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Abstract. Neural networks are excellent mapping tools for complex financial data.
Their mapping capabilities however do not always result in good generalizability for fi-
nancial prediction models. Increasing the number of nodes and hidden layers in a neural
network model produces better mapping of the data since the number of parameters
available to the model increases. This is detrimental to generalizability of the model
since the model memorizes idiosyncratic patterns in the data. A neural network model
can be expected to be more generalizable if the model architecture is made less complex
by using fewer input nodes. In this study we simplify the neural network by eliminating
input nodes that have the least contribution to the prediction of a desired outcome. We
also provide a theoretical relationship of the sensitivity of output variables to the input
variables under certain conditions. This research initiates an effort in identifying meth-
ods that would improve the generalizability of neural networks in financial prediction
tasks by using mergers and bankruptcy models. The result indicates that incorporating
more variables that appear relevant in a model does not necessarily improve prediction
performance.

Keywords: Neural networks, Bankruptcy Prediction, Merger Prediction

1. Introduction

Models that use adaptive algorithms like neural networks are excellent tools
for accurately mapping a data set, but have often been criticized for their
complexity resulting in poor generalizability in financial prediction tasks
[21]. Researchers have had difficulty in sifting through the maze of weights
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that build a neural network model in order to interpret it. However, sev-
eral researchers have used neural networks to successfully predict financial
phenomena, such as, stock market trends [31] and [29], firm bankruptcy
[20, 23, 28], gold prices [8, 9], and foreign exchange prices [19]. Wider
acceptance of neural networks in the financial world can be promoted by
adopting simpler network architectures that have more generalizability and
provide some explanatory facilities. This research evaluates the hypothesis
that generalizability of neural networks can be increased in financial pre-
diction tasks by simplifying neural networks using techniques that induce
knowledge from the task domain. These techniques reduce the search space
for neural networks enabling them to ignore noise that is inherent in finan-
cial data. The noise in financial data often makes it difficult to obtain a
generalizable model.

The financial worlds of the stock market, corporate mergers, and firm
bankruptcy are complex. They are difficult to understand and more diffi-
cult to predict. There is growing emphasis in the economics literature to
treat this world as inherently complex, and not simplify it using mathe-
matical postulations [4, 30]. Neural network training and other adaptive
algorithms like genetic algorithms are being considered as potential tools
in explaining and predicting such market phenomena. Most research effort
in this direction attempts to combine several methods to provide better
explanation capabilities [24, 7].

An interesting question is why use neural networks for financial models
instead of statistical models or symbolic rule-based models? Shavlik [26] ar-
gues that neural networks have at least comparable accuracies to symbolic
learning algorithms. Neural networks have been found to be successful
in several tasks of inherent complexity like speech recognition, character
recognition, language learning, etc. (see [26] for several applications). The
advantage of neural networks over symbolic learning algorithms is that they
use a more natural learning representation, much like the human brain.
Thus, they can arrive at more precise models albeit complex [25]. How-
ever, like neurological interactions in the human brain, these models are
hard to interpret. To simplify human decision-making, decision theorists
propose different decision-making models. Combining symbolic approaches
with neural networks has precisely the same objective that decision theo-
rists have for their models, i.e., to provide a heuristic that explains complex
connection mechanisms in a neural network model.

In this paper we use neural networks to predict two financial tasks. The
two applications are prediction of targets for corporate mergers and pre-
diction of firms that face impending bankruptcy. Both applications have
significant financial implications. Being able to predict firms that are po-
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tential targets for acquisition could result in financial gains since there is
typically an increase in the stock price of targeted firms. Targets are consid-
ered as good investments by firms that acquire them. Bankruptcy predic-
tion enables auditors to make going-concern judgments, banks to predict
potential loan defaulters, and stock analysts to identify poor investment
opportunities.

