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Abstract. This paper derives a functional limit theorem for general nonstationary
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are also investigated. The problem arises naturally in discussing fractionally integrated
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1. Introduction

In recent times, there has been increasing interest in discussing the general
fractional process {Xt} defined by

(1−B)dXt = ut, ut =
∞∑
j=0

ψjεt−j , t = 1, 2, · · ·, (1)

where d > −1/2 and εt are i.i.d. random variables with zero mean and
finite variance. The ut are taken to be summable linear processes, i.e., we
assume

∑∞
j=0 |ψj | < ∞. B is a backshift operator, and the fractional dif-

ference operator (1−B)γ is defined by its Maclaurin series (by its binomial
expansion, if γ is an integer):

(1−B)γ =
∞∑
j=0

Γ(−γ + j)
Γ(−γ)Γ(j + 1)

Bj (2)

† Requests for reprints should be sent to Qiying Wang,CMA, School of Mathematical
Science, The Australian National University, ACT 0200, Australia.



256 Q. WANG, Y-X LIN AND C. GULATI

where Γ(z) =
∫∞
0
sz−1e−sds, if z > 0; Γ(z) = ∞ if z = 0. If z < 0,

Γ(z) is defined by the recursion formula zΓ(z) = Γ(z+ 1). Thus Xt can be
expressed as

∞∑
j=0

Γ(−d+ j)
Γ(−d)Γ(j + 1)

Xt−j = ut, t = 1, 2, · · · , if d 6= 0, 1, 2, · · · ; (3)

and
d∑
j=0

(−1)j
d!

j!(d− j)!
Xt−j = ut, t = 1, 2, · · · , if d = 0, 1, 2, · · · , (4)

which depends on the “prehistoric influence”:

∞∑
j=t

Γ(−d+ j)
Γ(−d)Γ(j + 1)

Xt−j or
d∑
j=t

(−1)j
d!

j!(d− j)!
Xt−j .

In practice, if we ignore the value of Xt, t ≤ 0, by assuming Xt = 0,
the process Xt defined by (1) is then a special case of the process Zt (see
Appendix 2) defined by

Zt =
t−1∑
k=0

c
(d)
k ut−k, ut =

∞∑
j=0

ψjεt−j , t = 1, 2, · · · , (5)

where c(0)0 = 1, c(0)k = 0, k ≥ 1; c(α)
k = Γ(k+α)/

{
Γ(α)Γ(k+1)

}
, k ≥ 0 and

α 6= 0,−1, · · · .
Asymptotics of the process Zt were first investigated in Aknom and

Gourieroux [1] with d > 1/2 and ut = εt under the condition E|ε0|r <
∞, where r > max{2, 2/(2d − 1)}. The results of Aknom and Gourier-
oux [1] were extended to the multivariate case by Marinucci and Robin-
son [12] without any improvements in the moment conditions. Recently,
Tanaka [16] discussed weak convergence for more general processes Zt where
the ψk satisfy

∑∞
k=0 k|ψk| <∞. However, the proof of Tanaka [16] depends

on the functional limit theorem for martingale differences. Unfortunately,
the process Zt itself (even with ut = εt) is not a martingale. Therefore, the
proof of Tanaka [16] is not applicable in this case. In this paper, we give
a different proof of the functional limit theorem for the process Z[nt]. This
proof shows that the main results given by Tanaka [16] still hold. Further-
more, we establish a similar result for a more general model under the weak
moment condition E|ε0|max{2,2/(2d−1)} <∞. It should be pointed out that
the limit process of Z[nt]/V ar

1/2(Zn) is different from those established for



NONSTATIONARY FRACTIONALLY INTEGRATED PROCESSES 257

general fractional processes (cf. Wang, Lin and Gulati [17]) because of the
“prehistoric influence”.

There are four sections in this paper. The main results on functional limit
theorem are given in Section 2. The study of the asymptotics of sample
autocovariances and sample autocorrelations based on the process Zt is in
Section 3. These results do not appear in the literature. We conclude in
Section 4. Finally in the Appendices, we give the proof of Theorem 1, and
a complementary proposition which shows that the process Xt defined by
(1) with Xt = 0, t ≤ 0, is a special case of the process Zt defined by (5).

