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Abstract. The main purpose of this paper is clarifying the connection between some

characteristics of a deciding body and the probability of its making correct decisions. In

our model a group of decision makers is required to select one of two alternatives. We

assume the probabilities of the decision makers being correct are independent random

variables distributed according to the same given distribution rule. This distribution

belongs to a general family, containing the uniform distribution as a particular case. We

investigate the behavior of the probability of the expert rule being optimal, as well as

that of the majority rule, both as functions of the distribution parameter and the group

size. The main result is that for any value of the distribution parameter the expert rule

is far more likely to be optimal than the majority rule, especially as the deciding body

becomes larger.
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1. Introduction

In a wide variety of areas { science, business, family and others { decisions
are to be made on a group basis. Even some nominally individual decisions
are in
uenced by external advice and information. Thus group decision
making is at least as important as individual decision making.
In this paper we focus on the binary choice model, which goes back at

least as far as Condorcet [10]. In this model, a group of decision makers is
required to select one of two alternatives, of which exactly one is regarded
as correct. We assume the decision makers to be independent. Unlike the
classical social choice model, the individuals in the group share a common
goal { to identify the correct alternative. A decision rule is a rule for
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translating the individual opinions of the members into a group decision.
If the size of the group is n, the number of all possible decision rules is 22

n

.
A decision rule is optimal if it maximizes the probability that the group
will make the correct decision for all possible combinations of opinions. If
the probability of each member to make the right choice is known and the
alternatives are symmetric, then the optimal decision rule is a weighted
majority rule. (See Nitzan and Paroush [16], [17], [19].)
There are several directions in the study of the dichotomous choice model.

Condorcet's Jury Theorem is studied in various setups. Some deal with the
case where the correctness probabilities of the decision makers are not nec-
essarily equal { Grofman, Owen and Feld [13], Miller [15], Young [22],
Paroush [20], Berend and Paroush [2]. Others relate to the generalization
whereby there may be some dependence between the group members {
Boland [8], Berg [4], [5] and Ladha [14]). Special attention has been drawn
to special decision rules arising from indirect voting systems (see, for ex-
ample, Boland, Proschan and Tong [9], Berg [6], Berg and Paroush [7]).
In some of the models, the group has freedom in choosing the decision
rule. The identi�cation of the optimal rule is of primary importance here
(see, for example, Nitzan and Paroush [16], [17], [19], Grofman et al [13],
Gradstein and Nitzan [12]).
Our goal is identifying the optimal decision rule under partial information

on the decision skills. Speci�cally, we assume the correctness probabilities
of the group members to be independent random variables, distributed ac-
cording to some given distribution rule. Moreover, while the values these
variables take are unknown, we assume that the ranking of the members
in terms of their individual correctness probabilities is (at least partly)
known. Thus, one can follow rules based on this ranking. The extremes
are the expert rule { following the advice of the most quali�ed individual
while ignoring all the rest, and the majority rule { always taking the ma-
jority advice, even when advocated by mostly less quali�ed group members
(strictly speaking, the latter rule is de�ned only for odd n). Clearly, there
are numerous other decision rules in-between these two extremes.
Denote by Pe(n) the probability of the expert rule being optimal and

by Pm(n) the probability of the majority rule being optimal. Nitzan and
Paroush [19] obtained an explicit expression for Pe(n) for the case of
log-normal distribution of the individual correctness probabilities. Nitzan
and Paroush [18], [19] considered the case where these probabilities are
uniformly distributed on [ 1

2
; 1]. Using Monte Carlo method they estimated

Pe(n) for small values of n, from 3 to 9. They also identi�ed all rules
which could be optimal for n = 5, and again by Monte Carlo estimated the
probability of each of these being optimal. It turns out that the majority
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rule comes last, with Pm(5) = 0:022, while the expert rule is the second
best, with Pe(5) = 0:199, and the leading one is the balanced expert rule
of order 4, given by the weights (2,1,1,1,0), with probability 0.229 of being
optimal. This line of research was continued by Berend and Harmse [1],
still for uniform distribution on [ 1