Prediction of targets for mergers is a challenging task. Prior researchers
have tried to predict mergers using logistic regression. Their results are
reflective of the difficulties associated with predicting targets. Although
Simkowitz and Monroe[27] and Dietrich and Sorensen [6] show that their
models are capable of predicting targets and non-targets (firms that are
not taken over) with a degree of accuracy of about 63

Prediction of bankruptcy is critical to the financial auditor. If a firm
goes bankrupt, the independent accounting firm that performed the audit
prior to bankruptcy is often held liable for damages to investors from the
bankruptcy. A number of studies have tried to develop bankruptcy mod-
els for auditors. Altman and McGough [1] compared the accuracy of a
bankruptcy prediction model to auditors’ going-concern opinions one year
prior to the bankruptcy event. For the years 1970 to 1973, their model
correctly predicted bankruptcy for 82 percent of the cases while auditors
issued the going-concern opinion in only 46 percent of the cases. Their sam-
ple, however, consisted only of bankrupt firms. Other authors have found
similar results [2, 15, 14]. Tam and Kiang [28] showed that neural networks
are as good a predictor as logistic regression when predicting bank failures.

2. Complexity Reducing Mechanisms

Complexity in neural network architectures increases with the number of
input nodes, the hidden nodes, and the connections between them. In-
creased complexity provides better mapping of the training data as the
number of parameters (weights in the case of neural networks) increases
[11]. This, however, reduces generalizability as the network memorizes the
idiosyncrasies in training data. The optimal neural network configuration
attempts to balance network complexity with generalizability. In this study
we will attempt to show that if network complexity is reduced using tech-
niques which reduce the search space, generalization and thus, prediction,
can be improved.

A neural network model is composed of a set of input nodes U; and a set
of output nodes Y;. U; are predictor variables and the Y} are the desired
output. The output variables Y; are mapped to the independent variables
U; using intermediate variables V}, and X; in the hidden layers (Figure 1).
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Figure 1. Neural Network Model.

An intermediate node variable V}, is computed using a linearly weighted
regression like model and a sigmoidal transformation function, where

1
= I+ e{izi W;Ui}
W; represents the weight of the input U; mapped onto intermediate vari-
able Vj. Vi becomes the input layer variable for the next intermediate or
hidden layer, and the next layer input variables X; are computed using a

formula similar to (1). The process is repeated until the Y; are estimated.
The total error of the estimated outputs can be computed using Rumel-

hart, et. al. [22] as
1 N2
E=3 Z (yi — ;)
J

Vi (1)

where y} is the estimated output and y; is the desired output. Based on
Rumelhart’s back propagation algorithm, the weights can be changed so
that convergence in the output estimates occurs. This can be accomplished
by minimizing the error function E with respect to the weights.
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This leads to a weight change AW = — € > g—VEV, where € is called a
learning coefficient.

These weight changes are then back propagated to the input layer. This
process is repeated until convergence of the output variables occur.

Although the back propagation algorithm works very well for mapping a
given input-output data set, it does not do a very good job of predicting
financial phenomena. This is partly due to having unnecessary nodes, re-
sulting in additional parameters to be estimated. In section 5.2 we demon-
strate that by removing some of the input variables, prediction performance
does not deteriorate. It is more likely that performance will improve.

2.1. A heuristic for node reduction
To reduce complexity, we develop a heuristic by which input nodes can be

eliminated. Consider the following neural network model, where nodes are
marked 1,2,3,4,5,6 for convenience.

Figure 2. Neural Network Model with One Dependent Variable.
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X1, Xo, X3 are the input variables and Ys is the output variable (sub-
scripts refer to the respective node numbers). Linear weighted regression
functions for the intermediate variables X, and X5 may be written as:

Xy = Wi Xy + Way Xo + W3a X3 (2)
and
X5 = WisXq + Was Xy + W5 X3 (3)
The transformed variables Y}, Y5 for the intermediate layer are:
Yy=——— and Y5 = _ 4
T p e X M T TR )
Finally,
Xo = WaeYy + WseYs (5)
and
1
Yo = ———+ 6
o= ©

These completely specify all node variables in the neural network model.
To find the impact of each input variable X7, X5, X3, on the output Yg, we
find 2%e

X1 "
From (2), we know that

90Xy 0Xs
8—)(1 = W14 and 8—)(1 = W15 (7)

Using the chain rule for derivatives,

oy _ Vi 0Xi _ [%
oX, 90X, ox, "

and

O _ Y 0Xs _ (s
oX, 0X; ox, P

We take the derivative for (5) with respect to Xi:

0X¢ oYy 0Ys
ax, — Ve x oyt Waex 55 (10)

Substituting (8) and (9) in (10) we obtain
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dX, dYy oY

8—AX'TZW46*W14*[8X]+W56*W15*[8X55] (11)
We can similarly obtain

X Y, oY

a—Xz:W46*W24*[8X]+W56*W25*[8XZ] (12)