Throughout this paper, we denote positive constants by C with or with-
out subscript, which might have different values in different places. A “type
II” fractional Brownian motion Bd(t), d > 1/2, is defined as

Bd(0) = 0, Bd(t) =
∫ t

0

(t− s)d−1dW (s), 0 ≤ t ≤ 1,

where W (t) is a standard Brownian motion. Comparison between “type I”
and “type II” fractional Brownian motions can be found in Marinucci and
Robinson [11].

2. Main Results

In this section, a functional limit theorem is presented. Its proof will be
given in Appendix 1. The most interesting part of this section is given in
two corollaries.

Theorem 1 Let Zt satisfy (5) with
∞∑
j=0

|ψj | <∞ and bψ ≡
∞∑
j=0

ψj 6= 0. (6)

Then, for d ≥ 1,
1

nd−1/2
Z[nt] ⇒ κ1(d) Bd(t), 0 ≤ t ≤ 1, (7)

where κ2
1(d) = b2ψσ

2/Γ2(d) and Bd(t) is a “type II” fractional Brownian
motion. If, in addition, E|ε0|2/(2d−1) <∞ and

∑∞
k=0 k|ψk| <∞, then (7)

still holds for 1/2 < d < 1.

As a direct consequence of Theorem 1 and the continuous mapping theo-
rem, the following corollary gives the asymptotic distribution of the partial
sum process of the process Zt, which will be useful in discussing the asymp-
totics of sample autocovariances and sample autocorrelations based on the
process Zt.
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Corollary 1 Let Zt satisfy (5), where ψj satisfy (6). Then,

1
nd+1/2

[nt]∑
j=1

Zj ⇒ κ1(d+ 1)Bd+1(t), for d > 1/2, (8)

1
n2d

[nt]∑
j=1

Z2
j ⇒ κ2

1(d)
∫ t

0

B2
d(s)ds, for d ≥ 1, (9)

1
nd−1/2

n−k∑
j=1

(Zj+k − Zj) ⇒ k κ1(d) Bd(1), for d ≥ 1, (10)

where 0 ≤ t ≤ 1, κ1(d) is defined as in Theorem 1 and k is a fixed integer.
If, in addition, E|ε0|2/(2d−1) <∞ and

∑∞
k=0 k|ψk| <∞, then (9) and (10)

still hold for 1/2 < d < 1.

Proof: Recalling c(α)
j = Γ(j + α)/

{
Γ(α)Γ(j+1)

}
and Γ(1+α) = αΓ(α),

we have that, for any integer m ≥ 1 and α 6= 0,−1,−2, · · · ,
m∑
j=0

c
(α)
j = 1 +

1
αΓ(α)

[
Γ(1 +m+ α)

Γ(1 +m)
− Γ(1 + α)

Γ(1)

]
= c(1+α)

m

(see Sowell [15]). This equality implies that, for d > 1/2,

[nt]∑
j=1

Zj =
[nt]∑
j=1

j∑
k=1

c
(d)
j−k uk =

[nt]∑
k=1

uk c
(1+d)
[nt]−k =

[nt]−1∑
k=0

c
(1+d)
k u[nt]−k. (11)

By using Theorem 1 with 1 + d, we obtain the desired (8).
To prove (9), we note that (

∑[nt]
j=1 Z

2
j )/n

2d =
∫ 1

0
(Z[ns]/n

d−1/2)2ds (let∑[ns]
i=1 Zi = 0 if s < 1/n) and then use the continuous mapping theorem.
Using Theorem 1, the continuous mapping theorem and

∑n−k
j=1 (Zj+k −

Zj) =
∑n
j=n−k+1 Zj −

∑k
j=1 Zj , (10) follows easily. This completes the

proof of Corollary 1.
In the next corollary, we consider the asymptotics for general stationary

and general nonstationary fractionally integrated processes without prehis-
toric influence.

Corollary 2 Let α > −1/2. Consider Xt satisfying that (1 − B)αXt =
ut, with ut =

∑∞
k=0 ψkεt−k for t = 1, 2, · · · ; Xt = 0, for t ≤ 0, where∑∞

k=0 |ψk| <∞ and bψ =
∑∞
k=0 ψk 6= 0. Then, for α ≥ 0,

1
n1/2+α

[nt]∑
j=1

Xj ⇒ κ2(α)
∫ t

0

(t− s)αdW (s), 0 ≤ t ≤ 1, (12)
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where κ2
2(α) = b2ψσ

2/Γ2(1 + α). If, in addition, E|ε0|2/(2α+1) < ∞ and∑∞
k=0 k|ψk| <∞, then (12) still holds for −1/2 < α < 0.

