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Abstract. This paper studies the effect of deviating from the normal distribution as-
sumption when considering the power of two many-sample location test procedures:
ANOVA (parametric) and Kruskal-Wallis (non-parametric). Power functions for these
tests under various conditions are produced using simulation, where the simulated data
are produced using MacGillivray and Cannon’s [10] recently suggested g-and-k distribu-
tion. This distribution can provide data with selected amounts of skewness and kurtosis
by varying two nearly independent parameters.
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1. Introduction

Analysis of variance (ANOVA) is a popular and widely used technique. Be-
sides being the appropriate procedure for testing location equality within
several populations (under certain assumptions about the data), the ANOVA
model is basic to a wide variety of statistical applications.

The data used in an ANOVA model are traditionally assumed to be
independent identically distributed (IID) normal random variables (with
constant variance). These assumptions can be violated in many more ways
than they can be satisfied! However, the normality assumption of the data
is a pre-requisite for appropriate estimation and hypothesis testing with
every variation of the model (e.g. homo-scedastic, hetero-scedastic).

In situations where the normality assumption is unjustified, the ANOVA
procedure is of no use and can be dangerously misleading. Fortunately,
nonparametric methods such as the Kruskal-Wallis test (c¢f Montgomery
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[12]) are available to deal with such situations. The Kruskal-Wallis test
also tests whether several populations have equal locations.

The Kruskal-Wallis test, while less sensitive to distributional assump-
tions, does not utilize all the information collected as it is based on a rank
transformation of the data. The ANOVA procedure, when its assump-
tions are satisfied, utilizes all available information. Naturally the extent
of the departure from IID normality is the key factor that regulates the
strength (or weakness) of the ANOVA procedure. Various measures of
skewness and kurtosis have traditionally been used to measure the extent
of non-normality, where skewness measures the departure from symmetry
and kurtosis the thickness of the tails of the distribution.

The problem of robustness of the ANOVA test to non-normality has been
extensively studied. Tiku [17] obtains an approximate expression for the
ANOVA test power function. Tan [16] provides an excellent supplement
to the reviews of Tiku [18] and Ito [6]. These approaches seem to revolve
around examining the properties of various approximations to the exact
distribution of the test statistic. This allows the authors to make useful
conclusions about the general behaviour of the ANOVA test. However, our
approach is based around the fact that a practitioner will usually need to
analyze the data (in this case, test for location differences) regardless of its
distribution, and will therefore be interested in the relative performance of
the two major tools applicable here: ANOVA and Kruskal-Wallis.

We present a size and power simulation study of the ANOVA and Kruskal-
Wallis tests for data with varying degrees of non-normality. Data were
simulated using MacGillivray and Cannon’s [10] recent g-and-k family of
distributions, chosen for its ability to smoothly parameterize departures
from normality in terms of skewness and kurtosis measures. The skewness
and kurtosis characteristics of the g-and-k distribution are controlled in
terms of the (reasonably) independent parameters g (for skewness) and k
(for kurtosis). For g = 0 (no skewness) the g-and-k distribution is sym-
metric, and for ¢ = k = 0 it coincides with the normal distribution (see
Figure 1). Using the g-and-k distribution also allows the investigation to
consider departures from normality that are not necessarily from the ex-
ponential family of distributions, unlike previous investigations.

Section 2 defines the ANOVA and Kruskal-Wallis tests, section 3 intro-
duces quantile distributions, section 4 introduces the g-and-k distribution
used in this paper, and section 5 describes the simulation study under-
taken for this paper and discusses its results. Finally, section 6 concludes
the paper.
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2. Multiple Sample Location Tests

One-way or one-factor analysis of variance (ANOVA) is the most commonly
used method of comparing the location of several populations. Here, each
level of the single factor corresponds to a different population (or treat-
ment). ANOVA tests whether or not the treatment means are identical,
and requires that the data be independent and identically distributed (1ID),
with this identical distribution being the normal distribution.

Alternatively, for situations with no prior assumption about the particu-
lar distribution of the data, the Kruskal-Wallis test is often used. This test
examines the hypothesis that treatment medians are identical, against the
alternative that some of the treatment medians are different. The Kruskal-
Wallis test also assumes the data are IID, but does not require that this
particular distribution be normal, just that it be continuous.

Although ANOVA and Kruskal-Wallis do not test precisely the same
hypothesis, operationally they are both used to test the same problem:
whether or not the location of the treatments are the same. The fact that
each test measures location in different ways is often not really relevant to
the way they are used in practice.

