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We consider a sequence {#n} of (nonnegative) measures on a general mea-
surable space (X, %). We establish sufficient conditions for setwise conver-
gence and convergence in total variation.
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1. Introduction

Consider a sequence {#n} of (nonnegative) measures on a measurable space (X,%)
where X is some topological space. Setwise convergence of measures, as opposed to
weak* or weak convergence, is a highly desirable and strong property. If proved,
some important properties can be derived (for instance, the Vitali-Hahn-Saks Theo-
rem) and thus sufficient conditions ensuring this type of convergence are of interest.
However, as noted in [2], in contrast to weak or weak* convergence (for instance, in
metric spaces), it is in general difficult to exhibit such a property, except if e.g., #n is
an increasing or decreasing sequence (e.g. [2], [4]).

The present paper provides two simple sufficient conditions. Thus, for instance,
in a locally compact Hausdorff space, an order-bounded sequence of probability mea-
sures that is vaguely or weakly convergent is in fact setwise convergent.

We also establish a sufficient condition for the convergence in total variation
norm that is even a stronger property.

2. Notations and Definitions

Let (X,%) be a measurable space and let Agb(X) denote the Banach space of all
bounded measurable real-valued functions on X equipped with the sup-norm. Let S
be the positive (convex)cone in dlb(X).

Let db(X)’ be the (Banach) topological dual of Ab(X) with the duality bracket
(-,-) between ..&b(X) and .dtb(X)’. .A’bb(X)’ is equipped with the dual norm

9 I" sup II ] II i 1(9, f) l. Let S’ E db(X)’ be the positive cone in db(X)’, i.e.,
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the dual cone of S E .AIb(X). Convergence in the weak* topology of ttb(X)’ is
w,

denoted by --,.

If X is a topological space, then C(X) denotes the Banach space of all real-
valued bounded continuous functions on X, and if X is locally compact Hausdorff,
Co(X (Cc(X) resp.) denotes the Banach space of real-valued continuous functions
that vanish at infinity (with compact support, resp.).

In the sequel, the term measure will stand for a nonnegative a-additive measure
and a set function on % with the finite-additivity property (and not necessarily the r-
additivity property) will be referred to as a finitely additive measure. Let M(X) be
the Banach space of signed measures on (X,%) equipped with the total variation
norm I" Ty, simplydented I" I.

Note that M(X) C Jb(X)’ and for every f .Alb(X), # M(X), f fd# (#, f)
when # is considered to be an element of .Arab(X)’.

Also note that any element S’ can be associated with a finitely additive
nonnegative measure (also denoted ) (A):- (, 1A),/A %, so that (A U B)-
(A)+(B), /A, B% with AC3B-0. Thus, (A)_<(X)- I1, /AE% (see
e.g.,

For a topological space X, by analogy with sequences of probability measures in
a metric space, a sequence of measures {#n} in M(X) is said to converge weakly to

# M(X), iff

/ f / f Vf e C(X).

weakly
This type of convergence is denoted Pn --*

Similarly, and again, by analogy with sequences of probability measures in a

metric space, if X is a locally compact Hausdorff space, a sequence of measures

in M(X) is said to converge vaguely to # e M(X), iff

fdln--* / fdl, Vf G Co(X),
vaguely

and this type of convergence is denoted #n ---* #" In fact, because the topological
dual of Co(X is M(X) (see e.g., [1]), the vague convergence is simply the weak* con-

vergence in M(X).
A sequence {#n} in M(X)is said to converge setwise to # E M(X)iff

#n(B)#(B), VB e %,
setwiseand this convergence is denoted #n -- #"

Finally, a sequence {#n} in M(X) converges to # C M(X) in total variation (or
convergences strongly (or in norm) to #) iff I#n- #1 --0 as n--,oc. This convergence

TVis denoted by #n- #.

3. Preliminaries

In this section, we present some results that we will repeatedly use in the sequel.
For a nonnegative finitely additive measure #, proceeding as in [6], let"

r(#): {u G M(X) IO _< u _< #}, A(#): {u G M(X) I/ _< u),
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where by v _< # we mean v(A) <_ #(A), VA E %.
Given two (r-additive) measures 99 and , let

where for a signed measure 1’, I1’1 is its corresponding total variation measure.
With the partial ordering <_, M(X) is a complete Banach lattice (see e.g., [5]).