Proof: It can be shown (see Appendix 2) that the process Xt defined
by Corollary 2 can be rewritten as Xt =

∑t−1
k=0 c

(α)
k ut−k, where c(α)

k is
defined as in (5). If α = 0, then Xt = ut and the result is obvious by using
Theorem 1 with d = 1. If α 6= 0 and α > −1/2, similar to (11), we obtain
that

∑[nt]
j=1Xj =

∑[nt]−1
k=0 c

(1+α)
k u[nt]−k. Since 1+α > 1/2 when α > −1/2,

the results follow from Theorem 1 with d = 1+α. This completes the proof
of Corollary 2.

3. Sample Autocovariances and Sample Autocorrelations

Let Z1, · · · , Zn be a sample drawn from a stationary process {Zt} with
mean µ, and define the lag-k autocovariance and autocorrelation by rk =
E(Z1−µ)(Z1+k−µ) and ρk = rk/var(Z1). Usually, rk and ρk are estimated
through r̂k =

{∑n−k
t=1 (Zt − Z)(Zt+k − Z)

}
/n and ρ̂k = r̂k/r̂0, where Z =

(1/n)
∑n
t=1 Zt is the sample mean.

In order to gain insight into the dependence of the process {Zt}, the be-
haviours of the sample autocorrelations ρ̂k have been extensively studied
in the literature under different sets of assumptions, for instance, inference
for ρ̂k when the Zt is a linear process with i.i.d. innovations. Particu-
larly, if Zt =

∑∞
j=0 ψjεt−j , t = 1, 2, · · · , where

∑∞
j=0 j

1/2ψ2
j < ∞, then

the distributions of the first k sample autocorrelations are asymptotically
normal with mean (ρ1, ρ2, · · · , ρk) and covariance matrix n−1W , where the
(i, j)th element of W is given by wi,j =

∑∞
r=1{ρr+i+ρr−i− 2ρrρi}{ρr+j +

ρr−j − 2ρrρj} (for details, see Hannan and Heyde, [4]). With increasing
generality, for further results on the asymptotics of r̂k and ρ̂k when the
process Zt is a stationary or a nonstationary fractional process, we refer to
Hasza [7], Newbold and Agiakloglou [13], Hosking [8], Bierens [2] as well
as Hassler [5], [6].

In this section, we investigate the asymptotics of r̂k and ρ̂k when the
process is Zt defined by (5).
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Theorem 2 Let Zt satisfy (5), where d ≥ 1 and the ψj satisfy (6). Then,

n1−2d r̂k ⇒ κ2
1(d) B̃d(1); (13)

n

k
(ρ̂k − 1) ⇒ − 1

2B̃d(1)

{B2
d+1(1)
d2

+
(
Bd(1)− 1

d
Bd+1(1)

)2}
, if d ≥ 1,

⇒ − 1

2B̃d(1)

{
B2
d+1(1) +

(
Bd(1)−Bd+1(1)

)2

− 1
kb2ψσ

2
E
( k∑
j=1

uj

)2}
, if d = 1, (14)

for any fixed integer number k, where κ1(d) is defined as in Theorem 1 and
B̃d(1) =

∫ 1

0
B2
d(t)dt− B2

d+1(1)/d2.

Theorem 3 Let Zt satisfy (5). Assume that E|ε0|2/(2d−1) <∞,
∑∞
k=0 k|ψk|

< ∞ and bψ ≡
∑∞
k=0 ψk 6= 0. Then, for any fixed integer number k and

1/2 < d < 1, (13) still holds and

n−1+2d(ρ̂k − 1) ⇒ − Ik

2κ2
1(d)B̃d(1)

, (15)

where κ1(d), B̃d(1) are defined as in Theorem 2, c(d)l is as in (5) (let c(d)j = 0

if j < 0) and Ik = E(
∑∞
l=0(c

(d)
l − c

(d)
l−1)

∑k
i=1 ui−l)

2.

