replace it immediately by a new
one of the same type. The failure counting processes in time are k independent
Poisson processes with failure rates Aj, j = 1,2,---,k. Dixon and Bland (1971)
have observed the k Poisson processes over time periods of a common fixed length
and derived a Bayes solution to the problem of complete ranking through combined
paired comparisons. For the same model, Goel (1972) has shown that the natural
rule for selecting the population with the largest A-value cannot be implemented
in the indifference zone approach at predetermined P*-values. Subset selection
procedures, however, can be established under the P*-criterion, as it has been
done by Gupta and Huang (1975) and Gupta and Wong (1977). The alternative
problem, i.e. the one concerning subset selection with emphasis on the smallest A-
value, has been treated in Gupta, Leong, and Wong (1979). Results on selecting the
population with the largest A-value in terms of the highest posterior probability of
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being the best population have been derived by Wilson (1992). Lists of the relevant
literature in this area can be found in Gupta and Panchapakesan (1979) and Miescke
and Shi (1995).

Recently, Miescke (1990) and Miescke and Shi (1995) have treated the problem in
a new dynamic approach. Instead of observing the k parallel running, independent
experiments, the k types of components are examined in a series operating system
where it is emphasized that at each failure, an immediate replacement is made
in some optimum way to keep the system running. Under this model Miescke
(1990) has derived some natural ‘look-ahead-one-failure’ Bayes replacement policies
to maximize, at each failure, the expected waiting time for the next failure in the
system, or the posterior probability that the waiting time for the next failure exceeds
a given value. These Bayes rules have been obtained for both cases, when the past
experiences of the system could be utilized or not. In the latter case, the system
can be represented by a Markov process. Miescke and Shi (1995) have studied
the process for k = 2 and, under certain conditions, derived Markov replacement
policies in some optimum way to ensure that, with maximum absorption probability,
the system will finally be composed of only the components of the better type,
possessing the smaller failure rate.

The first objective in the present paper is to study the existence of the optimum
replacement policies and define the -optimal replacement policies for the Markov
process. If the past information of the system could also be utilized, the process
is not a Markov process. Our second objective is to derive the optimum Bayes
replacement policies through the generalized maximum likelihood method for the
non-Markov processes. Finally, the absorbing property of the non-Markov processes
will be studied and the results of the computer simulation of the processes will be
given at the end.

2. Policies Based only on the Present Information
2.1. Model Assumptions

Consider a series system consisting of n components which are all kept permanently
in working condition. Each time a failure occurs, the failed component is replaced
immediately by a fresh one according to some replacement policy. Available for use
are two types of components. Assume that all life lengths are independent and each
unit of type k has a cumulative life distribution function Gi(t) = 1 — e ¢, ¢ >
0, £ = 0,1, where Ag, A; > 0 are unknown parameters.

The replacement policies considered in this section depend only on the present
state of the system, i.e. which type of component caused the failure and how
many components of each type were in use in the system. To be more specific, let
F;, 0 <i<n (S;, 0<i<n)denote the probability of making a replacement with
a component of type 0(1), after a component of type 1(0) fails when the system
contains 7 components of type 1, and let F; =1 — F; and S; = 1 — S;. Assume that
F;>0,8:>0,0<i<nand F, =S, =0, i.e. the state of the system will not be
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changed if all the components in use are of the same type. Particular policies will be
denoted by a = (F,- -+, Fy;So, -+, Sn—1) while the set of all possible replacement
policies under consideration will be denoted .A. Note that if type 1 is better than
type 0, i.e. if \; < Ao, then S and F are suggesting a desirable replacement and S
and F a wrong replacement.

Let X (t) denote the number of units of type 1 in the system, operating at time t.
Then, the motion of X (t) can be described as follows: if, at time ¢, the process is
in state i, 0 < i < m, then, after staying at state ¢ for an exponentially distributed
length of time, it may move to state ¢ + 1 (a unit of type 0 fails and is replaced by
a new one of type 1) or state ¢ — 1 (a type 1 fails and is replaced by a type 0), or
stay at state i (any one type fails and is replaced by the same type). If X (t) =0 or
n, then the state of the process will never be changed. Due to the lack of memory
of the exponential law, the process {X(t), t > 0} is a birth and death process with
finite state space {0,1,2,---,n} and absorbing states 0 and n. (Miescke and Shi,
1995).