2.1. ANOVA

The simplest one-way ANOVA model for ¢ populations (or treatments) can
be presented ([12]) as

Yij = Wi t+ €45, 1=1,2,...,t; j=1,2,...,n,, (1)

where y;; is the j-th of the n,; observations in the i-th treatment (class or
category); u; is the mean or expected response of data in the i-th treatment
(often called the treatment mean); and ¢;; are independent, identically
distributed normal random errors. The treatment means p; = p + 7; are
sometimes also expressed as a combination of an overall expected response
w and a treatment effect 7; (where 22:1 n;7; = 0).

Under the traditional assumption that the model errors €;; are indepen-
dently distributed normal random variables with zero mean and constant
variance o2, we can test the hypothesis

Hy:pr=po=...=py; Hy:all py’s are not equal. (2)

The classical ANOVA statistic (cf [12]) can be used for testing this hy-
pothesis.
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Figure 1. Shows g-and-k distribution densities corresponding to various values of the skewness parameter g and the kurtosis parameter
k. Here the location and scale parameters are A = 0 and B = 1 respectively.
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2.2. The Kruskal-Wallis test

The Kruskal-Wallis test models the data somewhat differently. As with
ANOVA, the data are assumed to be IID, but now this may be any con-
tinuous distribution, rather than only the normal. The data are modeled
as

yl]:771+¢137 Z:1a2aat7 j:1a2aan17 (3)

where as before, y;; is the j-th of the n; observations in the i-th treatment
(class or category); 7; is the median response of data in the i-th treatment
(often called the treatment mean); and ¢;; are independent, identically
distributed continuous random errors.

This model allows us to test the hypothesis

Hy:m=mn=...=1n; H,:all n;’s are not equal. (4)

The Kruskal-Wallis test statistic (cf [12]) can be used for testing this hy-
pothesis.

3. Quantile Distributions

Distributional families tend to fall into two broad classes:

1. those corresponding to general forms of a density or distribution func-
tion, and

2. those defined by a family of transformations of a base distribution, and
hence by their quantile function.

Some of those defined by their quantile function are the Johnson system,
with a base of normal or logistic, the Tukey lambda and its various asym-
metric generalizations, with a uniform base, and Hoaglin’s g-and-h, with a
normal base.

Distributions defined by transformations can represent a wide variety of
density shapes, particularly if that is the purpose of the transformation.
For example, Hoaglin’s [5] original g-and-h distribution was introduced
as a transformation of the normal distribution to control the amount of
skewness (through the parameter g) and kurtosis (with the parameter h)
added.

A desirable property of a distributional family is that the nature and ex-
tent of changes in shape properties are apparent with changes in parameter
values, for example when an indication of the departure from normality is
required ([3]). It is not generally recognized how difficult this is to achieve
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in asymmetric distributions, whether they have one or more than one shape
parameters. For the asymmetric Tukey lambda distributions, measures of
asymmetry (skewness) and heaviness in the tails (kurtosis) of the distribu-
tions are functions of both shape parameters, so that even if approxima-
tions to well-known distributions are good, it is not always obvious what
shape changes occur as the lambda distributions’ shape parameters move
between, or away from, the values providing such approximations. An ad-
ditional difficulty with the use of this distribution when fitting through
moments, is that of non-uniqueness, where more than one member of the
family may be realized when matching the first four moments to obtain
parameters for the distribution ([13]).

In the g-and-h distribution of Hoaglin [5] and Martinez and Iglewicz [11]
the shape parameters g and h are more interpretable, although the fam-
ily does not provide quite as wide a variety of distributional types and
shapes as the asymmetric lambda. The MacGillivray [10] adaptation of
the g-and-h distributions called the generalized g-and-h distribution and a
new family called the g-and-k distributions, make greater use of quantile-
based measures of skewness and kurtosis, to increase interpretability in
terms of distributional shape changes ([7], [8], [1] and [9]). A further ad-
vantage of the MacGillivray generalized g-and-h and g-and-k distributions
is the greater independence between the parameters controlling skewness
and kurtosis (with respect to some quantile-based measures of distribution
shape). The g-and-k distributions also allow distributions with more neg-
ative kurtosis (ie“shorter tails”) than the normal distribution, and even
some bimodal distributions.