By noting that
∑n−k
t=1 (Zt − Z)(Zt+k − Z) can be expressed as

n−k∑
t=1

Zt(Zt+k − Zt)− Z
n−k∑
t=1

(Zt+k − Zt) +
n−k∑
t=1

(Zt − Z)2,

the proofs of Theorems 2- 3 follow easily from Corollary 1, the continuous
mapping theorem and the following proposition. We omit details.

Proposition 1 Let Zt satisfy (5), where ψj satisfy (6). Then,

1
n

n−k∑
j=1

(Zj+k − Zj)
2 − Ik = oP (1), for 1/2 < d < 1; (16)

1
n

n−k∑
j=1

(Zj+k − Zj)
2 →a.s. E

 k∑
j=1

uj

2

, for d = 1;

1
n−1+2d

n−k∑
j=1

(Zj+k − Zj)
2 = oP (1), for d > 1.
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for any fixed integer number k, where Ik is defined as in Theorem 3.

Proof: Zj+k − Zj can be rewritten as

j+k∑
l=j+1

c
(d)
j+k−lul +

j∑
l=1

(c(d)j+k−l − c
(d)
j−l)ul = I

(k)
1j + I

(k)
2j , say. (17)

It is readily seen that I(k)
1j =

∑∞
i=0 ψi

∑k
l=1 c

(d)
k−l εl+j−i. This, together with

Hölder’s inequality, implies that, for d > 1/2,

E
(
I
(k)
1j

)2

≤
∞∑
i=0

|ψi|
∞∑
i=0

|ψi| E

(
k∑
l=1

c
(d)
k−lεl+j−i

)2

≤

( ∞∑
i=0

|ψi|

)2 k−1∑
l=0

(
c
(d)
l

)2

Eε20 ≤ Ckmax{2d−1,0}. (18)

Similarly, we have that, for d > 1/2,

E
(
I
(k)
2j

)2

≤

( ∞∑
i=0

|ψi|

)2 j−1∑
l=0

(
c
(d)
k+l − c

(d)
l

)2

Eε20 ≤ Cjmax{2d−3,0}, (19)

where the last inequality follows from that, for any fixed k,

|c(d)k+l − c
(d)
l | ≤ Ck ld−2, l = 1, 2, · · · . (20)

It follows from (17)-(19) that, for d > 1/2,

n−k∑
j=1

E (Zj+k − Zj)
2 ≤ 2

n−k∑
j=1

{
E
(
I
(k)
1j

)2

+ E
(
I
(k)
2j

)2 }
≤ C nmax{1,2d−2}.

This implies (16) by Markov’s inequality and noting 2d− 1 > 1 for d > 1.
If d = 1, then Zj+k−Zj =

∑k
l=1 ul+j , j ≥ 1, is a stationary linear process.

(16) follows easily from the stationary ergodic theorem.
The proof of (16) is more laborious. Write c∗l = c

(d)
l − c

(d)
l−1, l ≥ 0 for

convenience. By noting 1/2 < d < 1 and c∗0 = 1, |c∗l | ≤ Cld−2, l ≥ 1 from
(20), we have that, for every t ≥ 1,

∞∑
l=0

|c∗l | E|ut−l| ≤
(
1 + C

∞∑
l=1

ld−2
) ∞∑
k=0

|ψk|E|ε0| <∞,
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and hence
∑∞
l=0 c

∗
l ut−l is well defined. Therefore, letting c(d)j = 0 if j < 0,

simple algebra gives that Zj+k − Zj is equal to

k∑
i=1

∞∑
l=0

c∗l uj+i−l −
k∑
i=1

∞∑
l=j+i

c∗l uj+i−l = I
(k)
3j + I

(k)
4j , say. (21)

By Hölder’s inequality, as in (18), it can be shown that

n∑
j=1

E
(
I
(k)
4j

)2

≤ k2
n∑
j=1

∞∑
l=0

|c∗l+j |
∞∑
l=0

|c∗l+j | Eu2
−l

≤ C
n∑
j=1

( ∞∑
l=j

ld−2
)2

= O
(
n2d−1

)
, (22)

where we have used the bound: Eu2
t =

∑∞
k=0 ψ

2
kEε

2
0 < ∞. Similarly, we

get that
n∑
j=1

E
(
I
(k)
3j

)2

≤ k2
n∑
j=1

( ∞∑
l=0

|c∗l |
)2

Eu2
0 = O (n). (23)