2
; 1]. They obtained an explicit formula

for Pe(n) and an upper bound for Pm(n). The combination of these results
implies that the latter probability decays to 0 much quicker than the former.
This direction was followed by Sapir [21], dealing with the situation of
logarithmic expertise levels distributed exponentially. In this case, the
probabilities Pe(n) and Pm(n) (as well as that of the so-called balanced
expert rule of order n) were calculated explicitly. A comparison of these
probabilities shows that, again, the expert rule has a much better chance
of being optimal than the majority rule.
This paper continues in the direction of Berend and Harmse [1]. The

correctness probabilities are drawn from a family of distributions, contain-
ing the uniform distribution as a particular case. Our goal is to compare
the asymptotic behavior of the probability of the expert rule being optimal
with that of the majority rule. It turns out again that for suÆciently large
n the probability of the expert rule being optimal exceeds by far that of the
majority rule. Thus the main question addressed in this paper is not what
the probability of each decision rule is to provide the right decision. These
probabilities may be assumed to be quite high, and in fact converge to 1 as
the number of experts increases, as long as a \reasonable" decision rule is
employed. These probabilities are what could be called \the average case".
Here we deal rather with \the worst case". Namely, each decision rule has
some borderline cases. One should hesitate to use the majority rule if, say,
in a committee comprising of 11 members, the 6 members known to be least
quali�ed happen to favor one view while all 5 more quali�ed members hold
the opposite view. Similarly, employing the expert rule would seem strange
if the top expert is opposed by all the others. To claim that, in a speci�c
case, the majority rule (expert rule, respectively) is optimal, is tantamount
to asserting that we should indeed favor the opinion of the 6 against the 5
in the �rst example (of the top expert in the second example, respectively).
Consequently, comparing the optimality probabilities, as done in this pa-
per, we cannot conclude that one rule is better than another. Rather, it
provides us with a view of the performance of the rules in question in some
extreme cases, and hints to what extent we should rather modify them in
those cases.
Section 2 is devoted to a more accurate description of our model. In

Section 3 we present the main results, and in Section 4 { their proofs.
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2. The Model

The group consists of n members, faced by two alternatives, of which
exactly one is correct. The alternatives are assumed to be symmetric.
Namely, they are a priori equally likely to be correct, and the bene�t (or
loss) associated with a success (correct choice) or a failure (incorrect choice)
is independent of the particular alternative correctly (or incorrectly) cho-
sen. We assume that the members are independent in their choices. Denote
by pi the probability of the ith expert making the right choice. The vector
~p = (p1; p2; :::; pn) is called the vector of abilities or skills.
Designating the alternatives (in an arbitrary way) as �rst and second, we

also de�ne the random variables

Xi =

�
1; the ith expert selects the �rst alternative;

�1; the ith expert selects the second alternative:

A decision pro�le ~x = (x1; x2; :::; xn) is the n-tuple obtained from a speci�c
instance of these variables. A decision rule is a rule for translating the
individual opinions into a group decision. More formally, using the termi-
nology of Nitzan and Paroush [19], a decision rule ' is a function from the
set of all possible decision pro�les to the set f�1; 1g: If '(~x) = 1 then the
�rst alternative is selected, while if '(~x) = �1 then the second alternative
is selected. The number of all possible decision rules is 22

n

. A decision
rule is neutral if '(�x1;�x2; :::;�xn) = �'(x1; x2; :::; xn) for every deci-
sion pro�le ~x = (x1; x2; :::; xn). We assume our decision rules to be neutral.
A decision rule is optimal if it maximizes the probability of the group to
make the correct decision for all possible combinations of opinions. If the
members indexed by some subset A � f1; 2; :::; ng of the group recommend
the �rst alternative, while those indexed by B = f1; :::; ng nA recommend
the second, then the �rst alternative should be chosen if and only ifY

i2A

pi
1� pi

>
Y
i2B

pi
1� pi

(2:1)

or, equivalently,

X
i2A

ln

�
pi

1� pi

�
>
X
i2B

ln

�
pi

1� pi

�
(2:2)
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(see Nitzan and Paroush [16], [17], [19]). The optimal decision rule for a
group of n experts turns out to be a weighted majority rule. Here a decision
rule is a weighted majority rule if it satis�es '(~x) = sign(

Pn
i=1 wixi) for

every decision pro�le ~x, where ~w = (w1; w2; :::; wn) has non-negative entries
and satis�es

Pn
i=1 wixi 6= 0 for any pro�le ~x. Such a vector ~w is a system of

weights. Note that a weighted majority rule may be represented by many
systems of weights.
In view of (2:1) and (2:2) it is natural to de�ne the expertise of an indi-

vidual, whose probability of being correct is p, as p
1�p

, and his logarithmic

expertise as ln
�

p
1�p

�
. It will be convenient to consider the functions F and

f de�ned by:

F (p) =
p

1� p
; f(p) = ln

p

1� p
= lnF (p):

With these notations, (2:2) may be restated to say that the optimal decision
rule is a weighted majority rule, with weights wi = f(pi). In other words,
'(~x) = sign(

Pn
i=1 f(pi)xi) (see Nitzan and Paroush [19], Theorem 2:3:1).