2.2. The existence of optimum replacement policies
2.2.1. The imbedded Markov chain

The first natural step is to find a replacement policy which maximizes the proba-
bility that the process ends up in the better of the two absorbing states, i.e. all
the components in use are of the same type which has the smaller A-value. To this
end, we introduce an embedded Markov chain as follows. Let g =0 < 1 <72 <
-+ < 7 < --- be the successive transition times of the birth and death process,
i.e. the successive moments when a component fails and is replaced immediately,
according to the replacement policy, by a unit of different type. Let Xo = X (0),
X, = X(7;), r > 1. Then, {X,, r > 0} is an imbedded Markov chain associated
with the given Markov process {X (t), ¢t > 0}. This Markov chain records only the
jumps of the birth and death process at the transition times, but the probabilities
of absorption into states 0 or n for this Markov chain are the same as for the birth
and death process since both of them execute the same transitions.

Let a;; denote the probability that, starting at a transient state i € {1, 2, ---, n—
1}, the Markov chain ends up in an absorbing state € {0,n}. Then, for any
replacement policy a € A, the absorption probabilities a;; can be written in the
following concise form:

=0

i—1

-1\t
ain=aln2(nj ) a.’i617 1<i<n, (1)

=0
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n—1 n—1 -1 .
ai0=a1n2( j ) a;é’, 1<i<mn,

i=i

where 6 = 3%, o = 88, 0<i<n, ap=1. (Miescke and Shi, 1995)

2.2.2. The symmetric replacement policies

Our goal is to find a replacement policy which maximizes the probability that
the process ends up in the better of the two absorbing states. Since we do not
know which type of components is better we should find a policy that maximizes
Gin, 0 < i < n when type 1 is better (§ < 1), and simultaneously, minimizes
ain (maximizes a;o) when type 0 is better (§ > 1). Unfortunately, the problem
has no solution if the replacement policies are not symmetric or the system is not
completely symmetric, i.e. if the fixed number n of components in the system is
odd, n = 2m + 1, say, or n is even, n = 2m, say, but the starting state ¢ is not m,
i.e. the system starts with unequal numbers of components of each type.

The first statement is obvious since 0 < a;;, < 1 for all § > 0 and all @ € A,
and the limit of a;, is 0 (1) as S,—1 (F1) approaches 0, that is, inf 4 a;, = 0 and
Sup 4 @in = 1 for all § > 0. This indicates that there does not exist any optimum
replacement policies in .4, nor even in the extended policy set A = {a | F: >0, 0 <
i<nF,=0;5 >0, 0<1i<n,S =0} To overcome the obstacles, it is
reasonable to consider only those replacement policies which treat the two types of
components without any bias towards their given labels, i.e. which act analogously
if the labels ’type 0’ and ’type 1’ are exchanged. Thus, throughout the sequel,
it is assumed that the replacement policies are symmetric in the following way:
F; =8Sp—i, i =1,2,---,n. The set of all symmetric replacement policies and its
extension will be denoted by A; and A; = {a|F; = S,-: >0, 0<i<n, F, =
So = 0}, respectively.

To prove the second statement and compare the replacement policies, let us con-
sider the extreme case where F} = S,,_; approaches 0. It follows that o; approaches
0,i=1,2,---,n — 2, and consequently, a;, approaches a}, = y5==-

If the system is not completely symmetric, then sup 4, a;n for 6 < 1 and inf 4, a;n
for 6 > 1 are not the same. To see this, let us investigate the case where n = 2m+1
and 7 < m, for instance.

After some standard steps of calculation, the difference ai, — af, can be written
as
Simo (") a8 - 3 (77Y) " agdn 2

(L+81) Y000 (%) T ey

=0

Qin — C;, =

Its denominator is positive, while its numerator can be written as

i—1

J ’ j ! ’

J=0 Jj=i
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which is negative if § < 1. That is, ain < a}, for all § < 1. Note that the limit of
ain is a, as Fy approaches 0. It follows that, in the present case, sup 4, ain = aj,
for all § < 1.