In terms of (22), (23) and (Zj+k − Zj)
2 −

(
I
(k)
3j

)2 = I
(k)
4j

(
2I(k)

3j + I
(k)
4j

)
, it

follows easily that
n∑
j=1

E

∣∣∣∣(Zj+k − Zj)
2 −

(
I
(k)
3j

)2
∣∣∣∣

≤


n∑
j=1

E
(
I
(k)
4j

)2


1/2

n∑
j=1

E
(
2I(k)

3j + I
(k)
4j

)2


1/2

= O(nd) (24)

Recalling 1/2 < d < 1, (24) implies that (1/n)
∑n−k
j=1 [(Zj+k − Zj)2 −

(I(k)
3j )2] = oP (1). Now (16) follows if

1
n

n−k∑
j=1

(
I
(k)
3j

)2

− E

(
k∑
i=1

∞∑
l=0

c∗l ui−l

)2

= oP (1). (25)

Recalling that ut, t = 0,±1, · · · , is a stationary ergodic linear process,
I
(k)
3j , j ≥ 1, still has the same properties as those of the process ut. There-

fore, (25) follows from the stationary ergodic theorem. This completes the
proof of Proposition 1.
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4. Conclusion

This paper derives a functional limit theorem for general nonstationary
fractionally integrated processes having no influence from prehistory. The
results extend those given in Aknom and Gourieroux [1], Marinucci and
Robinson [11] as well as Tanaka [16] to a more general model under weak
conditions. By using established results, asymptotic distributions of sample
autocovariances and sample autocorrelations based on these processes are
also investigated. We mention that proofs of the main results in this paper
are totally different from those in the literature, and the problem arises
naturally in discussing fractionally integrated processes when the processes
start at a given initial date.
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Appendix 1: Proof of Theorem 1.

For convenience, we always assume c(d)j = 0, if j < 0. Furthermore, we

recall that c(d)j = Γ(j + d)/
{
Γ(d)Γ(j + 1)

}
, for j ≥ 0, and εj are i.i.d.

random variables with Eε0 = 0 and σ2 = Eε20 < ∞. The following facts
(a) and (b) are well-known. The fact (c) can be found in Akonom and
Gourieroux [1].

(a) If E|ε0|α <∞, where α ≥ 2, then max−n≤j≤n |εj | = oP (n1/α).

(b) If d > 1/2, then,
∣∣∣c(d)j −

{
Γ(d)

}−1
jd−1

∣∣∣ ≤ Cjd−2 for j ≥ 1 and∑n
j=0 |c

(d)
j − c

(d)
j−1| ≤ Cnmax{d−1,0}, for n ≥ 1.

(c) Assume that ηj are independent N(0, 1) random variables. Then, for
d > 1/2,

1
nd−1/2

[nt]∑
j=1

c
(d)
[nt]−j ηj ⇒

1
Γ(d)

Bd(t), 0 ≤ t ≤ 1. (26)

Using these facts, it can be shown that if E|ε0|max{2,2/(2d−1)} <∞, then,

1
nd−1/2

[nt]∑
j=1

c
(d)
[nt]−j εj ⇒

σ

Γ(d)
Bd(t), 0 ≤ t ≤ 1, for d > 1/2. (27)

Indeed, by applying Komlós, Major and Tusnády [9], [10], on a rich enough
probability space, there exists a sequence of random variables ηj , j ≥ 1,
which are iid N(0, 1) such that, for d > 1/2,

max
1≤m≤n

∣∣∣∣∣∣
m∑
j=1

εj − σ
m∑
j=1

ηj

∣∣∣∣∣∣ = oP

(
nmin{(2d−1)/2,1/2}

)
. (28)

It follows from (c) that, for d > 1/2, n1/2−d∑[nt]
j=1 c

(d)
[nt]−jηj ⇒ {Γ(d)}−1Bd(t),

0 ≤ t ≤ 1. On the other hand, sup0≤t≤1

∣∣∣∑[nt]
j=1 c

(d)
[nt]−jεj − σ

∑[nt]
j=1 c

(d)
[nt]−jηj

∣∣∣
is bounded by

∑n−1
j=0 |c

(d)
j − c

(d)
j−1| max1≤m≤n |

∑m
k=1(εk − σηk)|, which is

oP
(
nd−1/2

)
by using the fact (b) and (28). Therefore, (27) follows from a

classical result (cf. Theorem 4.2 of Billingsley [3]).
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After these prelimilaries, we now give the proof of Theorem 1.
First it is shown that (7) holds for d ≥ 1. Let C(B, l) =

∑l
k=0 ψkB

k

and C∗(B, l) =
∑l−1
i=0

(∑l
k=i+1 ψk

)
Bi, where B is a backshift operator.