Lemma 3.1: Let # be (nonnegative) finitely additive measure. Then,
(i) r(,) a M(X)+.
(ii) If A(#) : , then # is r-additive.
Proof: To prove that F(#) has a maximal element we use arguments similar to

those in [6]. Let 5" supv e F(p)v(X). Of course, we have 5 _< #(X) 1. Thus, con-

sider a sequence {vn) in M(X)+, with v(X)Th. Define

99n: l]l V V2 V... V vn. (3.1)

{99n) is an increasing sequence in F(#). Indeed, for any two measures r and X in
F(#), (r V x)(A) <_ #(A) VA E %.

Since 99n(A)<_ #(A), VA %, and 99 is increasing, it converges setwise to an

element 99 _< #. That 99 is a ((r-additive) measure follows from the fact that {99n} is
an increasing sequence (see e.g., [2]). It follows that 99 F(#) and 99(X)= 5. We
now prove that 99 is a maximal element of F(#).

Consider any element X F(#). Assume that there is some A % such that
x(A) > 99(A). Let r: X V 99. From the Hahn-Jordan decomposition of (X-99),
qX1,X2withX1LJX2=X, X1VX2=q}sothat

r(A) x(A F Xl) -I- 99(A V X2) A E %.

Thus, x(X1) > 99(X1) and, therefore,

7-(X) x(X1) -- 99(X2) > 99(X1 U X2) 5,

is a contradiction with r r(#) and 5 max{v(X) F()}. Hence, X _< 99. In
fact, 99 is the a-additive part in the decomposition of # into a a-additive part #c and
a purely finitely additive part #p, with #- #c + #p (see [6]).

To prove (ii), note that if 0 _< # _< , where is a-additive, then # is (r-additive

(see e.g., [3], [6]). Indeed, for any decreasing sequence of sets {A,} in % with AO,
we have 0

_
#(An)

_
(A)0 which implies.#(An)0 i.e., # is (r-additive. Vl

Lemma 3.2: Let {#n) be a sequence of (nonnegative) r-additive measures on

(X,%) with suPn#n(X < oc. Then,

O-liminf#..:n_oo --k V> 1 n
A k#n> is a (finite) r-additive measure. (3.2)

If #n <- v( M(X))Vn, then,

O-lim suP#n: A V #n is a (finite) a-additive measure.
n--oo k>l n>k

Proofi Let 99kn" #k A #k + 1A... A Pn" {99kn}n > 0 is a decreasing sequence so
that it converges setwise to a (finite) r-additive measBre 99k (see e.g., [4]). In turn,
{99k} is an increasing sequence with supk99k(X) < c. Hence, 99k converges setwise to
a (finite) r-additive measure and (3.2) follows from
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V / k#n lim k"k>l n> k---}cx:

(3.3) follows from 0 < #n < u for all n and the fact that M(X) is a complete Banach
lattice (see e.g., [5]). I-1

In the sequel, to avoid confusion, the reader should be careful in distinguishing

(0 -linmif#n)(B from linmf#n(B
for we have in fact,

(0 -linrnf#n)(B _< linrnf#n(B

BE%,

BE%.

4. Setwise Convergence

We now give sufficient conditions for setwise convergence of an F-converging se-
quence, where F is a subset of 2[tb(X) separating points of M(X) and such that
#M(X) and O< ffd# V0<fF imply #>_0. Typical examples of such F are

C(X) for a topological space X and Cc(X or Co(X for a locally compact Hausdorff
space X.

Lemma 4.1: Let F be a subspace of Mgb(X) separating points in M(X) and such
that for every # M(X), 0<_ f fdp V0<fF yields that #>_0. Let {#n) be a

sequence of (nonnegative) measures on (X,) with SUPn#n(X < cxz. Assume that

#n---# M(X), i.e.,

fd#n---, f fd# Vf F.

setwise(i) If (0-liminfn#n)(X #(X) then #n - #"
setwise(ii) If for some u M(X), #n <-U Vn, then #n #" TV(iii) If (0 -liminfn#n)(X #(X) (0 -limsuPn#n)(X then #n---* #"

(4.1)

Proof: (i) Since supn#n(X < oc, the sequence {#n} is in a weak* compact set in
Jb(X)’. Thus, there is a directed set D and a subnet (not a subsequence in general)
{#n ,a D} that converges to some 0 < in Jb(X)’ for the weak* topology in
dtlbX)’, and is a finitely additive measure. From (3.2)in Lemma 3.2,
O-liminf,#n exists and > O-liminf#. Now, p has a unique decomposition
into a a-additive (nonnegative) part c and a purely finitely additive (nonnegative)
part p with - c +p (see e.g., [6]).

