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Abstract. Two instances of the traveling salesman problem, on the same node set (1,2 n}
but with different cost matrices C and C, are equivalent iff there exist {a, hi: -1, n} such
that for any 1

_
i, j

_
n, j, C(i, j) C(i,j) q-a -t-bj [7]. One ofthe well-solved special cases

of the traveling salesman problem (TSP) is the convex-hull-and-line TSP. We extend the solution
scheme for this class of TSP given in [9] to a more general class which is closed with respect to
the above equivalence relation. The cost matrix in our general class is a certain composition of
Kalmanson matrices. This gives a new, non-trivial solvable case of TSP.
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1. Introduction

Let G be a complete, directed graph on node set N { 1, 2, ..., n} and let C
v) } be an n x n cost matrix, such that the cost of traversing arc (u, v) is c(u, v) Vu,
v e N, u v. Then, the Traveling Salesman Problem (TSP) is to find a minimum-
cost tour of G that visits each node exactly once. If graph G is undirected (and
hence, the cost matrix C is symmetric), then we have the Symmetric TSP (STSP).
If each node in the node set N can be associated with a point in the 2-dimensional
Euclidean plane, such that the coefficients of C are precisely the Euclidean distances
between the respective pairs of points, then we have the Euclidean TSP (ETSP).
The general TSP, and even its special cases STSP and ETSP, are NP-hard [10].

Hence, researchers have identified many combinatorial structures which guarantee
that TSP limited to the structure is solvable in polynomial time. TSP limited to
such a structure is a polynomially solvable case of TSP. To exploit any such cases,
it is necessary to be able to recognize that a given instance of TSP belongs to such
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a case. Special cases of TSP which are recognizable in polynomial time are known
as polynomially testable cases of TSP. The importance, in practice, of identifying
a large number of polynomially solvable and polynomially testable cases is that it
may allow us to approximate a given instance of TSP by one of the polynomially
solvable cases, thereby obtaining a good approximate solution to the given problem.
For an extensive list of references on polynomially solvable cases, we refer the reader
to [3], [6] and [11].
Two instances of the TSP, on the same node set N {1, 2, ..., n} but with

different cost matrices C and C, are said to be equivalent if for any two tours,
and -’, on N C(’) -C(r’) C’(r) -C’(r’). It has been shown by Chandrasekaran
[7] (see also [11]) that two instances of the TSP, on the same node set N but with
different cost matrices C and C’, are equivalent iff there exists {a, bi i 1, 2,
..., n} such that for any 1 <_ i, j < n, i j, C’(i, j) C(i, j) +hi +bj. It is
our conjecture that the class of polynomially solvable and polynomially testable
instances of the TSP is closed under the above equivalence relationship.
One of the well-known solvable cases of TSP is the pyramidal TSP. An instance

of TSP, with a given ordering of nodes in the set N, is said to be pyramidal if there
exists an optimal tour which is pyramidal (i.e., of the form (1, ul, u2, uk, n, vl,

v2, ..., v-k_2, 1) where, u < u2 < < u < n > Vl > V2 > > Vn--k--2. The
significance of this case lies in the fact that, while the total number of pyramidal
tours is exponential in n, an optimal pyramidal tour can be determined in O(n2)
time (see [11]). During the last four decades, researchers have identified several
sets of polynomially testable sufficiency conditions for a given instance of TSP to
be pyramidal (see [3], [4], and [6] for details). One of these conditions, which is of
interest to us in this paper, is the Kalmanson condition [12].
Kalmanson TSP (see definition in section 2) is a generalization of the convex-hull

TSP which is an Euclidean TSP in which n points lie on the boundary of a convex
polygon. The class of Kalmanson TSP is much larger (see [12] and [6]) than the
convex-hull TSP.
Another solvable case, that is of interest to us in this paper, is the Euclidean

convex-hull-and-line TSP [9] in which, for some m < n, m points lie on the boundary
of a convex polygon and the remaining (n- m) points lie on a straight line inside
this convex polygon. Deineko et.al. [9] have given an O(m(n- m)) dynamic
programming scheme for this special case and they point out that their scheme
extends to the case where the distances between the points are measuxed using
any metric, provided that for the points in the interior of the convex polygon the
following linearity property holds: there exists an ordering of these points such that
for any i < j < k, C(i, j) +CO, k) C(i, k).
One way of looking at the convex-hull-and-line TSP is as follows: if we extend the

line, in the interior of the convex polygon, it divides the boundary of the convex
polygon into two parts:- the part above the line and the part below the line. The
set of n points can thus be partitioned into: the set N1 of points on the boundary
above the line, the set N2 of points on the boundary below the line, and the set
N3 of points on the line. If we delete any one of these three sets of points, all
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the remaining points lie on the boundary of some convex polygon. Thus convex-
hull-and-line TSP can be looked upon as a certain composition of three convex-hull
TSP’s. In this paper, we consider a proper generalization of this case to a similar
composition of Kalmanson matrices and show that a similar dynamic programming
scheme yields a solution to the general case. Since it is known that the class
of Kalmanson TSP is much larger than the class of convex-hull TSP, we have a
much larger solvable class. Our general class of TSP is closed with respect to the
equivalence relationship. Furthermore, we show that our more general class can be
tested in O(n4) time.
In section 2 we discuss notation, definitions and some basic results. Section 3

contains our main results. Here, we give a polynomial scheme for the generalization
of the Euclidean convex-hull-and-line TSP. Finally, in section 4, we introduce a
new generalization of Kalmanson matrix, that gives us another new polynomially
solvable class of TSP.
The results in this paper were initially reported in [5].