On the other hand, if we multiply both the numerator and the denominator of
ain in Eq.(1) by S1S3---Sm, we can see that each term of the numerator and
the denominator contains a common factor S,,, except for the middle term of the
denominator, which is (";1)_1F1F2 -+ Fné™. It follows that a;, approaches 0 as
Sm approaches 0 and consequently, in the present case, inf 4, ain = 0 for 6 > 1.
This indicates that there does not exist any optimum replacement policies in A4,
nor in its extension A;.

2.2.3. The completely symmetric system

For the case n = 2m > 2 and i = m, due to the complete symmetry, it can be seen
that if § < 1, then

A < Gmn < Q,,, foralla € A;; 2)
and if § > 1, then
Grn < Qmn < al,, forallae€ A, 3)

where a¥, = 1—_}_6. Since the limit of amy, is a},,, as F} approaches 0 we see that
7., = SUP 4, Gmx for all § < 1 and ay,, = inf 4, ama for all § > 1. Analogously, as
an interesting by-product, it is readily seen that a%,, = inf 4, Gmn, for all § < 1 and
Gpmp = SUP 4, Gmn, for all § > 1 since the limit of amn is a}y,,, as Sy—1 approaches
0 for all 6 > 0.

It is now obvious that there is no optimal policy even for the completely symmetric
system, since the ranges of the absorption probability am. are open intervals. But
it can also be seen that, in this case, e-optimal policies do exist.

2.3. The e-optimal policies

A policy af is called an e— optimal replacement policy in A; if, simultaneously,

Qo < Uy +€ forall §>1, 4)

a,, > an,,—€ forall d<1. (5)

To see the existence of the e-optimal policies, let us have a further investigation of
the difference d = amp, — a3,,,, Which can be written as

g @ -DEE () el 5 6

1

- 1+ -1y ymst (Y "lai(Ji + on—1-1) )

?
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The denominator of d is a polynomial of § with degree 2n — 2 and is always greater
than 1, while the numerator is a polynomial of § with degree n + m — 2 and each
term of the numerator contains a common factor Fy. Hence, for all a € A, d/F;
is a continuous function of § in (0, o0). Since lims_,od = 0 and lims_,c d = 0, we
see that d/F; is bounded from above on (0, o0). That is, |d| < FiM, 0 < § < oo,
for some positive number M. This implies that a,,, approaches a},, uniformly in

¢ as F; approaches zero. Consequently, the following theorem has been shown to
be true.

THEOREM 1 The best replacement policy, which mazimizes the probability that the
process ends up in the better of the two absorbing states does not ezist, but -optimal
policies do exist if the system is completely symmetric.

The e-optimal policies described above suggest that if the system contains only
one component of type 1 (or type 0) and it fails, then it should be replaced by a
unit of the same type with a probability as close to one as possible. The process
then stops very slowly to ensure that it will end up in the better absorbing state
with the absorption probability am. as close to aj,, as desired.

The remaining parts of the above policies, F; = Sp—i, ¢ = 2,3,---,n — 1, are
completely free. We could apply, for example, the Play the Winner policy, denoted
byP: F;=S;=1,i=1,2,---,n—1, ie. if the failure is caused by a component of
type 1 (0), then it should be replaced by a component of type 0 (1). The probability
of absorption for P turns out to be

m-—1 -1 n—1 -1
= (”;1) 51y (",71) 6.

=0 =0

(Miescke and Shi, 1995). Now we could recommend an e-optimal policy, P, as
follows: F, =S,y =cand F;=8,-;=1,1=2,3,---,n— 1.

The probability of absorption into the better state for § = 1/2 and n = 4,8,12
are listed in Table 1, where B (W) stands for the best (worst) limiting value a;,,,
(a%,) and Py, for an e-optimal policy P,, with o = 0.1.

Table 1. Absorption Probabilities

n B Po.1 P w

4 | 0.8889 0.8841 0.8485 0.6667

8 1 0.9922 0.9918 0.9879 0.6667
12 | 0.9995 0.9995 0.9993 0.6667

3. Policies based on both the present and the past information

Suppose that the past information of the system is available and, from now on,
that the replacement policies depend not only on the present information, but also
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on the past experience of the system. Then, the process {X(t), ¢ > 0} is not a
Markov process any more. To find an optimum replacement policy, we employ the
Bayesian approach.

