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If aj (j- 1,2,...,n) are independent, normally distributed random vari-
ables with mean 0 and variance 1, if p is one half of any odd positive inte-
ger except one, and if 1]rip is the mean number of zeros on (0,2r) of the
trigonometric polynomial alcosx 2Pa2cos2x -...-+- nPancosnx, then

l]np #p{(2n + 1) + Dip + (2n + 1)- 1D2p+ (2n + 1)-203p} + O{(2n +
1)-3}, in which p- {(2p+ 1)/(2p + 3)}1/2, and Dip D2p and D3p are

explicitly stated constants.
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1. Introduction

Suppose that aj (j -1, 2, ., n) are independent, normally distributed random
variables with mean 0 and variance 1, and that b’np is the mean value of the number
of zeros on the interval (0, 2r) of the random trigonometric polynomial

E jPajcos jx, (1.1)
3-1

in which p is a nonnegative real number. Das [1] has shown that, for large n,

np 2#pn + O(nl/2),#p {(2p + 1)/(2p + 3)}1/2. (1.2)
When p- 0, the author [2] has shown that the error term O(n1/2) is actually O(1).
Moreover, the error term is also O(1) when p is a positive integer [3]. In fact, if p is
a nonnegative integer, there exist constants Dop- 1, Dip D2p and D3p such that

3

"np (2n + 1)#pE (2n + 1)- rDrp - O{(2n + 1)- 3}. (1.3)
r--0

The author and Souter [4] have also derived a relation of the form (1.3) when
p- 1/2.

In this paper we show that (1.3) remains valid when p (2s + 1)/2, in which s is
a positive integer. In combination with the earlier results, this implies that a relation
of the form (1.3) is valid when 2p is any nonnegative integer, although we have not
been able to construct a unified derivation that covers the various cases in [2], [3], [4]
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and this paper. We have also not been able to extend our techniques to the case in
which 2p is not a nonnegative integer.

The logical organization of our analysis is identical to that in [3], although the
algebraic details are occasionally different. For this reason we rely heavily on the
contents of [3], recording in Section 2 only those portions of the analysis that are

essentially new.

2. Derivation of (1.3)

Exactly as in [3], we find that

when n > 2, in which

/2

Unp 4r-1 / Fnp(x)dz"
0

F.p AZ(AnpCnp- B2np)1/2
n

Anp E j2pcs2jx’
3=1

Bnp E j2p + sin jx cos j,
=1

Cnp jP + sinj.
j=l

(2.1)

(2.3)

(2.4)

(2.5)

If we define the constant ’np SO that
n

2Snp E j2p, (2.6)
j=l

and assume that 2p 2s + 1, in which s is a positive integer, it i8 then clear that

Anp Snp+(-4)-Sd2SAn,1/2/dx2s (2.7)
It is known [4, Eqs. (2.4), (2.7), (2.8) and (2.9)] that

8An, l2 (2n + 1)2go(z) + (2n + 1)91 + g2, (2.8)
in which

z (2n + lx, f(x) csc x x 1, (fl(x) f2(x) -4- 2x if(x) csc2x x 2, (2.9)
go(z)--(1/2)+z-lsinz-z-2(1-cosz), gl-- f(x)sinz, (2.10)

92 {(1/2) + (x) + f’(x) cos z}. (2.11)
Lemma 1: If the constants 7rp (p-1/2-O, 1,...;r-O, 1,...,p+l/2) are

defined so ihat

if(2r- 1)(0) (r- 1 2 s) (2 12)70p (2p + 1) 1
7rp 2pC2r

"fs 4- 1,p (2s)(0) -4- f(2s + 1)(0)
in which hCk is the binomial coefficient h!/{k!(h- k)!}, then
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s+l
4P + lnp E (-- 1)rTrp(2n "k- 1)2p +1-2r. (2.13)

r--O

We start the proof of Lemma 1 with the inference from (2.7), (2.8), (2.9), (2.10)
and (2.11) that

22 + 22+ )S(2n+ (- 1)()(x) (2.14)s 3anp 3Sup + (-- 1 1)28 + 2g(02S)(z 28

2s

+(- 1)S(2n + 1) 2sCrf(r)(x)(2n + 1)2s-r(sinz)(28- r)
r--O

2s

1)sE 2sCrf(r + 1)(x)(2n + 1)28 r(cs z)(2s r).
r:-:O

If we replace x by 0 in (2.14) and note that g(02S)(O)-( 1)S(2p+ 1) -1 that

Anp(O -2Sup and that f(2r)(O)- 0 if r is a nonnegative integer, some simple
manipulations suffice to prove the lernrna.