In the sequel, we will employ multi-dimensional versions of the functions
f and F , denoted in the same way. Thus, the combined expertise of a
set of l experts with correctness probabilities p1; :::; pl is F (p1; :::; pl) =Ql

j=1 F (pj); and the combined logarithmic expertise of the same experts is

f(p1; :::; pl) =
Pl

j=1 f(pj):

3. Main Results

The results in this section attempt to generalize those of the case of uniform
distribution, discussed by Berend and Harmse [1]. We are concerned with
the probability Pe(n) of the expert rule being optimal and the probability
Pm(n) for the majority rule being optimal. One veri�es easily that Pe(n)
is the probability that, in the case the top expert disagrees with all other
experts, the top expert is more likely to be correct than the rest. Strictly
speaking, Pm(n) is de�ned only for odd n = 2s + 1. It is equal to the
probability that the bottom s + 1 experts, when opposed by the top s
experts, are more likely to be correct than the top ones. Our primary
goal is to compare the probability that the expert rule is optimal with the
probability that the majority rule is optimal. The point of this comparison
is that it substantiates the conclusion obtained by Berend and Harmse [1]
in the uniform case, by showing that the expert rule is far more likely to
be optimal than the majority rule for large n, for a family of distributions,
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which contains the uniform distribution as a very particular case. Here we
assume that the probability pi of the i-th expert to make a correct choice
is distributed according to the (same) density function

�(x) =

8<
:

2�(2x� 1)��1; 1
2
� x � 1;

0; otherwise;
(3:1)

where � is any positive parameter. If � = 1 we get the uniform distribution
U [ 1

2
; 1] as a special instance of (3:1).

Why should one consider this family of distributions? The uniform dis-
tribution in the interval [ 1

2
; 1] looks like a natural guess when one has no

information on the distribution, yet assumes that people perform better
by considering the possibilities than by tossing a coin. Yet, the results
obtained in the case of the uniform distribution may seem too narrow,
and invite the question as to how applicable they are if the distribution
is somewhat perturbed. The family selected here is wide enough to cover
both cases where the experts are mostly correct (large �) and where they
mostly perform only marginally better than coin tossing (� � 0). Let us
also mention in passing, that if pi is distributed as in (3:1), and we denote

qi = 1� pi, then 1

pi � qi
is distributed Pareto with parameter �. Thus the

results of the current paper prove the robustness of those obtained earlier
only for the uniform distribution.
It will be convenient to introduce the following constants:

Ik = 2�

Z 1

0

(1� t)��1tk

(1 + t)�+1
dt; k = 0; 1; 2; ::: :

It is easy to see that 1 = I0 > I1 > I2 > ::: .
The following theorem describes the asymptotic behavior of Pe(n).

Theorem 1 The probability of the expert rule being optimal decays expo-

nentially as the number of experts grows. More precisely:

1) If 0 < � � 1

2
; then

2�nIn�11 � 2�2nIn�12 � Pe(n) � 2�nIn�11 � 2�2nIn�12 + nIn�13 : (3:2)

2) If � � 1

2
; then

2�nIn�11 � 2�2nIn�12 � Pe(n) � 2�nIn�11 : (3:3)
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Remark 1. Clearly, for large n we may omit the last two terms on the
right hand side of (3:2) and obtain the (less accurate but simpler) bound
of (3:3). However, this is not the case for small n.
Our next result relates to Pm(n). It provides an upper bound for it.

Theorem 2 For odd-size n = 2s + 1; the probability of the majority rule

being optimal is bounded above as follows:

1) If 0 < � � 1; then

Pm(n) � �s

s!2
:

2) If � > 1; then

Pm(n) � n

s!2
�
��
2

�s
:

In Theorem 2 we chose the simplest form of upper bounds for Pm(n).
Actually, our calculations enable us to obtain more accurate results, given
by Theorem 3 below. To present them we use the following notations:

As;� =

Z 1

0

�
(1� x2)x2��1 ln

1 + x

1� x

�s

x��1dx;

Bs;� =

Z 1

0

�
(1� x2)x��1 ln2

1 + x

1� x

�s

x��1dx:

(3:4)

Theorem 3 For odd-size n = 2s + 1; the probability of the majority rule

being optimal is bounded above as follows:

1) If 0 < � � 1; then

Pm(n) � �n

s!2

��
2

�s
As;� � n

s!2

 
2

3

�
3�

2�+ 2

��+1
!s

:

2) If � > 1; then

Pm(n) � �n

s!2

 
�2

2(�+ 1)

�
�� 1

�+ 1

���1

2

!s

Bs;� � n

s!2

�
ln(4�+ 7:14)

e

�n�1

:

Remark 2. For � = 1, Theorem 3 yields Pm(n) � n

s!2

�
3

8

�s

; which is

somewhat worse than the upper bound Pm(n) � n

s!2

�
1

3

�s

obtained by
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Berend and Harmse [1]. Our method enables us to obtain tighter bounds
for 0 < � � 1 by simply taking more terms of the relevant Taylor series in
the proof. For example, taking one more term we get for 0 < � � 1 :

Pm(n) � n

s!2

0
@ ��+1

31��(2 + �)2
� 11�+ 14�

p
55(�+ 1)2 � 30�

�+ 1 + 1
5

p
55(�+ 1)2 � 30

��
1
A

s

: (3:5)

For � = 1 this already implies Pm(n) � n

s!2

�
1

3

�s

. The derivation of (3:5)

will be explained after the proof of Theorem 2.
Combining the above theorems, we can compare the asymptotic behavior

of Pe(n) and Pm(n). We see that, for any value of �, Pe(n) decays to 0
exponentially as n increases, while Pm(n) decays to 0 super-exponentially
fast.
Theorem 1 also shows the in
uence of � on the probability of the expert

rule being optimal. In fact, routine estimates show that

1

2(�+ 1)
� I1 � 1

�+ 1
:

This shows that, as a function of �, Pe(n) decreases as
1

�n�2
for large �.

Table 1 provides the values of Pe(n) for a few values of � and n. The
calculations were done by Monte Carlo method using 104 iterations.

Table 1. The probability of the expert rule being optimal.

e
e
e
e

�
n 0.05 0.25 0.5 1 1.5 2 3 10 100

3 0.99 0.94 0.85 0.68 0.57 0.48 0.36 0.14 0.02
5 0.98 0.74 0.48 0.20 0.10 0.05 0.02 0.00 0.00
7 0.95 0.54 0.23 0.05 0.01 0.00 0.00 0.00 0.00
15 0.79 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Numerical calculations tend to show that the in
uence of � on Pm(n)
is opposite to its in
uence on Pe(n). Thus Table 2 indicates that, as a
function of �, Pm(n) is increasing. (Note that this also agrees with what
one might guess in view of Theorem 2.) The data was again computed by
Monte Carlo method.
Figure 1 represents graphically the data of Table 1 and 2 in the case

n = 5.
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Table 2. The probability of the majority rule being optimal.

e
e
e
e

�
n 0.05 0.25 0.5 1 1.5 2 3 10 100

3 0.01 0.06 0.15 0.32 0.43 0.52 0.64 0.86 0.99
5 0.00 0.00 0.00 0.02 0.05 0.07 0.13 0.40 0.85
7 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.49
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 1. Pe(5) and Pm(5) as functions of �

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

Ρ

α

Ρ (5)
m

Ρ (5)
e

α ✻ ≈ 1.815



88 D. BEREND AND L. SAPIR

For integer � = m, �(x) is a polynomial on [ 1
2
; 1]. In this case, one can

obtain an exact expression for Pe(n) in terms of an in�nite Leibniz-type
series. An expansion of this type may be obtained for � = 1

2
as well. We

refer to Berend and Sapir [3] for details.

4. Proofs

For the proof of Theorem 1 we need the following lemma.

Lemma 1 The following inequalities hold:

1) (1� x)� � 1� �x; 0 � x � 1; � � 1:

2)

�
1� x

1 + x

��

� 1� 2�x+ 2�2x2 � x3; 0 � x � 1; 0 < � � 1
2
:

3)

�
1� x

1 + x

��

� 1� 2�x+ 2�2x2; 0 � x � 1; � > 0:

The proof is technical, and we omit the details.

Proof of Theorem 1: Let p; q1; : : : ; qn�1 be independent random vari-
ables with the same density �(x). Denote ~q = (q1; : : : ; qn�1); F (~q) =Qn�1

i=1 F (qi) and d~q = dq1 : : : dqn�1. Note that F
�1(t) = t

1+t
. Then:

Pe(n) = n � Prob
 
F (p) >

n�1Y
i=1

F (qi)

!