From Lemma 2.1 in Phillips and Solo ( [14]), we have that C(B, l) =
C(1, l)− C∗(B, l)(1−B). This implies that, for all m ≥ 1 and l ≥ 1,

m∑
j=1

c
(d)
m−j

l∑
k=0

ψkεj−k =
m∑
j=1

c
(d)
m−j C(B, l)εj

+C(1, l)
m∑
j=1

c
(d)
m−jεj − C∗(B, l)

m∑
j=1

c
(d)
m−j(εj − εj−1). (29)

Therefore, we can write that, for all m ≥ 1,

m∑
j=1

c
(d)
m−jZj

m∑
j=1

c
(d)
m−j

(
l∑

k=0

ψkεj−k +
∞∑

k=l+1

ψkεj−k

)
+ C(1, l)

m∑
j=1

c
(d)
m−jεj

−C∗(B, l)
m∑
j=1

c
(d)
m−j(εj − εj−1) +

∞∑
k=l+1

ψk

m∑
j=1

c
(d)
m−jεj−k

= C(1, l)
m∑
j=1

c
(d)
m−jεj +R1(m, l) +R2(m, l), say. (30)

Since C(1, l) → bψ, as l → ∞, by using (27) and Theorem 4.2 of Billings-
ley [3], it suffices to show, for d ≥ 1,

lim
l→∞

lim
n→∞

P

(
sup

0≤t≤1
|Rj([nt], l)| ≥ nd−1/2

)
= 0, j = 1, 2. (31)

It can be shown that, for all m ≥ 1, R1(m, l) =
∑l−1
i=0

(∑l
k=i+1 ψk

)
Ym,i,

where Ym,i = c
(d)
0 εm−i−c(d)m−1ε−i+

∑m−1
j=1 (c(d)m−j−c

(d)
m−j−1)εj−i. Noting that

max1≤m≤n |Ym,i| ≤
(
2 +

∑n−1
j=1 |c

(d)
j − c

(d)
j−l|
)

max1≤j≤n |εj−i|, it follows
from the facts (b) and (a) with α = 2 that, as n→∞,

sup
0≤t≤1

|R1([nt], l)| ≤ Cnd−1 max
−l≤j≤n

|εj |
l−1∑
i=0

l∑
k=i+1

|ψk| = oP (nd−1/2). (32)
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This proves (31) for j = 1. To prove (31) for j = 2, note that, for all k ≥ 1,

E max
1≤m≤n

∣∣∣∣∣∣
m∑
j=1

c
(d)
m−jεj−k

∣∣∣∣∣∣ = E max
1≤m≤n

∣∣∣∣∣∣
m∑
j=1

c
(d)
m−jεj

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣c(d)j − c
(d)
j−l

∣∣∣ E max
1≤j≤n

∣∣∣∣∣
j∑
i=1

εi

∣∣∣∣∣ ≤ Cnd−1/2,

where the last inequality follows from the fact (b) and the well-known
result: Emax1≤j≤n

∣∣∣∑j
i=1 εi

∣∣∣ ≤ Cn1/2. Hence, Markov’s inequality implies
that

P

(
sup

0≤t≤1
|R2([nt], l)| ≥ nd−1/2

)

≤ 1
nd−1/2

∞∑
k=l+1

|ψk| E max
1≤m≤n

∣∣∣∣∣∣
m∑
j=1

c
(d)
m−jεj−k

∣∣∣∣∣∣ ≤ C
∞∑

k=l+1

|ψk|. (33)

Let n → ∞ and then l → ∞, we get (31) for j = 2. The proof of (7), for
d ≥ 1, is now complete.