2. Notations, definitions, and some basic results

For any two distinct nodes u, v N, (u, v) denotes an edge connecting u and v or
an arc from u to v (depending on the context). Two edges (u, v) and (w, x) are said
to be adjacent if they share at least one node (i.e., I{u, v} r {w, x}l > 1. A path,
#, from a node u to a node v (or between node u and node v) is a sequence of arcs
(or edges) of the type (i0, i) -(i, i2) -(i,, i(m+)) where, i0 u and i(,+)

v. We shall refer to such a path by (i0, i, i, i,, i(,+)) and we shall say
that the path p covers the node set {io, i, i2, ..., i,, i(,+1)} or that the path # is
on the node set {i0, i, i2, ..., ira, i(,+)}. The node set {i, i2, ..., ira} is the set of
interior nodes of/. The path/ is simple ff all the nodes i0, i, i2, ..., ira, i(,+) are
distinct except possibly the end nodes. The path is closed if u v. A Hamiltonian
path is a simple path covering the entire node set N. A tour (Hamiltonian cycle)
is a closed Hamiltonian path. Two paths P and P2 are edge (or arc) disjoint if P
and P2 have no edges (or arcs) in common. Similarly, P and P are node disjoint
if P and P2 have no nodes in common. Throughout the rest of the paper,
node i represents node i (Modulo n). Thus, node (n + 1) is the same as node
1 etc.
We shall only deal with symmetric TSP and therefore, the cost matrix C, will

throughout be assumed to be symmetric. A matrix C’ is a cyclic permutation
of annxnmatrixCifthereexistsal _< k _< nsuchthat C(i,j) C(n +i
+1 -k,n +j +1 -k) for all 1 _< i, j _< n. (It should be noted that by node
(n + + 1 k), we mean node ((n +i +1 -k) modulo n)). Thus, row k and column
k of C correspond respectively to row 1 and column 1 of C, row (k +1) and column
(k -t-l) of C correspond respectively to row 2 and column 2 of C, and so on. Cost
of a path #, denoted by C(#), is the sum of the costs of all edges (or arcs) in/.
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Definition. Two edges (u, v) and (w, x) intersect if they are non-adjacent and
(C(u, v) +C(w, x)) > Max{(C(u, w) q-C(v, x)), (C(u, x) +C(v, w))}. Two paths
intersect if an edge in one path intersects an edge in the other path. A path is
serf-intersecting if a pair of edges in the path intersect.

The following Fact can be easily verified:

Fact 1 Every optimal tour in a symmetric TSP is non self-intersecting.

LEMMA 1 Let (Nr, N,, Nb) be disjoint subsets of the node set N and let P be a
path on node set N. If for every u N and v Nb every path P9. between u and
v, that is on some subset of N -N, intersects P then P cannot be a subpath of
an optimal tour on N.

Proof: If a tour on N contains a path P1 as a subpath, then the tour will also
contain a subpath P2 on a subset of N- Np and connecting some node u in N to
some node v in Nb. Hence, the Lemma follows from Fact 1.

Definition. For n >_ 4, a symmetric n x n matrix, C, is a Kalmanson matrix
if (C(u, w) + C(v, x)) >_ Max{(C(u, v) +C(w, x)), (C(u, x) +C(w, v))} for all
1 <_ u < v < w < x < n. The Kalmanson matrix is non-degenerate if strict
inequality holds. A Kalmanson TSP is an instance of TSP in which the cost matrix
is a Kalmanson matrix.