= n(2�)n
Z
:::

Z
| {z }
[ 1
2
;1]n�1

n�1Y
i=1

(2qi � 1)��1
Z 1

F�1(F (~q))

(2p� 1)��1dpd~q

= n(2�)n�1
Z
:::

Z
| {z }
[ 1
2
;1]n�1

n�1Y
i=1

(2qi � 1)��1
�
1�

�
2F (~q)

1 + F (~q)
� 1

���
d~q

= n� n(2�)n�1
Z
:::

Z
| {z }
[ 1
2
;1]n�1

n�1Y
i=1

(2qi � 1)��1
�

2F (~q)

1 + F (~q)
� 1

��

d~q
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Substituting ti =
1� qi
qi

and using the inequality
1

1 +
Qn�1

i=1 ti
� 1�Qn�1

i=1 ti;

we obtain:

Pe(n) = n� n(2�)n�1
Z
:::

Z
| {z }
[0;1]n�1

 
n�1Y
i=1

(1� ti)
��1

(1 + ti)�+1

! 
1�Qn�1

i=1 ti

1 +
Qn�1

i=1 ti

!�

d~t

� n� n(2�)n�1
Z
:::

Z
| {z }
[0;1]n�1

 
n�1Y
i=1

(1� ti)
��1

(1 + ti)�+1

! 
1�

n�1Y
i=1

ti

!2�

d~t:

(4:1)

If � � 1
2
, then by Lemma 1.1 with x =

Qn�1
i=1 ti and � = 2� this implies

Pe(n) � n
�
1� In�10 + 2�In�11

�
:

Now I0 = 1; and therefore

Pe(n) � 2�nIn�11 : (4:2)

Denote x =

n�1Y
i=1

ti. Let � � 1
2
. By Lemma 1.2 and the equality part of

(4.1) we obtain the upper bound:

Pe(n) � n
�
1� In�10 + 2�In�11 � 2�2In�12 + In�13

�
= 2�nIn�11 � 2�2nIn�12 + nIn�13 :

(4:3)

The equality part of (4.1) and Lemma 1.3 provide a lower bound for Pe(n):

Pe(n) � n
�
1� In�10 + 2�In�11 � 2�2In�12

�
= 2�nIn�11 � 2�2nIn�12 :

(4:4)

Combining (4.2), (4.3) and (4.4) we obtain the theorem.
The proof of Theorem 2 is a variation of part of the proof of Theorem 3.

It will therefore be convenient to prove the latter �rst.

Proof of Theorem 3: The proof will be carried out in three stages. In the
�rst stage we transform our situation to one with a uniform distribution. In
the second stage we obtain the left upper bounds for Pm(n) in the theorem,
which contain the integrals As;� and Bs;�. We will need to distinguish
between two cases: � � 1 and � > 1. The proof in each of these cases
will be similar to that given by Berend and Harmse [1] in the special case
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� = 1. The third stage is technical, dealing with estimations of As;� and
Bs;�. Here we produce the �nal upper bounds for Pm(n).
Stage 1: Suppose the correctness probability of the middle (i.e., (s +
1)st) expert is a for some a 2 [ 1

2
; 1]. Denote the conditional correctness

probabilities of the s top experts by P1; P2; :::; Ps; and those of the s bottom
experts by Q1; Q2; :::; Qs. All variables are independent, with the �rst s
taking values in [a; 1], and the latter s { in [ 1

2
; a]:With these notations, the

desired probability is the probability that the inequality

f(Q1; Q2; :::; Qs; a) � f(P1; P2; :::; Ps) (4:5)

holds. Denote ti =
(2pi � 1)� + 1

2
; i = 1; 2; :::; 2s+ 1: It is easy to see

that the random variables ti are i.i.d uniformly distributed in [ 1
2
; 1]. Putting

� =
(2a� 1)� + 1

2
, and

Tj =
(2Pi � 1)� + 1

2
; Vj =

(2Qi � 1)� + 1

2
; j = 1; 2; :::; s;

we observe that Tj � U[�; 1] and Vj � U[1=2; �] for each j, and all these

variables are independent. Let g(t) = ln
1 + (2t� 1)1=�

1� (2t� 1)1=�
be the logarithmic

expertise, expressed as a function of t (which corresponds to the variable ti).
As with the logarithmic expertise function f , we have a multi-dimensional
version of g, also denoted by g, de�ned by

g(t1; t2; :::; tk) =

kX
j=1

g(ti) :

Then (4:5) takes place if and only if:

g(V1; V2; :::; Vs; �) � g(T1; T2; :::; Ts): (4:6)