Let us define K; = Wyg * [‘9Y4] and Ko = Wsg % [‘9Y5] We can rewrite
(12) in terms of weights Ky and KQ as:

0Xg

— =W K+ W K 13

aX, 14 % £ + Wis x (o (13)
and

0X,

8—)((;=W24*K1+W25*K2

From (11) and (12) we see that the sensitivity of the output variable Y
to X1, and X, differ only on the input layer weights. If K; and K, were
known, then the impact of X; and X5 on the output variable Y can be
derived from (13). However, if we make some assumptions on K; and K»,
knowing the input layer weights, we can determine the impact of the input
layer variables on the output. A simple heuristic that can be followed for
eliminating input variables is to sum the input layer weights and eliminate
the variables with the lowest weights. We test the impact of this heuristic
on prediction performance.

3. The Neural Network Models

Two neural network models are developed. One is a complete model with
all the input nodes. The second is a reduced model, where input variables
are eliminated by using the sum of the input layer weights described in the
previous section.

3.1. The fully connected neural network models (model 1)

The first model is a fully connected neural network that was developed
with a single hidden layer (with 2n + 1 nodes where n is the number of
input nodes) for both the mergers and bankruptcy data sets. The number
of nodes in the hidden layer is based on Kolmogrovs theorem [11], which
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suggests that there exists a continuous mapping function f for a neural net-
work with one hidden layer having 2n + 1 nodes. This model included all
the input variables for each of the data sets as in any traditional neural net-
work model. The transfer function used in the networks was the sigmoidal
function: {—t=. Both networks (for the two financial data sets) consisted
of twelve input nodes, one hidden layer of 25 nodes and two output nodes.
No momentum was used, and a learning constant of .2 was assumed.

To control for overfitting, the neural network model’s training is stopped
based on prediction performance on a test sample. Training is stopped
periodically to observe the prediction performance using the test sample.
Training is continued until prediction performance keeps on improving on
the test sample. At the point where prediction performance starts to de-
teriorate, training is stopped. This method for controlling overfitting of
neural network models is explained in [11].

3.2. Reduced neural network based on weight analysis (model 2)

The weights in a neural network topology can be interpreted to a limited
extent. It was shown in section 2 that the partial derivative of an output
variable (at the final layer of a neural network model) with respect to an
input variable (at the first layer) is a function of the sum of the product
of weights (connected to the input node in the first hidden layer) and a
function K which is independent of any parameters in the first hidden layer.
This function K is the same for all partial derivatives between an output
layer node and an input node. This implies that the sum of the weights
connected to an input node in the first layer determines the impact on the
output variable, since the function K is common to all input nodes. This
assumes that all inputs are standardized and positive. The inputs to our
models were standardized on a 0 to 1 scale.

After the networks are trained, the absolute values of the weights for
each input node at the first layer are averaged. A high value indicates
that this input variable is more important in distinguishing targets and
failed firms from non-targets and non-failed firms. Four variables that
have the strongest impact on the outcome in each model are identified. We
eliminated all other input parameters from the networks. This simplified
the network making it easier to be interpreted. It is expected that the
mapping accuracy of the network on the training set will be reduced by
eliminating some parameters. This may not be a problem since a high
mapping accuracy may suggest overfitting of the model [11]. We expect
that this reduced model will either generalize better or at least not do any
worse than model 1.
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Table 1. Distribution of Sample Sizes.

Task Type of Firm Training Holdout
Sample Size | Sample Size
Merger Targets 37 10
Prediction Non-Targets 37 140
Bankruptcy Bankrupt Firms 80 49
Prediction | Non-Bankrupt Firms 80 80

4. Data and Variables

The merger data were collected for all firms that were merger targets (and
non-targets) in 1984-85 from Compustat and CRSP tapes. There were 37
target firms and 1260 non-target-firms that were identified for 1984 that
had complete data. This unequal distribution of target and non-target
firms gives rise to a state-based sampling problem [18]. To avoid a bias
in the training sample, the training data set was comprised of an equal
number of target and non-target firms (37 each) obtained from the 1984
data set. If the whole sample was used as the training data set, then the
model could simply predict all firms as non-targets and obtain excellent
prediction performance. Thus, learning would be impaired. The hold out
sample was randomly selected from all firms in the 1985 Compustat and
CRSP tapes. The hold out sample was comprised of 10 target firms and
140 non-target firms. This ratio is similar to the population percentages of
targets and non-targets for 1984 and 1985. The distribution of the sample
data is shown in Table 1.