Next, the proof of (7), for 1/2 < d < 1, is given. We still use (30), but here
we choose l = n. Recalling 1/2 < d < 1 and E|ε0|2/(2d−1) < ∞, it follows
from the facts (b) and (a) with α = 2/(2d−1) that

∑n
j=1 |c

(d)
j − c(d)j−l| ≤ C,

and max−n≤j≤n |εj | = oP (nd−1/2). By noting
∑
k=0 k|ψk| <∞, similar to

(32), we have that

sup
0≤t≤1

|R1([nt], n)| ≤ C max
−n≤j≤n

|εj |
n−1∑
i=0

n∑
k=i+1

|ψk| = oP

(
nd−1/2

)
.

On the other hand, similar to (33), we get that

P
(

sup
0≤t≤1

|R2([nt], n)| ≥ nd−1/2
)
≤ Cn1−d

∞∑
k=n+1

|ψk|

≤ C
∞∑

k=n+1

k|ψk| = o(1). (34)

These facts, together with (27) and Theorem 4.2 of Billingsley [3], imply
(7) for 1/2 < d < 1. This also completes the proof of Theorem 1.
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Appendix 2: A complementary proposition

This proposition is used to show that the process Xt defined by (1) with
Xt = 0, t ≤ 0, is a special case of the process Zt defined by (5).

Proposition 2 Let d > −1/2,

(1−B)dZt = vt, t = 1, 2, · · · ; Zt = 0, t ≤ 0, (35)

where vt, t ≥ 1 is an arbitrary well-defined process, B is a Backshift op-
erator and the fractional difference operator (1− B)γ is defined as in (2).
Then, we have that Zt = 0, t ≤ 0, and

Zt =
t−1∑
k=0

c
(d)
k vt−k, t = 1, 2, · · · , (36)

where c(0)0 = 1, c(0)k = 0, k ≥ 1, and c(α)
k = Γ(k + α)/

{
Γ(α)Γ(k+1)

}
, k ≥ 0,

for α 6= 0,−1,−2, · · · .

Proof: At first, we assume that d > −1/2 and d 6= 0, 1, 2, · · · . Under this
assumption, we first show that

c
(d)
t = −

t∑
k=1

c
(d)
t−k c

(−d)
k , t = 1, 2, · · · . (37)

Recalling Γ(z+1) = zΓ(z) (for all z 6= 0,−1, · · · , by definition), it is obvious
that

c
(d)
1 =

Γ(1 + d)
Γ(d)Γ(2)

= d, c
(−d)
1 =

Γ(1− d)
Γ(−d)Γ(2)

= −d.

Hence, (37) holds for t = 1. We next assume that (37) holds for t = n, i.e.,

c
(d)
t = −

t∑
k=1

c
(d)
t−k c

(−d)
k , t = 1, 2, · · · , n. (38)

By induction, it suffices to show that

c
(d)
n+1 = −

n+1∑
k=1

c
(d)
n+1−k c

(−d)
k = −

n∑
k=0

c
(d)
k c

(−d)
n+1−k. (39)

To prove (39), by summing each term of (38), we obtain that
n∑
t=1

c
(d)
t = −

n∑
t=1

t∑
k=1

c
(d)
t−k c

(−d)
k = −

n∑
k=1

c
(−d)
k

n∑
t=k

c
(d)
t−k

= −
n∑
k=1

c
(−d)
k

n−k∑
t=0

c
(d)
t = −

n−1∑
k=0

c
(−d)
n−k

k∑
t=0

c
(d)
t . (40)
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By using (10) and the definition of c(α)
k , it can be easily shown that, for all

k ≥ 1 and α 6= 0,−1,−2, · · · ,
k∑
t=0

c
(α)
t = c

(1+α)
k =

k + 1
α

c
(α)
k+1. (41)

In terms of (40), c(d)0 = 1 and (41) with α = d, it follows that, for d > −1/2
and d 6= 0, 1, 2, · · · ,

n+ 1
d

c
(d)
n+1 − 1 = −1

d

n−1∑
k=0

(k + 1)c(−d)n−k c
(d)
k+1 = −1

d

n∑
k=1

k c
(d)
k c

(−d)
n+1−k. (42)

On the other hand, (38) also implies that (recalling c(d)0 = c
(−d)
0 = 1)