We shall use the �rst two derivatives of g(t):

g0(t) =
4

�
� (2t� 1)

1
�
�1

1� (2t� 1)2=�
; (4:7)

g00(t) =
8

�2
� 1� �+ (1 + �)(2t� 1)2=��
1� (2t� 1)2=�

�2
(2t� 1)2�

1
�

: (4:8)

Clearly, g0(t) � 0 for 1=2 � t � 1. With respect to g00, if 0 < � � 1; then
g00 is non-negative throughout the interval, whereas for � > 1 it changes
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its sign in the interval. Hence we have to distinguish between the cases
0 < � � 1 and � > 1.
Stage 2:

Case 2.1: 0 < � � 1.
Since the one-variable form of g is convex on [ 1

2
; 1] and g( 1

2
) = 0, we

obtain the upper bound:

g(Vj) �
Vj � 1

2

�� 1
2

g(�) = g(�)� �� Vj

�� 1
2

g(�): (4:9)

The convexity of g also implies the lower bound:

g(Tj) � g(�) + (Tj � �)g0(�) = g(�) +
Tj � �

1� �
g0(�)(1� �): (4:10)

Thus the desired event (4.6) cannot hold unless

g0(�)(1� �)
sX

j=1

Xj + g(�)
sX

j=1

Yj � g(�); (4:11)

whereXj =
Tj � �

1� �
and Yj =

�� Vj

�� 1
2

are independent uniformly distributed

in [0; 1]. As in the proof of Theorem 4 in Berend and Harmse [1], this im-
plies that the probability of the event in (4.11) does not exceed

g(�)n�1

(g(�)g0(�)(1� �))
s
(n� 1)!

:

Now the correctness probability of the (s + 1)st expert is itself a random
variable with density function

 (�) =

8<
: 2n

�
n

s; s; 1

�
(�� 1

2
)s(1� �)s; 1

2
� � � 1;

0; otherwise;
(4:12)

(cf. Golberg [11], Sec. 11.5). Hence

Pm(n) =

Z 1

1
2

P (g(V1; V2; :::; Vs; �) � g(T1; T2; :::; Ts)) (�)d�

� 1

(n� 1)!

Z 1

1
2

�
g(�)

g0(�)(1� �)

�s

 (�)d�:
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Substituting (4:7) and (4:12) in the last inequality, we obtain:

Pm(n) �
��
2

�s 2n
s!2

�
Z 1

1
2

�
1� (2�� 1)

2
�

�s
(2�� 1)s(2�

1
�
)

�
ln

1 + (2�� 1)1=�

1� (2�� 1)1=�

�s

d�:

The change of variable x = (2�� 1)1=� yields the �rst inequality asserted
in this case:

Pm(n) � ��
2

�s+1 2n
s!2

R 1
0

�
(1� x2)x2��1 ln 1+x

1�x

�s
x��1dx

= �n
s!2

�
�
2

�s
As;� ;

(4:13)

Case 2.2: � > 1.
By (4:8) we see that g00(t) changes signs in the interval [ 1

2
; 1]. In fact,

g00 vanishes at the point t� =
1

2
+

1

2

�
�� 1

�+ 1

��=2

, so that g00(t) < 0 for

t 2 [ 1
2
; t�) and g

00(t) > 0 for t 2 (t�; 1]. Thus in this case g(t) is concave
in [ 1

2
; t�) and convex in (t�; 1]. We proceed similarly to Case 2.1. When

estimating the integrand in

Z 1

1
2

P (g(V1; V2; :::; Vs; �) � g(T1; T2; :::; Ts)) (�)d�

as a function of �, we shall proceed di�erently for � > t� and for � < t�.
Namely, write:

Pm(n) =
R 1
1
2

P (g(V1; V2; :::; Vs; �) � g(T1; T2; :::; Ts)) (�)d�

=
R t�
1
2

+
R 1
t�
:

(4:14)

We �rst consider the integral over the region [t�; 1]. Since g(t) is convex
on [�; 1], the lower bound (4:10) on g(Tj) is still valid. Bounding the g(Vj)'s
from above is less obvious. We want to bound g(t) on interval [�; 1

2
] by a

linear function. To this end, we use the unique point t0 2 [ 1
2
; t�] such that

the tangent to the graph of g at the point t0 passes through (�; g(�)). This
tangent provides a linear function as required, and in particular:

g(Vj) � g(�)� g0(t0)(�� Vj) = g(�)� g0(t0)(�� 1

2
)
�� Vj

�� 1
2

: (4:15)