The independent variables selected for predicting mergers were based on
three factors:

1. The inefficient management hypothesis for takeovers [10] suggests that
firms that are poorly managed are likely targets for takeover. Evidence
of management performance can be obtained by (1) average excess stock
return (AER), (2) return on equity (ROE), and (3) average sales to
assets turnover (AVITURNOV).

2. The undervaluation hypothesis implies that a firms stock price does not
reflect the true economic value of the firm. The firm is considered a
good investment opportunity. Some firms have high growth and low
resources and vice versa. These firms are identified as good investment
opportunities. This can be proxied by a dummy variable (GRDUMMY)
that indicates the growth-resource mismatch (Palepu 1986). Other in-
dicators of good investment opportunities are average dividend payout
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(AVPAYOUT), market to book ratio (MTB), and price earnings (PE)
ratio [18, 6, 5].

3. Demographic and environmental factors [6, 5] may also be indicators
of potential targets. A dummy variable (IDUMMY) was included to
indicate whether a firm in the same industry category was merged in
the year prior to the observation year. Total net book value of assets
as an indicator of the size (SIZE) of the company was also included as
an independent variable.

The data were obtained from Computstat and CRSP tapes. For sim-
plicity most of the data items were averaged over three to five years prior
to the two observation years 1984-85. Targets were identified by locating
delistments of firms from the New York Stock Exchange. This information
was obtained from CRSP tapes and later verified by the The Wall Street
Journal Index.

Bankruptcy data were collected for ”failed” firms that have declared
Chapter 11 or Chapter 7 bankruptcy or were involuntarily liquidated during
the years 1968-1990, with all data available on COMPUSTAT. A randomly
selected sample of 160 "non-failed” firms, along with 129 ”failed” firms,
from the same period was used for training and testing purposes. The
training set had 80 failed and non-failed firms each. The holdout sample
had 80 non-failed firms and 49 failed firms. The firms were listed on either
the NYSE, AMEX or NASDAQ stock exchanges. The accounting data for
one year prior to the failure event were obtained using the COMPUSTAT
tapes. A distribution of the data is shown in Table 1.

Prior research in the bankruptcy literature has focused on the distinctions
between ”stressed” and ”non-stressed” firms [3, 17, 16, 12, 13] show that in
their holdout period the actual bankruptcy proportion was approximately
.0016 for non-stressed firms and .01406 for stressed firms. They had a
total of 134 bankrupt firms of which 118 were stressed and only 16 were
non-stressed. A stressed firm is one which satisfies one of the following
conditions: (1) negative working capital in the current year, (2) a loss from
operations in any of the three years prior to bankruptcy, and (3) a retained
earnings deficit three years prior to bankruptcy.

Hopwood, et. al. [12] question the validity of prior studies because of the
lack of control for stressed firms. For this reason 80 of the ”non-failed” firms
are from each classification ”stressed” and "non-stressed”, which follows
the approach used by [12]. Stress was included in the model as a binary
variable (STRESS).

Zmijewski [32] identified three important dimensions of financial bankrup-
tcy prediction, return on assets, leverage, and liquidity. The independent
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variables for the bankruptcy model were selected based on these dimen-
sions. Leverage can be measured by long term liabilities / total assets
(LTLTA). Liquidity measures that were used in this study were current
assets / total assets (CATA), current assets / current liabilities (CR),
and cash / total assets (CASHTA). Based on Ohlsons (1980) study an-
other independent variable that was included was the natural logarithm
of firm size (LSIZE). A firms asset management capability is a strong in-
dicator of its ability to continue in existence. The ratios current assets /
sales (CASALES), inventory / sales (INVSALE), sales / net plant (SA-
LESSPPE), and accounts receivable / inventory (ARINV) were used as
indicators of a firm’s asset management capability.

5. Results and Analysis

Neural networks were built using the 2 models described earlier. To com-
pare the results of these neural network models, a logistic regression model
was built using the same data sets. The logistic regression prediction re-
sults are used for comparison only. The prediction performances of the two
models and the logistic regression model are summarized in Table 2. A
non-parametric chi-square test of homogeneity (using SAS) was run to see
if there was a statistical difference in prediction between the logistic regres-
sion model and the individual neural network models. The p-values from
this test are shown for the holdout sample only in Table 2. The following
section describes the results for each of the two models.

