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We prove that the nonlinear partial differential equation
Au+f(u)+g(|:c|,u):0, in Rna Tl23,

with uw(0) > 0, where f and g are continuous, f(u) >0 and g(|z]|,u)>0
for u > 0, and
flu) _

u55n+7_ B>0,forl<g<n/(n—2),

has no positive or eventually positive radial solutions. For g(|z|,u) =0,
when n/(n—2)<¢<(n+2)/(n—2) the same conclusion holds provided
u
2F(u) > (1—2/n)uf(u), where F(u)= [ f(s)ds. We also discuss the
behavior of the radial solutions for f(u)=u3+u® and f(u) = u*+u5 in
R3 when g( | z|,u)=0.
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1. Introduction

In recent years, numerous authors have given substantial attention to the existence of
positive solutions of semilinear elliptic equations involving critical exponents (see [2],
(5], [9], [10], [12], [13], [14], [15]). We shall consider the solutions of the nonlinear
partial differential equation

Au+ f(u)+g(lz|,u)=0, inR", n>3, (1.1)
where f and g are continuous functions, with f(u) >0 and g(|z|,u) > 0 whenever

u>0. Such equations arise in many areas of applied mathematics (see [7], [12]);
solutions that exist in R™ and satisfy u(z)—0 as |z | —oo are called ground states.
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By a positive solution we mean a solution u satisfying u(z) > 0 for all z in R™.
Equation (1.1) is said to involve critical exponents if f(u) = uP + fy(u), where f(u)
is an algebraic rational function in u with order of growth o(uP) at infinity, where

=(n+2)/(n- 3) is_the cntlcal Sobolev exponent. Examples of such fu(u) in R®
include fq(u) = V1+4? and fo(w)=u?/ (14+u). When ¢g=0 and f(u)=uP,
Equation (1.1) is known to have a one parameter family of positive solutions. For
f(u)=u4, ¢>p and g =0 the authors of [1] have shown that (1.1) has a positive
solution provided u(0) > 0.

In this paper we will deal only with radially symmetric solutions of (1.1). Hence,
using polar coordinates, we need only consider the singular initial-value problem

u' + o Ly 4 f(u)+g(r,u) =0, for r >0, u(0)=1uy#0=1u'(0), (1.2)

where f and g are continuous, with f(u) > 0 and g(r,u) > 0 whenever u > 0. Observe

that the function u(r) = A/(B+r2)l/(q-l), A,B >0, is a positive solution of the
problem

1
W'+ B b f(u) =0, w(0) = 4/BTT, w/(0) =0,

with

449B _ 2(g(n—2)—n
flu) = q2 - u24 1+L2)_ZT)Q'
( )2 A (a- ) (q — 1) A9
For both terms of f(u) to have nonnegative coefficients, we must have ¢ > n/(n —2).
In addition, the authors of [1] have shown, for g = 0, that positive solutions to (1.2)
exist whenever uy > 0, f is Lipschitz, f(0) =0, f(u) > 0 for u > 0 and

2F(v) <(1 —%)uf(u), for u > 0, (1.3)

where

Fw= [ ey,
0

Thus, the existence of positive solutions to (1.2) depends on the order of growth of
f(u) for small u > 0 and on properties of the antiderivative of f(u).

In this paper we show that the reversal of the inequality in (1.3) together with
the assumption that uf(u) > 0 and ug(r,u) > 0 for all u # 0, and mild conditions on
the order of the growth of f(u) to zero as u—0, lead to the nonezistence of positive
solutions to (1.2) with uy > 0. Moreover, the solutions to (1.2) cannot be eventually
positive or eventually negative, but must oscillate about 0 infinitely often. Results of
this type can be inferred from careful reading of the literature (see [4], [8], [11]).
However, proofs in the literature are often limited to functions of the form
K(|z|)uP, with assertions that they carry over to more general expressions, and
frequently involve deep results about elliptic partial differential equations. Our
results are completely elementary and give precise statements of the conditions
required for nonexistence of positive and eventually positive or negative solutions.
Our paper is organized as follows.