The following �gure shows the tangents used in (4.10) and (4.15).
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Figure 2. Linear bounds for g when � > t�
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Thus (4:10) and (4:15) imply that (4:6) cannot hold unless

g0(�)(1� �)
sX

j=1

Xj + g0(t0)(�� 1

2
)

sX
j=1

Yj � g(�); (4:16)

where Xj =
Tj � �

1� �
and Yj =

�� Vj

�� 1
2

: Denote the probability of the event

(4:16) by Prob1(n): As in Case 2.1,

Prob1(n) � g(�)n�1

(n� 1)!
�
g0(t0)(� � 1

2
)g0(�)(1� �)

�s :
Since g is concave in [ 1

2
; t�], we have g

0(t�) � g0(t0). Hence:

Prob1(n) � g(�)n�1

(n� 1)!
�
g0(t�)(�� 1

2
)g0(�)(1� �)

�s : (4:17)

Now consider the �rst integral on the right hand side of (4:14). The
function g(t) is concave for t 2 [ 1

2
; �], and (4:9) takes place. We want to

bound g on (�; 1] from below by a linear function. Let t�0 2 (t�; 1) be the
unique point such that the tangent to the graph of g at the point t�0 passes
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through (�; g(�)). This tangent lies below the graph of g throughout [�; 1],
that is:

g(Tj) � g(�) + g0(t�0)(Tj � �) = g(�) + g0(t�0)(1� �)
Tj � �

1� �
: (4:18)

The following �gure explains pictorially (4.9) and (4.18).

Figure 3. Linear bounds for g when � < t�
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Thus (4:9) and (4:18) imply that (4.6) cannot hold unless

g0(t�0)(1� �)

sX
j=1

Xj + g0(�)(� � 1

2
)

sX
j=1

Yj � g(�); (4:19)

where Xj and Yj are as before. Denote the probability of the event in
(4:19) by Prob2(n): Again, similarly to Case 2.1 we obtain

Prob2(n) � g(�)n�1

(n� 1)!
�
g0(t�0)(�� 1

2
)g0(�)(1� �)

�s :
Since g is convex in [t�; 1], we have g

0(t�) � g0(t�0). Hence:

Prob2(n) � g(�)n�1

(n� 1)!
�
g0(t�)(�� 1

2
)g0(�)(1� �)

�s : (4:20)
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Fortunately, the right hand sides of (4:17) and of (4:20) are the same.
Substituting (4:17) and (4:20) in (4:14) we obtain:

Pm(n) �
Z 1

1
2

g(�)2s

(n� 1)!
�
g0(t�)(�� 1

2
)g0(�)(1� �)

�s (�)d�:
By (4:12):

Pm(n) � 2n
�

n
s; s; 1

�
1

(n� 1)! (g0(t�))
s

Z 1

0

g(�)2s

(g0(�))s
d�:

Replacing g(�) and g0(�) by their explicit values and substituting x =
(2�� 1)1=�; we get:

Pm(n) � �n

s!2

�
�

g0(t�)

�s Z 1

0

�
(1� x2)x��1 ln2

1 + x

1� x

�s

x��1dx:

Plugging in the value of g0(t�) we arrive at the �rst inequality for part 2.
Stage 3: For the second inequality in part 1, we have to bound As;� from
above. Denote:

h(x) = (1� x2)x2��1 ln
1 + x

1� x
; x 2 [0; 1]: (4:21)

We claim that

h(x) � h1(x) = 2x2�
�
1� 2

3
x2
�
; x 2 [0; 1]: (4:22)

Indeed, using Taylor's expansion of ln 1+x
1�x

we obtain:

h(x) = (1� x2)x2��1 � 2x
1X
k=0

x2k

2k + 1
= 2x2�

 
1� 2

1X
k=1

x2k

4k2 � 1

!
: (4:23)

Taking only the �rst term in the sum on the right hand side of (4:23), we

obtain (4:22). Since h1(x) attains its maximum at the point x� =
q

3�
2�+2

;

we have

h(x) � h1(x
�) =

2

�+ 1

�
3�

2(�+ 1)

��

; x 2 [0; 1]:

Substituting in the expression (3:4) for As;� and combining with (4:13), we
arrive at the second inequality in part 1.
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To complete the proof of part 2, we need to estimate Bs;�. Denote:

�(x) = ln 1+x
1�x

;

h2(x) = (1� x2)x��1;
h3(x) = h2(x) � �2(x):