It is easy to verify that the class of Kalmanson matrices is closed with respect to
the equivalence relation defined in the introduction. Kalmanson [12] proved that
for a Kalmanson TSP, the tour (1, 2, ..., n, 1) is always optimal. All the principal
submatrices and cyclic permutations of a Kalmanson matrix are Kalmanson ma-
trices; and the matrix C’, obtained by reversing the order of rows and columns of
a Kalmanson matrix, C (i.e., C’(i, j) C(n +1 -i,n +1 -j) for all 1 < i, j _< n)
is also a Kalmanson matrix.
Kalmanson [12] has shown that for any symmetric TSP on 4 nodes we can label

the nodes in such a way that the Kalmanson conditions are satisfied. Burkard et.al.
[6] have shown by example that Kalmanson TSP extends beyond convex-huH TSP.
In fact, Kalmanson TSP extends beyond the Euclidean TSP and the statement
holds for any number of nodes. To see this, consider any (n n) Kalmanson matrix
C which is the cost matrix of an Euclidean TSP. For any i, choose a > C(i, i
-1) +C(i -1, i -2) -C(i -2, i). Since, C is the cost matrix of an Euclidean TSP,
J > 0. Obtain matrix C’ which is matrix C except that for j {i -1, i}, C’(i,j)

C’(j,i) C(i,j) + &
Since, C’(i -2, i) C(i -2, i) + > C(i, i -1) +C(i -1, i -2) C’(i, i -1)

+C (i -1, i -2) matrix C is not Euclidean. To see that matrix C is a Kalmanson
matrix consider 1 _< u < v < w < x _< n. If i {u, v, w, x} then (C’(u, w) +C’ (v,
x)) (C(u, w) +C(v, x)) >_ Max{(C(u, v) +C(w, x)), (C(u, x) +C(w, v))} =
Max{(C’(u, v) +C’(w, x)), (C’(u, x) +C’(w, v))}. If i E {u, v, w, x}, without loss
of generality, we may assume that i = u. If i -1 x then (C(i, w) +C(v, x))
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(C(i, w) +5 +C(v, x)) >_ Max{(C(i, v) +5 +C(w, x)), (C(i, x) +5 +C(w, v))}
Max{(C’(i, v) +C’(w, x)), (C’(i, x) +C’(w, v))}. On the other hand, if -1
x then (C’(i, w) +C’(v, -1)) (C(i, w) +6 +C(v, 1)) _> Max{(C(i, v) +&

+C(w, i -1)), (C(i, i -1) + +C(w, v))} >_ Max{(C’(i, v) +C’(w, i -1)),
i -1) +C’(w, v))}. Therefore, matrix C’ is a Kalmanson matrix although it is not
Euclidean. Hence, for any n, we can generate a Kalmanson matrix which is not
Euclidean.
Note, however, that it remains an open question whether matrix C above can be

converted to an Euclidean Kalmanson matrix by adding suitable constants to rows
and columns and in general whether there are non-Euclidean Kalmanson matrices
that are not equivalent to some Euclidean Kalmanson matrices.
In all that follows, we shall consider, for convenience of exposition, only non-

degenerate Kalmanson matrices. All the major results in the paper can be appro-
priately extended to degenerate Kalmanson matrices by using the standard per-
turbation technique (see [8]). Thus, throughout the rest of the paper, we
shall mean by Kalmanson matrix a matrix such that for all u < v < w
< x, edges (u, w) and (v, x) intersect, where the term intersection is as defined
before.

Definition. Let C be a symmetric, n x n cost matrix, and for some k < n, let CH
be a k x k principal submatrix of C such that CH is a Kalmanson matrix. Without
loss of generality, let us assume that rows (and columns) of CH correspond to rows
(and columns) 1, 2, ..., k of C. Node set {k +1, k +2, ..., n} will be said to be
interior to CH if for all 1 _< u < v < w < x _< k, any two node disjoint paths
(u, w) and (v, x/, on any subsets of N intersect.

The following Theorem extends a well known result of [13] on Euclidean TSP to
Kalmanson matrices.

THEOREM 1 Let C be an n x n cost matrix and, for a k < n, let CH be the principal
subrnatrix on rows (and columns) 1, 2, ..., k o] C. I] CH is a Kalmanson matrix
and the node set (k + 1, k + 2, ..., n} is interior to CH, then the nodes 1, 2, ..., k
appear in every optimal tour either in ascending order or in descending order.

Proof: Suppose the Theorem is false. Then, there exists an optimal tour % such
that for some 1 < u +1 < w < k, r has a subpath P1 of the type (u, ..., w) which
does not contain any node in Na {u + 1, u + 2, ..., w -1} and Nb {w + 1, w
+2, ..., k, 1, 2, ..., u- 1}. Let N be the set of nodes in P1. Then, these sets Na, Nb,
and Nr satisfy the condition of Lemma 1 and, therefore, P1 can not be a subpath
of an optimal tour. This contradicts the optimality of tour -.

3. Generalization of convex-huH-and-llne TSP

We shall consider the following generalization of the convex-hull-and-line TSP: Let
N {1, 2, n} be the node set and let C be an n n cost matrix satisfying



182 MD. BAKI AND $.N. KABADI

the following condition: For some 0 no < nl < n2 < n3 n, let us define
N {n-I +1, n_l + 2, hi} for 1 _< i _< 3. Let C1,2, C2’3, and C1,3 be the
principal submatrices of C on rows (and columns) Nt,2 {1, 2, ..., n2}, N2’3 =
{nt +1, nt +2, ..., n3} and Nx,a {1, 2, ..., nx, ha, n -1, ..., n2 +1} respectively
with rows and columns arranged in the stated order. Then, each of Ct,9., C2,a, and
C1, is a Kalmanson matrix and node set N3 is interior to C1’.
Example 1: The following is a non-Euclidean example of a generalized convex-
hull-and-line TSP with nl 2 and n2 4.