3.1. The likelihood

Let ny (ng:), I > 1 be the number of components of type 1 (0), operating in the
system between the (I — 1)th and lth failure, ny; = ng1 = m = n/2. Let I; denote
the type of component which causes the lth failure, R; the type of component which
replaced the Ith failure, Ij; (Ip;) the number of failures caused by components of
type 1 (0) during the first ! failures and Ry; (Rg) the number of components of
type 1 (0), which replaced the failed units during the first [ failures, [ > 1. Then,
it is obvious that Iy = Y4, Ij, T =1 —Iu, Ru=Y;_, Rj, Ru=1— Ry and
nu=m-—Iy_ 1+ Ry, na=m+Iy_1—Ry_;, 121
The probability density of I;, given nyy, is
Tt Ak
fukiX, ) nuA1 + naio’ k=10,
which depends on the unknown parameter A = (A1, Ag), the type of components
which caused the first I — 1 failures, I, I3, --,I;—;, and the type of components
which made the first [ — 1 replacements, Ry, Ry, -, Ri—1.

Note that a replacement policy is just a series of probability densities of Ry, [ > 1.
It is easily seen that at the first stage, the policy depends only on I;. At the second
stage, the policy depends only on I, R;, and I,. Since R; is determined by I,
we see that, at the second stage, the policy depends only on I; and I,. Thus, we
conclude that, at the lth stage, the replacement policy under consideration depends
only on I, I5,---,I; and A. As a consequence, we may obtain, for instance, that
P{I; = io| L =41} = P{l; = i2| 1 = i1, R1 = r1} = ns2X, /(n12M1 + noado),
where ny2 =m — i) + 1y, ngg = m+14; — 1, and r; depends on ;.

It is now readily seen that the likelihood of I = (I, I,,-- -, 1), with A = Ag/Aq,
is

L=LI|X) = P{L =i1,I5 =4y, ,I; = i1}
P{Il ='i1}---P{I1 = ixl I_.,' = ‘l:j,l <j< l}
- f[ Tiy5 i

=1 ny; A1 + ngjdo

! /\{11 ,\gox
= (H nijj) 7
j=1 [T;=1(n15A1 + mo; M)

l
Aot
= (H"iii) 1

i=1 IL=1 (n1; + Ang;) '
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3.2. Bayes replacement policy

As usual, if there is no a priori known preference between the two types of com-
ponents, symmetric priors are the natural choice. Let us assume, throughout the
sequel, that A = (Xp, A1) is a realization of a random vector A = (Ao, A1) with
a prior density w(\) which is permutation symmetric. Then, the joint density of
I= (Il,Ig,'“,Iz) and A is

! I!l Im
= (] nisi) = AN T)
i=1 IT;—1 (1A + nojAo)

the marginal density of I is
1

M=/ Lrd\ = N, ;)my,

R2 (E :J) 1

i A{ll A;OI 1r().)
H,~=1 (n1jA1+m050)

where m; = [0
I

I, is

d), and hence, the posterior density of A, given

AP ()
ITi=1 (R1i M1 + nojdo)ms
_ Alorz())
I'[;=1 (n1j + Angj)my '

A | 1) =

Under 0 — 1 loss, the posterior expected losses of actions R; = 1 and 0 are

I
E"(AII)L(A, 1) =/ T a OIﬂ(A) d\ ,
(A1>20) [Tj=1(n1j + Angj)my

and

E"(AII)L(A, 0) - / : AIOKW(A)
(A1<X0) Hj:l (n1; + Ang;)my

Iy
- / AMT) g,
>

1>20) H;‘=l (An1j + no,-)ml

where the last equality is obtained by exchanging A; and Ao. Hence, a sufficient
condition for ETAINL(X 1) < E*AINL(X,0) s, forall 0 < A < 1,

Alo < Alu
[Tj=i(n1j + Ang;)  TThey (Anaj + noj)

To summarize our results, let us define
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nyj + Tno;

]
d =d(z) = gl H o1 + 10,
J )

i=1

, 1> 1. (6)

The following has been shown to be true.