4. The generalized g-and-h and g-and-k Distributions

The generalized g-and-h and g-and-k distribution families have shown con-
siderable ability to fit to data, approximate standard distributions, ([10]),
and facility for use in simulation studies ([3], [4], [15]). In an assessment
of the robustness to non-normality in ranking and selection procedures,
Haynes et al. [3] utilize the g-and-k distribution for the above reasons
as well as for flexibility in the coverage of distributions with both long
and short tails. Rayner and MacGillivray [15] examine the effect of non-
normality on the distribution of (numerical) maximum likelihood estima-
tors.
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The generalized g-and-h and g-and-k distributions ([10]) are defined in
terms of their quantile functions as

1—e 9%\ .
A B,g,h) = A+ Bz, [1+c—— ) h®/?
QX(u| D, 9, ) + b5z < +Cl+€—gzu>e

and

— e~ 9%u

1
A B,g,k)=A+ Bz, |1 —_—
QX(ul y Dy G, ) + bz < +Cl+e—gzu

> (1+22)k
respectively. Here A and B > 0 are location and scale parameters, g
measures skewness in the distribution, h > 0 and k& > —% are measures of
kurtosis (in the general sense of peakedness/tailedness) of the distributions,
2, = ®71(u) is the uth standard normal quantile, and ¢ is a constant chosen
to help produce proper distributions.

For both the generalized g-and-h and g-and-k distributions the sign of
the skewness parameter indicates the direction of skewness: g < 0 indicates
the distribution is skewed to the left, and g > 0 indicates skewness to the
right. Increasing/decreasing the unsigned value of g increases/decreases
the skewness in the indicated direction. When g = 0 the distribution is
symmetric.

Increasing the generalized g-and-h kurtosis parameter, h, adds more kur-
tosis to the distribution. The value h = 0 corresponds to no extra kurtosis
added to the standard normal base distribution, which is the minimum
kurtosis the generalized g-and-h distribution can represent.

The kurtosis parameter k, for the g-and-k distribution, behaves similarly.
Increasing k increases the level of kurtosis and vice versa. As before, k =0
corresponds to no kurtosis added to the standard normal base distribution.
However this distribution can represent less kurtosis than the normal dis-
tribution, as k > f% can assume negative values. If curves with even more
negative kurtosis are required then a base distribution with less kurtosis
than the standardized normal can be used. See Figure 1.

For these distributions ¢ is the value of the “overall asymmetry” ([7]).
For an arbitrary distribution, theoretically the overall asymmetry can be
as great as one, so it would appear that for ¢ < 1, data or distributions
could occur with skewness that cannot be matched by these distributions.
However for g # 0, the larger the value chosen for ¢, the more restrictions
on k or h are required to produce a completely proper distribution. Real
data seldom produce overall asymmetry values greater then 0.8 ([10]). We
have used ¢ = 0.8 throughout this paper. For this value of ¢ the generalized
g-and-h distribution is proper for any g and h > 0. The restrictions placed
on the g-and-k distribution to be proper are more complicated, but for our
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purposes (using these distributions to generate data) the distribution need
not be proper.

For more information about the properties of these distributions, see [10],
[14], and [15].

5. Simulation Study

When data are not IID normally distributed then the error term e;; in
equation (1) is also not normally distributed. In such situations, the as-
sumptions required for the ANOVA model (see section 2.1) are not satis-
fied, and it is not appropriate or optimal to use the ANOVA test statistic
to test for equality of treatment locations. However, we can still calculate
the ANOVA test statistic and, therefore, the resulting power function of
this test. Similarly, the Kruskal-Wallis test statistic and its power function
can also be found. These power functions will allow us to compare the use-
fulness of the ANOVA and Kruskal-Wallis tests under various kinds and
degrees of non-normality (combinations of the g and k parameter values
for data from the g-and-k distribution).

To examine how these tests react to the degree of non-normality, we use
data distributed according to MacGillivray and Cannon’s [10] g-and-k dis-
tribution. Using the g-and-k distribution allows us to quantify how much
the data depart from normality in terms of the values chosen for the g
(skewness) and k (kurtosis) parameters. For g = k = 0, the quantile func-
tion for the g-and-k distribution is just the quantile function of a standard
normal variate, and hence the assumptions required for the ANOVA model
(section 2.1) are satisfied.

In order to compare the power of the ANOVA and Kruskal-Wallis tests,
expressions for these power functions are required. However, in practice
it is very difficult to obtain analytic expressions for these power functions.
Instead, we have conducted a Monte-Carlo simulation to estimate these
power functions for various combinations of the g and k& parameter values
for data from the g-and-k distribution.