0 -3 5 7 -3 8 -2
-3 0 -2 10 -1 5 -5
5 -2 0 0 -2 3 -8
7 10 0 0 011 0

-3 -1 -2 0 0 5 -5
8 5 3 11 5 0 0

-2 -5 -8 0 -5 0 0

The main result of this section is stated in Theorem 3 which generalizes Theorem
6 of [9]. In Figure 1 we show how various Facts, Lemma, Theorems and Corollaries
lead to Theorem 3: Lemma 3, 4 and 5 generalize respectively Lemma 2, 4 and 5 of
[9]. Our proof of Lemma 5 is significantly different from the proof of Lemma 5 of
[9]. Furthermore, we address the issue of checking whether a given matrix satisfies
the conditions of the generalized convex-hull-and-line TSP and we show in the next
Theorem that the issue can be resolved in O(n4) time.

It can be easily verified that our general case is closed with respect to the equiva-
lence relation defined before. On the other hand, Deineko et.al. [9] explicitly require
that the given problem be a convex-hull-and-line TSP and not just equivalent to
one. Given a problem equivalent to the convex-hull-and-line TSP, they require that
the equivalent convex-hull-and-line TSP be obtained before using their results.

THEOREM 2 It can be checked in O(n4) time if a given cost matrix satisfies the
conditions of the generalized convex-hull-and-line TSP.

Proof: For a given choice of 0 < nt < n2 < n, testing if C1’2, C2,3, and C,3 are
Kalmanson matrices can be done in O(n) time [6]. If Ci,j is a Kalmanson matrix
for all 1 < i < j < 3, then for any 1 < i < j < 3, and any distinct nodes u, v, w, x
in N,j appearing in this order in the node-arrangement in the definition of Ni’j,
any two node-disjoint paths (u, wl and (v, ..., x), each containing at least one
node in N Ni,j, intersect. Else, if for some choice of 1 < i < j < 3, and some
distinct nodes u, v, w, z in NiJ, appearing in this order in the node-arrangement
in the definition of Ni,j, two node-disjoint paths (u, ..., w) and (v, x), each
containing at least one node in N- N,j, do not intersect then it is easy to see
that there exists a pair of edges, one edge from each of the two paths, which violate
the Kalmanson condition for one of the matrices C,, C2,, and C,3. Hence, to
check if the node set N3 is interior to Ct,2, we only have to test if for any 1 < u
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1,,

[ Lemmal > Lemma2

 mma4 , mma,3

Lemma 6 7
/
i5

Figure 1. Road map towards Theorem 3.

< v < w < z _< n2, edge (u, w) intersects every path of the type {v, x} and
edge (v, x) intersects every path of the type (u, w}.
We shall first find the largest number K < n, such that for any 1 _< u < v

w < x _< K, edge (u, w) intersects every path of the type (v, ..., x) and edge (v, x)
intersects every path of the type (u, ..., w}. If no such K exists, then the cost matrix
is not of the generalized convex-hull-and-line type. Else, if the cost matrix is of the
required type, then 1 < nl < n2 < K. Hence, we merely have to search for 1 <
< n2 < K, such that the corresponding principal submatrices C1’2, C2’a, and C
are Kalmanson matrices. We describe our scheme in details below:
First check if n2 < 4. This can be done in O(n) time. If the answer is negative,

then do the following. Initially, K n, u 1 and v 3.

Step 1 Let Ou,’ be a graph on node set (N -{u, v}) O{s}, for some s not in N, and
with edge set E’, {(s, i): i e {u +1, ..., v -1}} U{(i, j): i, j e g -{u, v); (i,
j) does not intersect (u, v)}. Find the smallest e N- {u, u + 1, v} which is
connected to node s in G’,. (This can be solved in O(n) time [1].)If such an
i does not exist then let i n.

If < v, then
Update K to v- 1.
If u > v- 4, then go to step 2.
Else, increment u by 1, update v to u + 2 and repeat step 1.

Else, if i > v, then
Update K to min{i- 1, current value of
If the updated value of K equals v + 1, then

If u < v- 2, increment u by 1, update v to u + 2 and repeat step 1.
Else, go to step 2.
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If the updatod value of K is greater than v + 1, then
Increment v by 1 and repeat step 1.

Step 2 For each 1 _< nl < no. _< K, check if Ci,j is a Kalmanson matrix for each
1 _< i < j _< 3. (Note that checking if a given matrix is a Kalmanson matrix is
O(n2).) If the answer is "yes" for some choice of nl and n., then the given cost
matrix is of the required type. Else, it is not of the required type.