In Section 2 we present some elementary results that will be used in our proofs.
The main tools consist of an “energy function” that was developed in [9] and a modi-
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fication of an identity due to [14].
In Section 3 we prove that if f and g are continuous, f(u) >0, g(r,u) >0 for
u>0, and lim 0+f(u)/uq =B>0 for 1<g¢<n/(n—2), then the initial-value
u—

problem (1.2) with uy > 0, has no positive solutions. In Section 4 we shall assume
that g(r,u) = 0, so our results apply to solutions of

w' + 2Ly 4 f(u) =0, for r >0, u(0) = ug # 0 = u(0). (1.5)

If f is continuous, f(u) >0 for u > 0 hm f(u)/u? =B >0 for some ¢ in 1 < ¢ < p,
and

2F(u) > (1 —ﬁ)uf(u), (1.6)

for u >0, then equation (1.5) has no positive solutions or eventually positive
solutions.

Finally, in Section 5 we show that with an additional condition, solutions to (1.5)
must oscillate infinitely and converge to 0 as r—oo. We also discuss the behavior of
two such solutions: one with f(u) = u3+ «®, and one with f(u) =u*+4 «°. Problems
of these types have been studied in [5] and [6]. The first of these oscillates to 0 while
the second becomes eventually negative and oscillates to — 1, as r—o0.

2. Elementary Results

In what follows, we shall need some elementary facts concerning solutions of the
initial value problems (1.2) and (1.5). Suppose f and g are continuous.
(a) g(r,u) #0. Equation (1.2) can be rewritten as

(" Y = =" T f(u) + g(ry )

Integration of this equality from 0 to r yields
r

ot = = [ () + s, u(s)ls" s, (2.1)
so that ’

W)= -y / () + g, u(s)))s™ ~ . (22)

Lemma 2.1: If f(u) >0 and g(r,u) >0 for u>0, and u is a positive solution of
equation (1.2), then u is strictly decreasing and tends to 0 as r—oo.

Proof: Since the integrand in (2.2) is positive, u' < 0 so the solution is strictly
decreasing. Hence, there is a number ¢ > 0 such that u(r) decreases to ¢ as r—oo and
u/(r)—0 as r—o0. Suppose ¢ > 0, then since f is continuous on the interval [c,u] it

has a minimum f_. > 0 on this interval. Hence,

) = [ ) + o) 2 Fil

0

implying that v'(r) < — f . (r/n)— —oo. This is a contradiction and hence u tends
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to zero as r—oo.

Suppose the solution u of (1.2) oscillates about zero a finite number of times and
has a local maximum at ry for which u(r) > 0 for all r > r,. We call such solutions
eventually positive solutions. Then, because u'(ry) =0,

,r,n

w(r) =~ [ ) + oo, u(s)lsm s ()
o

so that again u is strictly decreasing for r > r;, and the same proof as above shows
that v and u' converge to 0 as r—oo.

(b) g(r,u)=0. By the uniqueness theorem for solutions of initial value
problems, a solution of (1.5) cannot satisfy both u'(r) = 0 and f(u(r)) = 0, unless u is
constant. Thus, except for such cases, the critical points of any solution of (1.5) are
isolated, and are minima whenever f(u(r)) < 0 and maxima whenever f(u(r)) > 0.
Let u(r) be a solution of (1.5) and define the “energy function” of [9]:

u'(r))?
Qu(r)) = 4 ). (2.4)

If (1.5) is multiplied by u’, one obtains

o' 2 '
49 _ (( Al F(u)> = —n=lyy <o, (2.5)

This implies that the “energy” function @ is strictly decreasing because the critical
points of u are isolated.

Lemma 2.2: Suppose that uw has a critical point at ry. If u(ry) is a local
mazimum, then u(r) <u(ry) for all v >ry, and if u(ry) is a local minimum, then
u(r) > u(rg) for all v > r,.

Proof: Suppose u(r,) = u(ry) for 7y > ry. Then

Ul(T1)2

Q(u(ry)) = —5—+ F(u(ry)) = F(u(ry)) = Q(u(ro)),

contradicting the fact that @ is strictly decreasing.
We also need the following “energy” version of Pokhozhaev’s second identity
valid for continuous f and functions u that are C%(R™) and radial (see [14]):

r

/ (Au+ f(u))(su' + au)s®ds

0

= rFH1Q(u(r) + artu(r)u(r) + $(n — 1 — k)~ L3 (r) (2:6)

+(2n—-3—k-2a) / Q(u(s))s*ds — a(n -1 —?fc)(k k) / u?(s)sk ~ 2ds
0 0

T
+ / [ouf(u) —2(n— 1 — a)F(u)]s®ds, for integers k > 1, and o real.
0
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Here u = u(s) inside the integrals. If Au+ f(u) =0, then the left side of (2.6) is zero.
Verification of this identity is a routine task by using (1.5) instead of Au+ f(u).
Lemma 2.3: Let u be a solution of (1.5) and let