To simplify matters, only ¢ = 3 treatments or populations are considered
here. We simulate these populations as y;; = p; +e;; fori =1,...,¢ where
the errors e;; are taken from the g-and-k distribution with parameters
(A, B,g,k). Here the location and scale parameters of the error variates
are A =0 and B = 1 respectively.

We examine the ANOVA and Kruskal-Wallis tests for uz = 0 and p1, uo =
—11:1: 11 with R = 5,000 simulations and the following (g, k) combi-
nations: (—1,0),(—0.5,0),(0,0),(0.5,0),(1,0) and (0,—0.5), (0,0.5), (0,1).
We consider only the case of equal sample sizes n = 3,5,15,30 for each
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treatment group. Tests are carried out using a nominal size of @ = 1%
for n = 5,15,30. For n = 3, the Kruskal-Wallis test is conservative and
consideration of nominal o = 1.1% would produce a test of actual size ap-
proximately oo = 0.5% (see for example [2]). This fact is also supported by
the results of this study (see Figure 8). That is why the ANOVA test with
size a = 0.5% is carried out to compare with the Kruskal-Wallis test with
nominal size o = 1.1% in simulations.

Figures 2 through 4 show empirical power surfaces for the ANOVA test
using sample sizes n = 3,5, 15 respectively. Figures 5 through 7 show em-
pirical power surfaces for the Kruskal-Wallis test, also using these sample
sizes. These Figures show power surfaces as a function of the population
location parameters puo and pg for different amounts of skewness and kur-
tosis in the error terms. Power surfaces for n = 30 are omitted since the
power surfaces are almost everywhere 1, although showing some decrease
in power as k increases, when they begin to look more like the n = 15
power surfaces.

It is also interesting to consider how power varies with the skewness
and kurtosis parameters g and k, for different combinations of values of
the true locations. We examine the ANOVA and Kruskal-Wallis tests
for g = =5 : % :5and £k = —0.5 : % : 1 with the combinations
(2,2,0),(-2,2,0),(2,0,0) and (0,0,0). Tests are carried out using equal
sample sizes of n = 3,5, 15,30 for each treatment group, R = 5,000 simu-
lations and sizes as mentioned before. Figures 8 and 9 show power surfaces
as a function of the skewness and kurtosis parameters g and k for different
combinations of the population locations.

Examining Figures 2 to 7 it can be seen that power functions for both
ANOVA and Kruskal-Wallis tests seem:

1. insensitive to variations in skewness;

2. worse (less sharply discriminating) for larger k (heavier tailed error
distributions); and

3. Dbetter as the sample size n increases.

This confirms the evidence supplied in earlier studies of ANOVA robust-
ness (eg [16]). Interestingly, the Kruskal-Wallis test does seem to be affected
by the shape of the error distribution.
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Figure 2. Each of these figures shows a power surface for the ANOVA F-test of the null hypothesis that 1 = p2 = p3 given puz =0

and various different true values of p1, p2 and n = 3 observations per sample. Comparing these power surfaces shows the effect of data
with non-normal skewness or kurtosis (a = 0.5%).
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Figure 3. Each of these figures shows a power surface for the ANOVA F-test of the null hypothesis that u1 = p2 = ps given puz =0
and various different true values of p1, pu2 and n = 5 observations per sample. Comparing these power surfaces shows the effect of data
with non-normal skewness or kurtosis (a = 1%).
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Figure 4. Each of these figures shows a power surface for the ANOVA F-test of the null hypothesis that 1 = p2 = p3 given puz =0
and various different true values of p1, p2 and n = 15 observations per sample. Comparing these power surfaces shows the effect of
data with non-normal skewness or kurtosis ( @ = 1%).