It can be readily seen that the overall complexity of the scheme is O(n4). This
proves the Theorem. m
The problem of checking if there exists an ordering of the nodes in set N uch

that the resultant matrix satisfies our condition is more difficult and, as in the
case of various other solvable cases such as Demidenko case [6], it remains an open
problem. We shall show that an algorithm similar to the one given in [9] can be used
to solve the above instance of STSP. As stated before, we assume, for convenience,
that all the Kalmanson matrices are non-degenerate and the major themes in this
paper can be easily extended to the degenerate case by the standard perturbation
technique.
The result below follows from Theorem 1.

COROLLARY 1 Nodes in set N, appear in every optimal tour either in the same
order in which they appear in the definition o] N’2 or in its opposite order.

LEMMA 2 For two non-consecutive nodes u and w in N3, edge (u, w) cannot be in
an optimal tour.

Proof: Consider any pair of non-consecutive nodes u, w E N3. Let w > u. Let
us consider partition (N, N, Nb) of the node set N where, Np {u, w}, N
= {u +1, u +2, w -1}, and Nb N -(Np U N). Since, C1,3 and C’3 are
Kalmanson matrices the partition (N, N, Nb) satisfies the condition stated in
Lemma 1. Hence, edge (u, w) cannot be in an optimal tour. m

Definition. For n2 < u < w _< n, segment [u, w] is the path (u + 1, u + 2, ..., w).
We shall denote by c[u, w] the cost of the segment.

The Lemma below follows easily from Lemma 2.

LEMMA 3 If in an optimal tour, -r*, P is a subpath between (u + 1) and w where
nz < u < w < n, and if P contains only the nodes in Na then P is the segment

We note here that Deineko, et.al. [9] seem to imply that linearity is required for
the last Lemma (Lemma 2 of their article). This is incorrect as should be clear from
the 7 x 7 example given above. Even in the case of Euclidean TSP it is possible to
generate an example by slightly modifying their example so that the conditions of
our problem are satisfied and, yet, linearity is not. We shall now provide one such
example.
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Table 1. Coordinates of points

(0.164,0.000) 6 (1.000,0.268) 11 (01794,1.000) 16
(0.171,0.000) 7 (i.000,0.681) 12 (0.05711.000) 17
(O.38%O1000) 8 (1.000,0.822) 13 (0.000,i:000) t8
(0.409,0.000) 9’ (1.000,).952) ’14’ (0.000,0.329) 19
(1.000,0.032) 10 (0.993,0.993) 15 (0.177,0.182) 20

13 12 11 10

9

.18
.’17
16

o2O
8

7

"6

(0.355,0.355)
’(0.381,0.381)’
(0.457,0.457)
(0.632,0.632)
(0.789,0.789)

12 34 5

Figure . An Euclidean instance of the generalized convex-hull-and-line TSP.

Example 2: Table 1 shows coordinates of some points on the Euclidean plane.
The points are plotted in Figure 2. The distance matrix given by the points satisfy
the conditions of a generalized convex-hull-and-line matrix with nl 9 and n2
=14.
Points 1 to 14 lie on the boundary of a convex-hull. Points 16 to 20 lie on a line.

Point 15 does not lie the boundary of the convex-hull. Nor does it lie on the line.
Yet, the cost matrix given by the points satisfy the conditions of our problem.
Let H be the tour (1, 2, nl, nl +1, n2) on node set N1,9. From corollary

1 and Lemma 3, we may conclude the following: an optimal tour can be obtained
by optimally splitting the node set N1 into k + 1 segments [i0, il], [Q, i2], ..., Ilk, n]
for some 0 <_ k <Min{n -n2, n2}, n2 i0 < ii < i2 < < ik < n and inserting
each segment between two adjacent nodes in H.
The following Lemma gives the rules for inserting a segment between two adjacent

nodes in H.
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LEMMA 4 Let (a, ) be an edge in H. Then, for n2 <_ u < w <_ n, following are
the rules for inserting the segment [u, w] between a and in an optimal tour (a)
if 1 <_ a <_ n and a +1, the path from a to is (a, u + 1, ..., w,/3) (b) if nx
< a < r2 and a +1, the path from a to is (a, w, ..., u +1,/) (c) if a n2
and l, then u = n2 and (d) if a nl and / nl +l, then w n.