THEOREM 2 Assume that A = (Ag, A1) has a permutation symmetric probability
density w. Then, under 0 — 1 loss, the Bayes replacement policy which minimizes
the posterior ezpected loss is as follows: after the lth failure, replace the failed unit
by a component of type 1 (0) ifd; > (<) 1 forall0 <z < 1.

COROLLARY 1 Suppose that A = (Ao, A1) has two possible values (u,v) and
(v,u), u < v, say, with both values being equally likely, i.e. m(u,v) = w(v,u) = 1/2.
Then, under 0—1 loss, the Bayes rule for the system is Ry = 1 (0) if di(2) > (<) 1.

3.3. An Example

Example 1: Suppose that A = (Ag, A1) has two possible values (1,2) and (2,1)
with 7(1,2) = m(2,1) = 1/2. Then, the Bayes rule is that R; = 1 (0) if

d (l) = 2fu—Iu f[ 2 +moj (<) 1 7)
) o nyj + 2ng; ’

Assume that n = 8 and I = (0,1,1,0,1,0,0,0,0,0), i.e. I; =0, I, = 1, etc.
Then, following the Bayes rule we obtain that R = (1,1,0,1,0,1,1,1,1,1). The
computations are very simple and hence omitted.

Remark. From the example, one sees that after the 9th replacement, all the
components in use are of type 1. Then, definitely, the next failure will be caused by
a component of type 1. According to the replacement rule, we see that the failed
unit must be replaced by a component of the same type, i.e. type 1. Hence after
the next replacement, all the components in use are still of type 1. This is always
true for the successive replacements after the 9th. We conclude that the process
has two absorbing states. The proof of the absorption property of the process will
be given in the next section.

4. Simulation of the process
4.1. The absorbing property of the process

THEOREM 3 Assume that the Bayes replacement policy stated in Theorem 2 is
adopted. Then, the process {X(t), t > 0} has two absorbing states 0 and n, i.e.
the system will not change its state as soon as all the components in use are of the
same type.
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Proof: Lettp=0<t < --- <t < .-+, be the successive failure times of the
process and X; = my;4+1. Suppose, without loss of generality, that stage I is the
first time when all the components in use are of the same type, type 0, say, for
explicitness, i.e.

X1 =0 0<X,~<n, 0<ji<l

Then, obviously, X;_; =1, I; =1, R, =0 and I;4; = 0 since all the components
in use are of type 0. Furthermore,

21141~1 1141 + TNoi+1 d=d
- b
TN+l + Noll

which implies that R;+; = R; = 0. Hence, X;4; = 0.
The proof can be completed by standard induction.

di =z

4.2. Simulation of the process

Consider the system discussed in Section 3 with the assumption that A = (Ag, A1)
has two possible values (u, v) and (v, u) with u < v and 7(u, v) = n(v, u) =1/2.
Let X (t) denote the number of components of type 1, operating in the system at
time t. Let tp = 0 < t; < --- < t; < --- be the successive failure times and
X1 = mit41, 1 > 0, the number of components of type 1, operating in the system
between the lth and (I + 1)th failure. Then, the discrete time stochastic process
{Xi, 1 > 0} may be simulated by using computer experiments. The initialization
step and the main steps are as follows.

Step 0. Let zg = m = n/2 and fix the ratio of A = XAo/A\; > 1, say. Let I = 0,
do =1 and go to Step 1.

Step 1. Generate I;+1, which may be 0 or 1, by using random numbers such that

T T

Pllihz=1|X= = =
T =1l X =} = o+ (n—z)A

and go to Step 2.
Step 2. Calculate djy; using

A+ (n—zp)

- A1—21[+1
1+ (n—x)A Ls

di+1

and go to Step 3.
Step 3. Determine R;y; by

Rip1=1(0), if diy1 > ()1,

and go to Step 4.
Step 4. Evaluate z;,; by
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Ti41 = o1+ Ry — I,

and go to Step 5.

Step 5. Decide whether to continue or to stop: if 0 < z;41 < n, then replace [
by I + 1 and go back to Step 1; otherwise, if ;41 = 0 or n, then stop.