Figure 5. Each of these figures shows a power surface for the Kruskal-Wallis test of the null hypothesis that p1 = p2 = ps3 given puz =0
and various different true values of p1, pu2 and n = 3 observations per sample. Comparing these power surfaces shows the effect of data
with non-normal skewness or kurtosis (a = 1.1%).
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Figure 6. Each of these figures shows a power surface for the Kruskal-Wallis test of the null hypothesis that 1 = g2 = p3 given puz =0
and various different true values of p1, p2 and n = 5 observations per sample. Comparing these power surfaces shows the effect of data
with non-normal skewness or kurtosis (a = 1%).
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Figure 7. Each of these figures shows a power surface for the Kruskal-Wallis test of the null hypothesis that p1 = g2 = ps3 given puz =0
and various different true values of p1, p2 and n = 15 observations per sample. Comparing these power surfaces shows the effect of
data with non-normal skewness or kurtosis (o = 1%).
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Figure 8. Power surfaces for both the ANOVA F-test and the Kruskal-Wallis test for
sample sizes n = 3,5. These plots show how power varies with skewness and kurtosis
parameters g = —5: 5 and k = —0.5 : 1 for different values of the true treatment means
= (p1, 2, u3). Note that the power surface for @ = (u1, p2, us3) = (0,0,0) shows how
the true size of the test (for n = 3, a = 0.5% for ANOVA and a = 1.1% for Kruskal-
Waliis and for n = 5, @ = 1% for both tests) varies with skewness and kurtosis. The
jaggedness of these true size surfaces is due to sampling variation.
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Figure 9. Power surfaces for both the ANOVA F-test and the Kruskal-Wallis test for
sample sizes n = 15,30. These plots show how power varies with skewness and kurtosis
parameters g = —5 : 5 and k = —0.5 : 1 for different values of the true treatment means
iZ = (p1, p2, pu3). Note that the power surface for fi = (u1, p2, u3) = (0,0,0) shows how
the true size of the test (o« = 1%) varies with skewness and kurtosis. The jaggedness of
these true size surfaces is due to sampling variation.
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Figure 5 shows the power surface for the Kruskal-Wallis test with samples
of size n = 3. Strangely, when p; = £pus, u1 = 0, or us = 0 the power
function is very low. This means that for n = 3 the Kruskal-Wallis test
concludes that all treatment locations are equal, when in fact only the
absolute value of any two treatment means are equal.

A different way in which the ANOVA and Kruskal-Wallis tests depend
on skewness and kurtosis is provided by Figures 8 and 9. Here we examine
the power surfaces as the skewness and kurtosis parameters g and k vary,
for a variety of different combinations of (u1, o, p3). Once again, Figures 8
and 9 confirm the dotpoints made above, although some small dependence
on skewness (g) is revealed here for both the ANOVA and Kruskal-Wallis
tests. As one would expect, whenever the power surface changes with
skewness it is symmetric through g = 0, showing that only the degree of
skewness is important rather than its direction.

The true size of the ANOVA and Kruskal-Wallis tests is revealed by the
i = (u1, 2, u3) = (0,0,0) power surfaces in Figures 8 and 9. For both
tests, size seems indifferent to variations in the error distribution shape.
However, for the Kruskal-Wallis test with n = 3 the true size is much
smaller than the nominal size.

Examining Figure 8 more closely reveals that for n = 3 and n = 5 both
the ANOVA and Kruskal-Wallis tests have similar trouble appropriately
rejecting the null hypothesis when only one location parameter is different.
Figure 9 shows that for n = 15 and n = 30 the ANOVA power surface is
still heavily dependent on kurtosis (k), whereas the Kruskal-Wallis test is
far less affected and by n = 30 the Kruskal-Wallis test is all but indifferent
to the error distribution shape.

6. Conclusion

We distil our study into four observations/recommendations.

1. Both the ANOVA and Kruskal-Wallis tests are vastly more affected by
the kurtosis of the error distribution rather than by its skewness, and
the effect of skewness is unrelated to its direction.

2. Both the ANOVA and Kruskal-Wallis test sizes do not seem to be par-
ticularly affected by the shape of the error distribution.

3. The Kruskal-Wallis test does not seem to be an appropriate test for
small samples (say n < 5). Even for non-normal data, the ANOVA test
is a better option than the Kruskal-Wallis test for small sample sizes
(say n = 3). This comment is made on the basis of the comparison
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between a Kruskal-Wallis test of nominal size 1.1% and an ANOVA test
of size 0.5%. It is clearly understandable that a comparison between
the Kruskal-Wallis and ANOVA tests of same size is a more reasonable
procedure.

4. The Kruskal-Wallis tests clearly performs better than the ANOVA test
if the sample sizes are large and kurtosis is high. Increasing sample
size drastically improves the performance of the Kruskal-Wallis test,
whereas the ANOVA test does not seem to improve as much or as
quickly.

The first result above reflects commonly held wisdom as well as the results
presented in [16].

While the simulation results included here are for only three treatment
groups, it is not unreasonable to use these as a guide in the case of larger
or more complex ANOVA-based models where normality would probably
be a more rather than less critical assumption.
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