Proof.- In case (a) edges (a, w) and (u +1, fl) intersect because C1,3 is a Kalmanson
matrix. Therefore, the rule follows from Fact 1. Similarly, (b) holds because C2’3

is a Kalmanson matrix. We shall now prove (c). Let us suppose that (c) is false.
Then, there exists an optimal tour in which, for some u > n2, segment [u, w] is
inserted between the nodes u2 and 1. Then, for P1 (n2, u +1, u +2, w, 1) and
P2 {n2, w, w -1, ..., u +1, 1) one of the paths P and P2 is a subpath of the
optimal tour. Now, consider the partition (Np, N, Nb) of N where, N {n2, u

+1, u +2, ..., w, 1}, N {n2 +1, n2 +2, ..., u} and Nb N -N UN. Since,
both C1’ and C2,3 are Kalmanson matrices, it follows that for any v E Na and x
E N, the edge (v, x) intersects both the paths P and P2. By Lemma 1, we have a
contradiction to the optimality of the tour. Thus (c) follows. The proof for (d) is
similar.
For any r2 < u < v < rt and any edge (a, ) in H, if (u, v, a, ) satisfy the

condition of Lemma 4 then we shall say that the edge (a,/) of H is admissible for
the segment [u, v]. For two adjacent nodes a and fl in H with a < , the cost of
optimally inserting a segment [u, v] for n2 < u < v < n, between a and/ is thus
given by:

e(n:, v, 1, n:)

e(u,n, nt,n + 1)

+ +
C(v,) C(a, ), if a, fl 6 N

v) + v]+
C(u + 1,) C(a,/9), if a,l e N2

rain{C(1, nz + 1) + C[n2, v] +
C(v,n)- C(1, n),
C(1, v) + C[n2, v] +

+ 1) c(1,

C(n,n + 1) C(n,, nl + 1),
ccm. + oil,..] +
C(u-I- 1,nl -I- 1)- C(nl,nl -I- 1)}

For n2 < u < v < n, the cost of best possible insertion of segment [u, v] is:

d,, Min{e(u, v, a, )" (a,/) is admissible for [u,

Consider an acyclic digraph D with vertex set {n, n2 + 1, n2 + 2, n} and arcs
(i, j) with costs di,j for all n2 <_ i < j <_ n.
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LEMMA 5 The problem of finding the best traveling salesman tour reduces to that
finding a shortest route from n2 to n in D.

Proof: It follows easily from corollary 1 and Lemma 3 that to every optimal tour,
% there corresponds a path,/, from n2 to n in D such that C() _> C(H) +
Let #* ((n =)i0, i, i, i(= n)) be a shortest path from n to n in D. Then,
C(H) + C(#*) is a lower bound on the cost of the optimal tour. To prove the
Lemma, we shall show that the path p* corresponds to a tour r* such that
C(H) + C(t*) r* is an optimal tour.
For each n2 < u < v < n, let r(u, v) (a, ) e H such that du,v e(u, v, c, ).

For any (a,/) e H, let S,a {[i, i+] 0 < j < k, r(i, i+) (a,/)}.
For each (a, /) H, we shall now define a path, P,a as follows: If S,# ,

then P,# the edge (a,/). If IS,,,a 1, then P, is the path between and
/ obtained by optimally inserting (as per Lemma 4) the unique segment in
between the nodes a and . If IS,I > 1, then (a,/) {(1, n2), (nl, n +1)). Let
S,a {[Ul, v], [u, v]} where, u < v _< uz < _< u < v. If a,/ e N,
with a </, then P,a (a, u +1) -[u, v] -(v, u2 +1) -...-(v_, u +1)
-[u, v] -(v,/); and if a,/ N, with a > / then, P,a (a, v) -[v, u]
-(u +1, V-l) -...-(u= +1, vt) -[vt, Ul]-(721 +1,/).
Define the tour r as P,= -Pg., -Pn,n+l -... -Pn=-,n= -Pn=,l- If Sa,, then C(Po,,) C(a,/). If S, {[u, v]}, then C(P,,) du,, +C(a,l).

If S,# {[u, v], [ur, vr]}, for some p > 1, and a, / N1, with a <
then, since the edges (a, ui +1) and (vi-,/) intersect for all i 2, p, we have
C(Pa,#) < Ei=lp du,,v, +C(a, ). Similarly, if a, N2, with a >/, then C(Pa,a)

+C(a,< ’i= d,
Therefore, if for an (a, #) H, IS,l <_ 1, then C(r*) = {P, (u, v)

v) +c(n) C(H) the other hand, if for any
(a, /) e H, IS , l > 1, then C(r*) E(P,, "(u, v) e H} < E{d,,,, "(u, v)
e #*} +C(H) C(H) +C(p*) which contradicts the fact that C(H) + C(Iz*) is
lower bound for the cost of the optimal tour.
Hence, it follows that for all (a, B) e H, [S,[ _< 1 and, therefore, C(z*) C(H)

+c(,’).
For the convex-hull-and-line ease, it has been shown in [9] that the corresponding

shortest path problem on the digraph D satisfies Monge property and hence it can
be solved in O(n(n -nz)) time using the method in [2]. It will follow from the
next Lemma that the Monge property holds in our general case too. For details,
we refer the reader to [9].