5.1. Neural network model (model 1)

Recall that model 1 is a fully connected neural network model with one
hidden layer with 2n+1 nodes. For both the bankruptcy prediction task
and the merger prediction task, there were no significant differences be-
tween model 1s predictions and the logistic regression models predictions.
For the bankruptcy data the logistic regression model predicted 40 out
of 49 bankrupt firms correctly and 58 out of 80 non-bankrupt firms cor-
rectly. The neural network (NN) model 1 predicted 39 out of 49 bankrupt
firms correctly and 62 out of 80 non-bankrupt firms correctly. The overall
prediction effectiveness for each model was high.

The logistic regression model for the merger data predicted 2 out of 10
target firms correctly and 75 out of 140 non-target firms correctly. The
NN model 1 predicted 4 out of 10 targets correctly and only 68 out of 140
non-targets correctly. Both models had very poor prediction performance.
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Table 2. Prediction performances for models 1, 2 and logistic regression.

Logistic Neural Networks
Regression Model 1 Model 2
(Fully (Pruned
Connected) | using weights)
Mergers Training Targets 27/37 32/37 18/37
Non-Tragets 24/37 35/37 27/37
Holdout Targets 2/10 4/10 3/10
(.329)# (.606)
Non-Tragets | 75/140 68/140 777140
(.403) (.81)
Bankruptcy | Training Bankrupt 66/80 66/80 66/80
Non-Bankrupt 56/80 76/80 55/80
Holdout Bankrupt 40/49 39/49 40/49
(.798)# (1.0)
Non-Bankrupt | 53/80 62/30 57/80
(.465) (.860)

The values in the cells indicate the proportion of firms predicted correctly. # The figures in parentheses for the
hold out sample are the p values for a chi-square for the hold out sample are the p values for a chi-square

test of difference in prediction between the logistic regression model and the neural network (NN) models.

This is consistent with past research, where prediction of mergers, due to
lack of availability of data, has been extremely difficult while bankruptcy
prediction has been comparatively easier.

5.2. Reduced neural network using weight analysis (model 2)

Model 1 was pruned to arrive at a reduced model. The pruning was done by
observing the first layer weights of the fully connected network (model 1).
The nodes with the highest average weights in the first layer were retained
in the reduced model. All other nodes were eliminated to obtain better
generalization of the neural network model.

The four highest average weights for input nodes were for AVPAYOUT,
AVGROWTH, PE, and AER. Thus model 2 for mergers had only these four
variables. We attempted to use more than 4 variables in the model in terms
of the average weights. These models did not perform very differently. For
the bankruptcy model, the highest average weights for input nodes were
for CR, STRESS, CASALES, and LTLTA. These variables were then used
in model 2 for the bankruptcy data.

Model 2 also did not perform significantly better than the logistic regres-
sion in predicting mergers or bankruptcy. However, contrary to popular
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expectation, these results indicate that incorporating more variables that
appear relevant in a model does not necessarily improve prediction per-
formance. Future research could attempt to refine this method to obtain
better generalizability.

6. Conclusion

In this study, neural network models were simplified to improve generaliz-
ability by preprocessing methods used to identify those variables that were
most likely to improve prediction, and remove those that did not seem to
have much effect. Although, by eliminating input variables prediction per-
formance for firm mergers and bankruptcies did not improve significantly,
there is evidence to indicate that simplification does not deteriorate per-
formance

The results also indicate that removing input variables in neural networks
by using the weights (Model 2) does not improve generalizability in the
two tasks considered here. It would appear that further simplification
of the data using binary variables and decision trees may provide better
generalizability as well as explanatory capability.

This research points to a direction aimed at simplifying data sets with
knowledge based techniques before applying neural networks to financial
data. This appears to have an impact on generalizability of financial mod-
els. Future research should be directed towards further validating this ap-
proach by identifying techniques that improve the generalizability of neural
networks using knowledge-based techniques. One such method would be
genetic algorithms.

This research also indicates that the first layer weights of a neural network
model have a significant impact on the strength of the relationship between
the output variables and the independent variables. The nature of that
relationship is subject to further research. This research shows that by
using simple heuristics based on first layer weights prediction performance
can potentially be improved.
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