J(ryu) = r™u?(r) + (n— 2)r™ = Lu(r)d/(r) + 20" F (u). (2.7)

If u'(rg) = 0 for some rq >0, then for all 7+ > r,

r
J(r,u) = ] [2nF (u(s)) — (n — 2)u(s) f(u(s))]s™ ~ 1ds + 2rB F(u(ry)).  (2.8)
o
Proof: Differentiate (2.7) with respect to r and substitute (1.5) into the resulting
equation to obtain
4] — [2nF(u) - (n—2uf ()"~

An integration yields the desired result.
Lemma 2.4: Let u be a positive solution of the initial value problem (1.5) with
uy > 0, and suppose that f is continuous, f(u) >0 for u>0, and
f(u

uﬁgz+—uq~—:B>0, forl<g<p=(n+2)/(n-2). (2.9)

Then, for sufficiently large r, there is a constant ¢ > 0 such that

u(r) < er~2/a-1), (2.10)

The result also holds for eventually positive solutions.
Proof: First assume that u is a positive solution. By Lemma 2.1, u decreases to
0, so some 7 exists for which f(u)/u? > B/2 for r > r,. Then, by equation (2.2),

,r,n

"o r
g—‘; = ;;—_11/ f(u(s))s""lds—~ 1_1/ f(u(s))s"_lds
0 "o

T T
_ Bui(r _
< - 2r’§— 1/ ud(s)s™ " lds < — ¥ (_ 1)/ s™ " 1ds.
"o o
Integrating the resulting inequality:
u(r) r
/ u—qduslng/ [r—rgr= "+t 1dr
u(ro) To
yields an inequality from which the result follows for r > 2r,.

If u is eventually positive, there is an r; > 0 such that u(r) >0 for > r,. Then,
there is a first maximum of u at r, > r, for which (2.3) applies (with g = 0)

n—1

w(r)= -~ 1 / Fu(s))s™ ™ Lds.

"1
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By the comments following the proof of Lemma 2.1, u—0 as r—oo, so some ry > r;
exists for which f(u)/u?> B/2 for r>r,. The proof then follows by the same
argument as the positive solution case.
An identical proof yields:
Corollary 2.5: Let u be a solution of (1.5) with ug < 0. Suppose f is continuous,
f(u) <0 foru<0, and
f(u)

him ————==B>0, forl<q<p. (2.11)
u=0—y [y |4

If there is an ry such that u(r) <0 for all r > ry (u is eventually negative), then for
sufficiently large r

lu(r)| <cr~ =1, (2.12)

3. Nonexistence of Positive Solutions in the Range 1 < ¢ < n/(n —2)

We now show that problem (1.2) does not have positive or eventually positive radial
solutions if the order of growth ¢ of f(u) to zero as u—0+ is in the interval
l<g<n/(n-2).

Theorem 3.1: If f and g are continuous, f(u) >0, g(r,u) >0 for u >0, and

f(w)

im 1l — _n__
uiz)an+ - =B>0, for1<q<n_2, (3.1)
then the initial-value problem
u" +n—;.—'—1u' + f(u) + g(r,u) =0, for r >0, u(0) = uy > 0 = u'(0), (3.2)

has no positive solutions. Moreover, if uy <0 or u(r) becomes negative there is no
ro >0 for which u(r)>0 for all r>r,, that is (3.2) has no eventually positive
solutions.

Proof: Suppose a local maximum of the solution exists at r, such that u(r) >0
for all » > ry. By Lemma 2.1 and the remark following its proof, it follows that u—0

as r—oo. Since n > (n—2)g select 0 < € < 1/q and an integer k£ > 0 such that both of
the following inequalities hold:

n—2—c¢€)(qg—1
( qk_)iq )0

n=n—(n—2)q—

and

_9_ _ S _ _ k
nog_ 1 2kf)(q 1)>%>€:2 n—[n—(n—2)g—nlg"
-1 g—1
By L’Hopital’s rule, provided the right side’s limit exists, for any g > 0
T
, J TR Cu(s)) + g(s, u(s))]s™ ~ Vs
tim 40 gy Y0y o

r=00 . — B r—oo _ﬂ,,.—ﬂ-—-l r—00 ’Brn—Z—ﬁ

(3.3)