By using a supercomputer to simulate the process {X;, I > 0}, we can estimate the
relevant quantities of the process we are interested in. For example, we may estimate
the probability of absorption into the better of the two absorbing states, the mean
time to absorption, and the average proportion of the retrograde or forward motion.
(See next section) The results of computer experiments simulating 10° paths each
forn = 4,8,12, A = 1.5,2.00,2.50, 3.00,4.00 are listed in Table 2 through Table 4.

Table 2. Absorption Probabilities (A)

A| 150 200 250 300 4.00
n=4 | 0.719 0.830 0.888 0.922 0.957
8 | 0.816 0.928 0.967 0.983 0.994
12| 0.876 0.970 0.990 0.996 0.999

Table 3. Mean Time to Absorption (A)

A | 150 2.00 250 3.00 4.00
n=4 | 5.84 5.18 4.66 4.25 3.70
8| 17.7 13.7 11.6 10.0 8.31
121304 228 183 158 129

Table 4. Average Forward Proportion (N)

Al 150 200 250 3.00 4.00
n=4 | 0.638 0.723 0.776 0.814 0.862
8 [ 0.706 0.810 0.859 0.889 0.921

12 | 0.761 0.861 0.903 0.923 0.946 l

Also, for the purpose of comparison, Table 5 through Table 7 include the corre-
sponding results for the Markov chains under the following replacement policies:
the e-optimal replacement policy Po.; and the Play the Winner policy P (see Sec-
tion 2.3). The results for the non-Markov chain discussed above are listed in the
columns under the letter N.

4.3. The retrograde motions

To further compare the Bayes replacement policy derived above with the -optimal
policies studied in Section 2, let us investigate the mean time to absorption and
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Table 5. Absorption Probabilities

n=4 n=8

A | Poa P N Po.1 P N
1.5 0.770 0.734 0.718 | 0.945 0.929 0.815
2.0 [ 0.884 0.849 0.830 { 0.992 0.988 0.928
3.0 | 0.960 0.939 0.921 | 0.999 0.998 0.982
4.0 | 0.985 0.969 0.957 | 0.999 0.999 0.993

Table 6. Mean Time to Absorption

n=4 n=

A | Poa P N Po.1 P N
1.5 | 6441 732 584 | 7093 853 17.7
2.0 | 52.06 6.30 5.18 | 349.7 46.1 13.7
3.0 3745 4.93 4.25 | 148.8 22.7 10.0
4012990 420 3.70| 955 155 8.31

Table 7. Average Forward Proportion

n=4 n==8

A |[P1 P N [Po1 P N
1.5 ] .508 .614 .638 | .506 .556 .706
2.0 | .518 .688 .723 | .509 .597 .810
3.0} .532 .768 .814 | .512 .659 .889
40| .545 .815 .862 | .512 .706 .921

the average proportion of correct and wrong replacements for each policy. Assume,
from now on, that the components of type 1 are better. Then, at each failure, a
new component of type 1 should be the right choice for the replacement. This lets
the Markov process move forward to the better absorbing state n. On the other
hand, a component of type 0 is a wrong choice for the replacement, which leads to
a retrograde motion towards the inferior absorbing state 0.

For a given replacement policy and the resulting stochastic process, let the ran-
dom variable T be the total number of replacements until absorption. Then,
R=7Y7, R and W =T — R are the number of right and wrong replacements,
which are made by components of type 1 and 0, respectively. Let the ratio of
B = W/T (R/T) be called the retrograde (forward) proportion of the policy and
its expectation E(B) (E(R/T)) the average retrograde (forward) proportion of the
policy.

Since no closed-form representations are available, computer simulations are em-
ployed to approximate E(T) and E(B). The results are given in Table 6 and 7.

From Table 5 one can see that the e-optimal policies for the absorbing Markov
processes possess greater probabilities of absorption into the better terminal state.
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On the other hand, from Table 6 and Table 7, the Bayes replacement policy de-
rived above requires shorter duration of time for the process to get absorbed, has
much greater average proportion of forward motions, and hence, much less inferior
components to be used in the course of time.
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