LEMMA 6 Let Z2 < i < j < k < r3. Then, (a) for a, a +1, a +2 e Nx, e(i, k, a,
a +1) +e(j, k,a +1, a +2) < e(i, k, a +1, a +2) +e(j, k, a, a +1) and/or a, a
+1, a +2 e N2, e(i, k, a +1, a +2) +e(j, k,a, a +1) < e(i, k, a, a +1) +e(j, k,
a +1, a +2).
Proof’. In the following we shall prove (a). The proof for (b) is similar. Thus, for
a, a +1, a +2 E N,
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e(i,k,a,a + 1) +e(j,k,a + 1,a + 2)
e(i,/, a + , a + 2) e(j, k, a, a + )
(c(,, + ) + c[, k] + C(k,, + ) C(,,, + )) +
(c( + ,. + ) + C[i,k] + C(,, + 2) C(, + , + ))
(C( + ., + ) + C[, ] + C(, + ) C( + ., + ))
(C(, + ) + Cb, k] + C(k, + ) C(, + ))
C(c, i 4- 1) 4- C( 4- 1,j 4- 1) C(a + 1,j + 1) C(a,j + 1)

< 0 (Since, edges (a,j + 1) and (a + 1, i + 1) intersect.

Hence, the Lemma follows.
We have, thus, the following Theorem:

THEOREM 3 The generalized convex-hull-and-line TSP can be solved in O(r2(n-
rl,2)) time.

4. A generalization of Kalmanson matrix

In the following we introduce a new class of polynomially testable cost matrices
which properly includes the class of Kalmanson matrices and for which, the cor-
responding TSP can be solved in polynomial time. To the best of our knowledge,
this class of TSP does not belong to any of the known solvable classes.
We remind the reader that for any integer i, node refers to node i (modulo n).

Definition. For n > 4,a symmetric, n x n cost matrix, C, is a generalized
Kalmanson matrix if it satisfies the following: (i) for all 1 <_ u < v < w < x <_ n,
such that u, v, w, and x are not consecutive nodes (in the modulo n sense) (i.e.,
{u, v, w, x} {i, i +1, i +2, i +3} for any i), (u, w) and (v, x) intersect; and (ii)
if 4 < n < 6 then for all 1 < u < n, C(u, u +2) +C(u +1, u +3) > C((u, u +1)
+C(u +2, u +3).

All the cyclic permutations of a generalized Kalmanson matrix are generalized
Kalmanson matrices.
Observe that for n 4 and n 5 condition (i) puts no restriction because every

set of four nodes is consecutive in the modulo n sense. For n 4, condition (ii) is
equivalent to Kalmanson conditions. Henceforth, we shall assume that n > 4.
For n > 4, the class of Kalmanson matrices is a proper subclass of the class of

generalized Kalmanson matrices. This will now be shown by an example.
Example 3: The following is a generalized Kalmanson matrix.
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0 11 20 24 28 28 30
11 0 10 12 19 20 23
20 10 0 5 13 16 20
24 12 5 0 8 12 17
28 19 13 8 0 6 12
28 20 16 12 6 0 7
30 23 20 17 12 7 0

Let C be the matrix shown in example 4. The principal submatrix, C on the first
six rows and columns and the principal submatrix, C" on the first five rows and
columns are also generalized Kalmanson matrices. Since, C(1, 4) +C(2, 3) 34
> 32 C(1, 3) +C(2, 4) none of C, C and C" is a Kalmanson matrix. Hence, for
n 5 matrix C", for n 6 matrix C’, and for n 7 matrix C is an example of a
generalized Kalmanson matrix which is not a Kalmanson matrix.
Condition (ii) of the definition of the generalized Kalmanson matrix is instrumen-

tal to our result. Although it is stated for 4 _< n _< 6, it holds for all n >_ 4. In the
next Lemma we shall show that for n _> 7, condition (ii) follows from condition (i).

LEMMA 7 Let C be a generalized Kalmanson matrix. For any 1 <_ u <_ n, C(u, u
+2) +C(u +1, u +3) > C((u, u +1) +C(u +2, u +3) and, therefore, edges (u, u
+1) and (u +2, u +3) do not intersect.

Proof: For 4 _< n _< 6, the Lemma follows from condition (ii) of the deftion of
the generalized Kalmanson matrix. For n >_ 7, nodes u, u +1, u +2, and u +5 are
not consecutive and, therefore, edges (u, u +2) and (u +1, u +5) intersect. Hence,

C(u, u + 2) + C(u + 1, u + 5) > C(u + 2, u + 5) + C(u, u + 1)

Again, edges (u +1, u +3) and (u +2, u +5) intersect. Hence,

C(u / 1, u / 3) -I- C(u + 2, u + 5) > C(u / 1, u + 5) + C(u + 2, u / 3) (2)

Adding 1 and 2 and cancelling out the common terms we get C(u, u +2) +C(u
+1, u +3) > C(u, u +1) +C(u +2, u +3) and, therefore, edges (u, u +1) and (u
+2, u +3) do not intersect.
Let us define the following two sets of edges: E1 {(u, u +1) 1 _< u _< n}; and

E2" {(u, u +2)" 1 <_ u _<

LEMMA 8 Every optimal tour contains only the edges in E1 UJE2.