In particular, let § =n—2. Then, since the integral in (3.3) is positive, some
constant ¢, > 0 exists so that
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u(r) > cor (n- 2), for all r > r,. (3.4)

Define ﬂj F1= ﬂjq —2+n with 8, =n—2. It is easy to prove by induction that
¢
Bj=(n—2—¢) l_qk

By hypothesis, f(u)/u? > %B for all v < u,, and since u—0 as r—oo, we can assume

u(r) <u, for all r > r; >r,. Using (3.3) with § = ,, observe that

i)+e, i<k (3.5)

rfor[f(u(s)) + g(s,u(s))]s™~ lds —%Brflruq(s)sn —14s %Bcgrflrsn —1-(n=2)qy,

IBrn—Z—-ﬁ 2 ,B,r,n—z—ﬂ 2 ﬂrn—2—ﬂ
(3.6)
1 n—(n—-2 n—(n-2 —(n—
1pca pr-(n=2)g_ n—(n-2)q ( ro\ (7 2)0)
2 0 1 — n Y § s —
G2 P ( n(n=2)q =Cr"\ 1 (,.) 00, as T—00.
Thus, by (3.3), there exist constants ¢; > 0 and r; > r such that
u(r) > ¢yr _ﬁl, for all 7 > ry. (3.7

We can repeat the process in (3.6) with B =f,, obtaining u(r)>c,r '62, for
r > ry >y, and in general,

u(r) > c;r _ﬂj, forallr>r,, j<k. (3.8)
Since B} = ¢, we have proved that u(r)>c,r ™ ¢ for all > r,. However, by (2.3)

and (3.6) r 15 ;
| w'(r)| =r,}—_1 / [f(u(s))+g(s,u(s))]sn—1d32:f_%l / gn—1-cag,
1'0 rk

N
>Crl—« (1 -—(—#) )—)00, as r—oo0,

which is a contradiction to Lemma 2.1 and the remark following it. Thus, no local
maximum can exist for which the solution is positive thereafter, and consequently no
positive solution of (3.2) exists.

Corollary 3.2: Let f and g be continuous, uf(u) >0 and ug(r,u) >0 for all r
and u # 0, and assume that

flw) n
Then the initial value problem (1.2) with uy # 0 has no positive or negative solutions,
nor eventually positive or negative solutions.

Proof: Theorem 3.1 yields the case for positive or eventually positive solution.
The case for nonnegative or essentially negative solutions follows trivially by setting
v= —u.
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4. Nonexistence of Positive Solutions in the Range nf/(n —2) <g¢< p=

n+2)/(n—2)

In this section we extend Theorem 3.1, for g(r,u) =0, to the range n/(n—2) < ¢ < p,
and show that with an additional condition, we again have nonexistence of positive or
eventually positive solutions.

Theorem 4.1: Let f be continuous, f(u) >0 for u> 0, and assume

uﬁg‘+fl(¢) B>0, for1<q<2t2 (4.1)
Further, assume that
2F(u) > (1= 2)uf(u) >0 for u> 0. (4.2)
Then the initial-value problem
w + 2=y 4 f(u) =0, forr >0, u(0) = uy > 0 = w/(0), (4.3)

has no positive solutions. Moreover, if uy <0 or u(r) becomes negative, there is no
r, >0 such that u(r) >0 for all r>r >0, that is, there is no eventually positive
solution.

Proof: As a consequence of Theorem 3.1, we only need to prove the conclusions
for n/(n—2)<g<p, or, equivalently 2¢/(¢—1)<n<2(¢g+1)/(¢—1). Suppose
that the conclusions are not true. Then there exists a point r, > 0 such that u(r) > 0
for all » > r_>0. By Lemma 2.4, we have

2
u(ry<ecr 97! forallr> T > Ty (4.4)

Using (2.3) with g(r,u) =0 and (4.4), we get

|w'(r) | =

rnl_ T / f(u(s))s™~ Ids (4.5)
0

r

< C1+Qch/sn—1—2¢1/(f1—1)d3§rnq1+clr-(Q+1)/(q—1),

n— n-—1
o
where we choose 7y >r, such that 0< f(u(r))u/ul(r) <2B for r>ry,  Since
g >n/(n—2), it follows that n —1 > (¢ +1)/(¢ —1). Thus, from (4.5),

|w'(r)| <epr™ (a+1)/(a- 1), for large r. (4.6)