We will need the explicit representations of Anp Bnp and Cup stated in the
following lemrna, whose proof is essentially the same as that of Lernrna 2 in [3].

Lemma 2: It is true that
2p-b1

22p + 2Anp (2n + 1)2p + 1 E grp(2n + 1)- r, (2.15)
r’-O

2p+2
22p + 3Bnp (2n + 1)2p + 2E hrp(2n A- 1)- r, (2.16)

r=0

2p+3
22p + 4Cup (2n + 1)2p + 3E ]rP(2rt + 1)- r, (2.17)

r--0

if the coefficients 9rp, hrp and krp are defined as they were in Lemma 2 in [3], with
the following exceptions:
a. When in [3, Eqs. (2.19a)-(2.21d)] the letter p occurs as a superscript, or in a

range of values of r, it should be replaced by the letter s.
b. The coefficients not defined in [3] are defined as follows:

g2p+l,p=(--1)s+1{"fs+l,p+f(2s+1)(x)cosz+g9(2S)(s)} (2.18)

h2p + 2,p (- 1){f(2 + 2)(x) cosz + o(2s + )(x)}, (2.19)

k2p + 3, p 1)s + 1 {0(2s + 2)(X) (2s + 2)(0) . f(2s + 3)(x)cos z
f(2s + 3)(0)}. (2.20)

If we start from(2.15), (2.16) and (2.17), we can reproduce the statements and
proofs of Lernmas 3 through 7 of [3] almost verbatim. (The quantity O(1) in line 8,
p. 587 of [3] should have been o(1). The quantity g in line 9, p. 587 of [3] could have
been, and in this paper should be, go’) The last Lemrna 7 exhibits quantities Vrp
such that

Unp (2n + 1)E (2n + 1) rvrv (2.21)
r--O
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when n is sufficiently large. The definition Vrp is the same as in [3], although the
underlying functions go, gl and g2 are different, and the quantities ")’rnp, gmp, hmp
and kmp have been modified as described in Lemmas 1 and 2 above.

In a similar manner, the constants Srmp(O <_ r + m <_ 3) and Srp(r- 0,1,2,3)
exhibited in Lemmas 8 through 11 of [3] can be shown by arguments essentially the
same as those in [3] to be such that

3--/’

# lVrp E (2rt --[- 1)- ms + 1),(2n + 1)r- 3S r
rmp rp + O{(2n + 1) --4} (2.22)

m-’O

when r- 0, 1,2,3. (The coefficient 8p2+ 6p + 3 of cos2z in Eq. (3.6) of [3] should
have been 8p2+ 12p+3.) The desired result (1.3) now follows from (2.21) and
(2.22) if the coefficients Drp are defined so that

Drp- E Sr-m, mp (r-0,1,2,3). (2.23)
m--0

Just as in [3] we then find the following explicit formulas for Drp

Dop 1, Dlp 2- 1 / {#- 1Gp(z 1}dz, D2p -(4p + 3)/6, (2.24)
0

n3p (3r) 1 J {#- 1jp(Z + 4p + 3 (4p2 + 6p + 3)cos z}dz (3r) 1

0

j [# lUp(z)- 2(p + 1)sin z -(2z)- 1{4p + 3 + (8p2 + 12p + 3)cos2z}]zdz.
o

These formulas for the coefficients Drp are identical with Equations (3.28) and (3.29)
in [3], apart from three inexplicable typographical errors in (3.29). They are,
therefore, valid when 2p is any nonnegative integer except 0 and 1. On the other
hand, the results of [2] and [4] show that D0--0.257a and D2,1/2 1/2
instead of the values 1/2 and -5/6 predicted by (2.24).
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