Proof: For 4 _< n _< 5, every edge is in E1 kJ E2. Let n _> 6. Suppose that a tour
contains an edge (u, v) E1 UE2. Without loss of generality, we may assume that
u < v. Then, for Np {u, v}, Na {i’u < < v} and Nb N -Np t2Na
condition of Lemma 1 is satisfied. Therefore, the result follows.

LEMMA 9 All the edges o] an optimal tour cannot be in E2.
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Proof’. If n is even, the edges of the stated type cover only the nodes in (1, 3, 5,
n -1} or {2, 4, 6, ..., n} and, therefore, the Lemma follows. Let us assume that

n is odd and the Lemma is false. Then, the only possible tour is - 1, 3, 5, ...,
n, 2, 4, 6, ..., n -1, 1/. For any v E {2, 4, 6, ..., n -1}, replace the edges (v -1, v
+1) and (v, v +2) in r by edges (v -1, v) and (v + 1, v + 2) to get a new tour
-’. Now, C(’) -C() (C((v -1), v) +C((v + 1), (v + 2)) -C((v -1), (v / 1))
-C(v, (v + 2))) < 0 (from Lemma 7). Thus, the Lemma is proved, m

LEMMA 10 In an optimal tour, either all the edges are in E1 or precisely two edges
are in E2.

Proof: Consider an optimal tour, , containing at least one edge in E2. By Lemma
9, it must contain at least one edge in El. Since every optimal tour contains only
the edges in E1 (AE2, r must contain a subpath of the type (u, (u /1), (u +3)) or
(u, (u + 1), (u -1)/for some 1

_
u _< n. Let us assume that it contains a subpath

(u, (u +1), (u +3)). (Proof of the other case will follow similarly). The node (u +2)
is connected to two of the nodes u, u +3, u +4. Therefore, one among the following
is also a subpath of the optimal tour: (i) ((u +3), (u +2), (u +4), (ii) ((u +3), (u
+2), u), (iii) ((u +4), (u +2), u.

It follows from Lemma 7 that (i) cannot appear in the optimal tour because the
subpath ((u +1), (u +3), (u +2), (u +4)) can be improved by ((u +1), (u +2), (u
+3), (u +4)). Use of (ii) creates a subtour because n > 4 = N {u, (u +3)}.
Hence, only (iii) can be a subpath of the optimal tour and, therefore, P ((u +4),
(u +2), u, (u +1), (u +3)) is a subpath of -. It is easy to see that there is a unique
tour with P as a subpath and containing only edges in E1 E2.

If n is even then, ((u, (u +1), (u +3), ..., (u -1), (u -2), (u -4), ..., (u +4),
(u +2), u)) and if n is odd then, - ((u, (u +1), (u +3), ..., (u -2), (u -1), (u
-3), ..., (u +4), (u +2), u)). This proves the Lemma. m

It follows from the proof of Lemma 10 that, besides the tour (1, 2, ..., n, 1) there
axe only n other candidates for optima] tour. Any two of these n candidates for
optimal tour have at least (n- 2) edges in common and, hence, the better of any
two tours can be identified in constant time. Therefore, the best among the (n / 1)
tours can be identified in O(n) time. We thus have the following Theorem:

THEOREM 4 There are only (n +1) candidates for optimal tour of the generalized
Kalmanson TSP and an optimal tour can be identified in O(n) time.

5. Conclusion

Since the TSP is NP-hard, it is interesting to identify polynomially solvable and
polynomially testable cases of it. One of the well known solvable cases is the
Kalmanson TSP which generalizes Euclidean convex-hull TSP.
Deineko et.al. [9] have shown that the Euclidean convex-hull-and-line TSP can

be solved by an O(m(n -m)) time dynamic programming scheme where m is the
number of points on the boundary of the convex-hull and n is the total number of
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points. They remark that their algorithm extends to the case where the distances
between the points are measured using any metric, provided that for the points in
the interior of the convex-hull a linearity property holds. The Euclidean convex-
hull-and-line TSP can be looked upon as a certain composition of three convex-
hull TSP’s. We generalize the Euclidean convex-hull-and-line case to a similar
composition of Kalmanson matrices and show that a dynamic programming scheme
similar to what Deineko et.al. [9] present yields a solution to the general case
which extends beyond the Euclidean TSP and for which the interior points may
not necessarily satisfy the linearity property. Our general case is closed with respect
to the equivalence relation defined in the introduction. On the other hand, Deineko
et.al. [9] explicitly require that the given problem be a convex-hull-and-line TSP
and not just equivalent to one. We have shown that our general case can be
identified in O(n4) time.
We introduce another new polynomially solvable and polynomially testable case

of TSP which generalizes the class of Kalmanson matrices. We develop an O(n)
time algorithm for the generalized Kalmanson TSP.
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