By L’Hopital’s rule, we have from (4.1)
u(r)
d
Fae) _ 4 IO fuey)

rto QA () Troee ot 1(p) =M G D) T+ T

(4.7)

Now, using (4.4), (4.6), and (4.7) and & =2(¢+1)/(g—1) —n > 0, we get
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r"F(u(r) <r" q(+(1()))[ =2/(a-1) 19 tl<er—a (4.8)

and both
Pt 1u(r) fu'(r)] <er™¢9, (4.9)
rtu(r) |2 <erT 9, (4.10)

for large r. Let r; be the first maximum point such that u(r) >0 for all r > r.
Then u'(ry) = 0. Using Lemma 2.3 and (4.2) we get

| T(ryu) | < e/ (r) |24+ (n=2)r" " u(r) | [@/(r) | +2r"F(u) < (n+ Ler ~ %,
(4.11)

and
-

J(r,u) = / [2nF (u(s)) — (n — 2)u(s) f(u(s))]s" ~1ds + 2rPF(u(ry))  (4.12)
k > 208 F (u(r,)) > 0.

Letting r—oo, we see that (4.11) contradicts (4.12), so the theorem is proved.
Corollary 4.2: Let f be continuous, uf(u) > 0 for u # 0, and assume that

f(u) n+2
lime g = B> 0, 1<g <3 E5,
and
2F(u) > (1 —%)uf(u), for all u.
Then,
w + 2Ly 4 f(u) =0, for r >0, u(0) = uy # 0 = u(0), (4.13)

has no eventually positive or eventually negative solutions.

Proof: The proof is almost identical with that of Theorem 4.1.

Example 4.3: The function f(u) = u® 4+ u3v/1 + u? in R3 satisfies the hypotheses
of Corollary 4.2. Thus, (4.13) has no eventually positive or eventually negative
solutions for this function. The function f(u)=u®+u*/(14u) in R® satisfies the
hypotheses of Theorem 4.1, but f(u)>0 in —1<wu<0. Thus, (4.13) has no
eventually positive solution, but may have an eventually negative solution.

5. Oscillatory Behavior

Example 4.3 motivates the discussion and results in this section. By the existence
theory for initial value problems, we know that (4.13) has a local solution. It is not
difficult to show that this solution can be extended to RT. Under the conditions
listed in Corollaries 3.2 or 4.2, equations (1.2) and (1.5) with ug # 0, respectively, do
not have eventually positive or eventually negative solutions. So what is the
behavior of the solutions as r—oo? Do the solutions converge to some value ¢, or do
they oscillate but have no limit as r—oo? These are some of the questions we
address in this section. For simplicity, we will assume that g(r,u) = 0.
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First we show that with a stronger condition than that in Corollary 4.2, we can
prove that the solution converges to zero as r—oo.
Lemma 5.1: Let f(u) be continuous, and satisfy

J%I(ilf)ql =B>0, for1<g<2t2 (5.1)
Further, assume that
(n—2)uf(u) > 2F(u) > (1 — Z)uf(u) > 0 for u #0. (5.2)
Suppose u is a solution of
u” +ﬂ—;—1u' + f(u) =0, for r >0, u(0) = uy #0, v'(0) = 0. (5.3)
Then 2
lu(r)| <er 971 for large r. (5.4)

Proof: Pokhozhaev’s first identity [14] with & = n—2 can be rewritten as

E() + )+ (= 2P+ [ [0 2)u(s) )
0
2,2
— 2R (u(s))Js ds = 22 (0),

Since the second and third terms on the left side of this equation are nonnegative, we
have by (5.2)

0 < CZRIOOD gy (=200

Thus, F(u(r))—0 as r—oo, and by the first inequality, F' is only zero at u =0.
Hence u—0 as r—oo. Then

| TF 1 f() | n(n—2)u’(0)

lul? - r2

and using (5.1) the conclusion in (5.4) follows.

Example 5.2: The function f(u)=u®+u3 in R® satisfies the hypotheses of
Lemma 5.1 with ¢ =3. Hence, the solution to (5.3) with this f will oscillate
infinitely and decay as |u(r)| < er~ Y% as r—co. On the other hand,
f(w) = (u/(1 4+ u?))? satisfies only the second inequality in (5.2) for u # 0, so the
conclusion (5.4) cannot be assumed.