−c(−d)t =
t−1∑
k=0

c
(d)
t−k c

(−d)
k =

t∑
k=1

c
(d)
k c

(−d)
t−k , t = 1, 2, · · · , n. (43)

By summing each term of (43), it follows that

−
n∑
t=1

c
(−d)
t =

n∑
k=1

c
(d)
k

n−k∑
t=0

c
(−d)
t . (44)

In terms of (44), c(−d)0 = 1 and (41) with α = −d, we obtain that, for
d > −1/2 and d 6= 0, 1, 2, · · · ,

n+ 1
d

c
(−d)
n+1 + 1 =

1
d

n∑
k=1

(k − n− 1) c(d)k c
(−d)
n+1−k. (45)

Now (39) follows immediately from summing the two sides of (42) and (45).
This gives (37) by induction.

Because of (37), we can give the proof of Proposition 2 for d > −1/2
and d 6= 0, 1, 2, · · · . Clearly, we only need to consider the case of t ≥ 1.
Recalling the definition of the fractional difference operator (1 − B)γ (see
(3)) and Zt = 0, t ≤ 0, we rewrite (35) as

t−1∑
j=0

c
(−d)
j Zt−j = vt, t = 1, 2, · · · . (46)

It follows from (46) that, if t = 1, then Z1 = v1, i.e., (36) holds for t = 1.
Next we assume that (36) holds for t = 2, · · · , n, i.e.,

Zj =
j−1∑
k=0

c
(d)
k vj−k, j = 1, 2, · · · , n. (47)
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By induction, it suffices to show that (47) also holds for j = n + 1. To
do this, we use (46) with t = n + 1. In this case, recalling (47), (37) and
c
(−d)
0 = 1, we have that

Zn+1 = vn+1 −
n∑
j=1

c
(−d)
j Zn+1−j = vn+1 −

n∑
j=1

c
(−d)
j

n−j∑
k=0

c
(d)
k vn+1−j−k

= vn+1 −
n∑
j=1

c
(−d)
j

n∑
k=j

c
(d)
k−jvn+1−k = vn+1 −

n∑
k=1

vn+1−k

k∑
j=1

c
(d)
k−jc

(−d)
j

= vn+1 −
n∑
k=1

c
(d)
k vn+1−k = −

n∑
k=0

c
(d)
k vn+1−k. (48)

This implies that (47) holds for j = n+1 and hence the proof of Proposition
2 is complete for d > −1/2 and d 6= 0, 1, 2, · · · .

Next we show that Proposition 2 holds for d = 0, 1, 2, · · · . Recalling
definition of c(0)k , k ≥ 0, Proposition 2 is obvious for d = 0. In the following,
we assume that Proposition 2 holds for d = m. We will prove that (35) for
d = m+ 1, i.e.,

(1−B)m+1Zt = vt, t = 1, 2, · · · ; Zt = 0, t ≤ 0. (49)

It implies that Zt
∑t−1
k=0 c

(m+1)
k vt−k, t = 1, 2, · · · , and then Proposition 2

follows by induction. To do this, let Yt = 0, t ≤ 0, and Yt = (1 − B)Zt,
t = 1, 2, · · · . It can be easily checked that Zt =

∑t
j=1 Yj and, by using

(49), (1 − B)mYt = (1 − B)m+1Zt = vt, t = 1, 2, · · · . This implies that Yt
satisfies (35) for d = m. By using the assumption that Proposition 2 holds
for d = m, we obtain Yt =

∑t−1
k=0 c

(m)
k vt−k, t = 1, 2, · · · , and therefore,

Zt =
t∑

j=1

Yj =
t∑

j=1

j−1∑
k=0

c
(m)
k vj−k =

t∑
j=1

j∑
k=1

c
(m)
j−kvk

=
t∑

k=1

vk

t∑
j=k

c
(m)
j−k =

t−1∑
k=0

vt−k

k∑
j=0

c
(m)
j =

t−1∑
k=0

vt−kc
(m+1)
k ,

t = 1, 2, · · · , where we have used the well-known equality: for all m ≥ 1,∑k
j=0 c

(m)
j = c

(m+1)
k , k = 0, 1, 2, · · · . The proof of Proposition 2, for d =

0, 1, 2, · · · , is now complete.