From a-additivity of O-liminf,# and O-liminfn# < , we have that O-
liminfn#n < Pc since Pc is a maximal element of F() (see the proof of Lemma 3.1).
Therefore, (X) > (O- liminf,#)(X)- #(X). In addition,

(#, f) (c, f) + (Ppf) Vf G F.

In particular, for f 0 in Fj, l.
fd(#_c)>_O V0<_IGF.

Thus, # >_ c and #(X) c(X) which in turn implies c # and p(X) 0, i.e.,
is r-additive and - #. As was an arbitrary weak* accumulation point, all the
weak* accumulation points are identical and equal to #, i.e., #n--’# for the weak*
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setwisetopology in lb(X)’ and, in particular, #n #"
(ii) As #n < V for all n, the sequence {#n} is in a weakly sequentially compact

set of M(X). Indeed, for all n, #n are norm-bounded and the r-additivity of #n is
uniform in n (if Ak0 V(Ak)0 so that #n(Ak) < (Ak))---,0 uniformly). Therefore,
from Theorem :2, p. 306 in [3], {#n} forms a weakly sequentially compact set in
M(X). Hence, there is a subsequence {#,k} that converges weakly to some E
M(X), and, in particular,

fd#nk--- / fd Vf Ylgb(X), (4.2)

so that, from the F-convergence of #n to It,

fd#- /fdp Vf F. (4.3)

As both qo and # are in M(X) and F separates points in M(X), (4.3)implies p .
As was an arbitrary weak-limit point of {#n} in M(X), we also conclude that all

setwisethe weak-limit points are all equal to #. In other worcls, #n #"
(iii) From (i) we conclude that O-liminfn#n # and with similar arguments,

O-limsup,u,=#, i.e., the sequence {#n} in M(X) has an O-limit #, or
equivalently (see e.g., [5]), there exists {Wn} in M(X)such that

I#n- #l < wn with w,0.

Clearly, this implies convergence in total variation since

#,- # (X) <_ w,(X) with wn(X)O.

Lemma 4.1 applies to the following situations
vaguely

X is a locally Hausdorff space ana #n -- It M(X), i.e.,

f fd#.f fd# Vf Co(X
J J

or if

fd#n-+/fd# Vf G Cc(X) -’F
weakly

X is a topological space and #n -- # M(X), i.e.,

(4.4)

(4.5)

It(B)’- / fd/, Itn(B): / fnd B e, n-l,
B B

(4.7)

vaguely
Assume that Itn --* It. If Itn <-- for some v M(X) then:

As a consequence of Lemma 4.1 we also get"
Corollary 4.2: Let X be a locally compact Hausdorff space and a r-finite

measure on (X,). Consider a sequence of probability densities {fn} e LI(A with
almost everywhere limit f LI()). Let

f fdItn / fdIt Vf C(X) F. (4.6)
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TVand I.tn-- #.
Proof:

f- f ldA-,O as n---,x (4.8)

In addition, if is finite, the family {fn} is uniformly integrable.
Since the #n’s are order-bounded, from Lemma 4.1(ii) with F: -Co(X),

setwise
we conclude that #, #. In particular, this implies that

f fnd$-- f fd as

and by Scheffe’s Theorem,

TVwhich yields (4.8). That #,# follows from the L1 convergence of fn to f, i.e.,
(4.8). If is finite, the uniform integrability of the family {f} follows from [2], p.
155.

Note that if instead of n u, we had fn g LI() then by the Dominated
Convergence Theorem, f fndA f fd$ and (4.8) would follow from Scheffe’s Theor-
em. However, note that the condition n u does not require u to have a density.
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