The situation for functions f(u) that are not negative for u <0 is more
complicated. The following lemma can be extended to more general functions, and
shows that they too oscillate, but now about a negative number.

Lemma 5.3: Let u(r) be a solution of (5.3) with f(u)=u*+u®. Then u(r)
oscillates infinitely about — 1, and tends to — 1, as r—oo.

Proof: Suppose otherwise, and let r; be the last extreme point of u. Then
u(r) + 1 does not change sign for r > r;. Since u'(ry) =0, by (2.1) and L’Hopital’s
rule with 8 <n -2,

u(r)+1 —lim u'(r)
r—ﬁ r—00 —,Br—ﬂ_l

lim

r—00

T—00 ﬁr

= lim ___—51.__“—” ] [u(s) + u(s)]s" ~ Lds. (5.5)
"1
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If 8 =n—2, we have
T
. u(r)+1 . -
Alm ;“—(”()T-—z) = lim / [1+u(s)] | u(s) | *s™ ~ ds # 0,
T

and the limit exists or is infinite. Hence, there is a constant c¢; >0, and an r, > r;
such that

u(s)+1] >eqs™ (n=2) 4(s) <0, and |u(s)|*> % for s > r,. (5.6)
Observe that

|/[y+q@m%gw-hn|:u/|wg+4||qg|%"-us (5.7)
a1 T2

r
%
5 sds—00, as r—o0.

2
"2
If n—2>1, take § =n—3 in (5.5), and we have from (5.7)
c r
1
- [ sds
i ML /
' r-l—-%lo —(n-3) —*rlbnolo (n— 3)1‘ = o0

So there exists a constant cy > 0 such that |u(r)+1| > czr—("_3), for r >r, If
n—3 >1, repeat these steps until n—k <1. Then, |u(r)+1]| > cn_zr_l, for
r > 7,. On the other hand,

lw'(r)| =

Lo [ fu) 111+ u(s) |5~ 1ds

"1

r r
> nl_l / |u(s)|4|1+u(s)|3"_1ds_>_zc"n__21/ s""2d3260>0,
r r

2 "2
for r > ry +1, which is a contradiction because u'(r)—0, as r—oo. Thus, the solution
u must oscillate infinitely about —1. Since u'(r)—0, as r—oo, it follows that
u(r)— —1.
Remark 5.4: We now study the solutions of the initial-value problem (5.3)
numerically. We can rewrite (5.3) as the nonautonomous system

v'=v, u(0)=u,

(5.8)
o=~ DYy w0y =0,

The numerical solution is very sensitive to the singularity » = 0. To decide what is
appropriate there, we apply L’Hopital’s rule:
(n— 1)v

limv' = llrn( -
r—0 r—

—f(w)) = —(n—1) limv' — f(up). (5.9)

Hence
limv' = ——5==. (5.10)

Applying the Runge-Kutta method to (5.8) except at r = 0, where (5.10) is used, we
obtain the graphs in Figures 1 and 2 for the solutions when f(u)=u3+u® and
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flu) = u? + u® respectively.
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Figure 2

Observe that for the former, the solution oscillates and converges to zero. In a
subsequent paper [3], we prove that the order of convergence to zero is
Jul| < er ~2/3) somewhat faster than guaranteed by (5.4). Also, in that paper we
prove that the zeros get further apart as r—oo.

For the latter, the solution becomes eventually negative and oscillates about
u= —1. The numerics show that the oscillations damp to —1 as r—oo, and we
believe that the distance between zeros is bounded from below by a nonzero constant.

The main difference between the two functions f(u) is that the former is
restoring, that is uf(u) >0 for u > 0, while the latter is not since it is positive in
—1<u<0. For large r we can ignore the term (n—1)u'/r in (5.3), so the
concavity of the solution changes with its sign for restoring functions, but does not
change until u < — 1 for the latter function.

It is interesting to speculate what behavior might be expected from the solutions
to (5.4) for more general f(u). Numerical computations show when
f(u) = v?(u+1)(u+2) that for small u, the solution behaves just as if f(u) were
restoring, very similar to the behavior of u® +u®. But for sufficiently large ug, the
solution oscillates about u = — 2, with a behavior similar to that of u*+w®. Thus,
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some value of u is a bifurcation point for these two behaviors.

/ 10 20 30 10 50 60 ©

Figure 3
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