The better part of the remaining work is designed to �nd a good upper
bound on h3(x) for � > 1 (see (4:29) infra). Clearly, h3(0) = h3(1�) = 0
and h3(x) > 0 for x 2 (0; 1). Let x� 2 (0; 1) be a maximum point of h3.
Putting  (x) = 4x+

�
�� 1� (�+ 1)x2

�
�(x), we �nd that

h03(x) = x��2�(x) (x): (4:24)

Since h03 vanishes at x�, so does  , and therefore

�(x�) =
4x�

(�+ 1)x2
�
� (�� 1)

: (4:25)

The function 4x
(�+1)x2�(��1)

is negative in
�
0;
q

��1
�+1

�
, and positive and de-

creasing in
�q

��1
�+1

; 1
�
. Since �(x) is positive and increasing in (0; 1), there

exists a unique point x� satisfying (4:25). Thus x� is the only maximum

point of h3(x). A routine calculation shows that  
�q

�+1:285
�+2:285

�
< 0 and

 (�+4
�+5

) > 0 for � > 1, so that x� 2
�
�+4
�+5

;
q

�+1:285
�+2:285

�
.

Since �(x) is increasing, for x 2
�
�+4
�+5

;
q

�+1:285
�+2:285

�
we have:

�(x) � �

 r
�+ 1:285

�+ 2:285

!
= 2 ln (

p
�+ 2:285 +

p
�+ 1:285): (4:26)

The function h2 decreases from the point
q

��1
�+1

on, and in particular:

h2(x) � h2

�
�+ 4

�+ 5

�
; x 2

 
�+ 4

�+ 5
;

r
�+ 1:285

�+ 2:285

!
: (4:27)

Thus

h3(x) � h3(x�) � h2

�
�+ 4

�+ 5

�
�2

 r
�+ 1:285

�+ 2:285

!
: (4:28)

Combining (4:26); (4:27) and (4:28) we obtain:

h3(x�) � 2�+ 9

(�+ 5)2

�
�+ 4

�+ 5

���1

4 ln2(
p
�+ 2:285+

p
�+ 1:285): (4:29)
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Substituting (4.29) in the expression (3:4) for Bs;�, we obtain:

Pm(n) � n

s!2

0
@ �+ 4

�+ 5

r
�� 1

�+ 1

!��1

� 4�2(� + 4:5)

(�+ 5)2(�+ 1)
ln2(

p
�+ 2:285 +

p
�+ 1:285)

�s

:

A lengthy but routine calculation shows that the right hand side in the last
inequality is smaller than that in part 2 of the theorem, which concludes
the proof.

Proof of Theorem 2: Denote h4(x) =
1�x2

x
ln 1+x

1�x
for x 2 [0; 1]: With

h(x) as in (4:21) we have h4(x) = h(x)=x2�; and therefore, by (4:23):

h4(x) � 2; x 2 [0; 1]:

Substituting this bound in the expression for As;�, we arrive at:

As;� � 2s
Z 1

0

x�n�1dx = 2s
1

�n
:

Combining this with (4:13), we complete the result in the �rst part of the
theorem:

Pm(n) � �s

s!2
:

To complete the second part, denote:

h5(�) =
�

�+ 1

�
�� 1

�+ 1

���1

2

; h6(�) =

�
�

�+ 1

��+1

2

:

Clearly h5(�) � h6(�). It is easy to see that h5(�) is decreasing. A routine
calculation reveals that the function h7(x), de�ned by

h7(x) = (1� x2) ln2
1 + x

1� x
; x 2 [0; 1);

is bounded above by 1.76, which produces:

Pm(n) � n

s!2(s
�
1� 1

�

�
+ 1)

(0:88�h5(�))
s
:

Now for � > 1

h5(�) � lim
�! 1

h5(�) � lim
�! 1

h6(�) � h6(1) =
1

2
;
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and combining the last two inequalities we produce the required result:

Pm(n) � n

s!2
(0:88�h5(�))

s � n

s!2

�
0:88

2
�

�s

� n

s!2

��
2

�s
:

Proof of Remark 2: The proof follows the same lines as the third stage
of the proof of Theorem 3. The only di�erence is that we take the �rst two
terms in the sum of the right hand side of (4:23). Thus instead of (4:22)
we receive

h(x) � H(x) = 2x2�
�
1� 2x2

3
� 2x4

15

�
:

The maximum point of H(x) turns out to be

x� =
3�

(� + 1)
q
1 + 6�(�+2)+1

5(�+1)2

:

Calculating H(x�) and proceeding as in the proof, we obtain the required
result.
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