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We consider a sequence {y,} of (nonnegative) measures on a general mea-
surable space (X,B). We establish sufficient conditions for setwise conver-
gence and convergence in total variation.
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1. Introduction

Consider a sequence {yu,} of (nonnegative) measures on a measurable space (X,B)
where X is some topological space. Setwise convergence of measures, as opposed to
weak™ or weak convergence, is a highly desirable and strong property. If proved,
some important properties can be derived (for instance, the Vitali-Hahn-Saks Theo-
rem) and thus sufficient conditions ensuring this type of convergence are of interest.
However, as noted in [2], in contrast to weak or weak™ convergence (for instance, in
metric spaces), it is in general difficult to exhibit such a property, except if e.g., 4, is
an increasing or decreasing sequence (e.g. [2], [4]).

The present paper provides two simple sufficient conditions. Thus, for instance,
in a locally compact Hausdorff space, an order-bounded sequence of probability mea-
sures that is vaguely or weakly convergent is in fact setwise convergent.

We also establish a sufficient condition for the convergence in total variation
norm that is even a stronger property.

2. Notations and Definitions

Let (X,B) be a measurable space and let Mb(X) denote the Banach space of all
bounded measurable real-valued functions on X equipped with the sup-norm. Let S
be the positive (convex) cone in Ab(X).

Let Mb(X)' be the (Banach) topological dual of Mbb(X) with the duality bracket
(-, ) between Mb(X) and Mb(X). Mb(X) is equipped with the dual norm
lo|: =sup Nfl =1 [ {p,f)]. Let S’ € Mb(X)' be the positive cone in Mb(X), i.e.,
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the dual cone of S € Mb(X). Convergence in the weak™ topology of Mb(X)' is
denoted by 3.

If X is a topological space, then C(X) denotes the Banach space of all real-
valued bounded continuous functions on X, and if X is locally compact Hausdorff,
Cy(X) (C(X) resp.) denotes the Banach space of real-valued continuous functions
that vanish at infinity (with compact support, resp.).

In the sequel, the term measure will stand for a nonnegative o-additive measure
and a set function on ®B with the finite-additivity property (and not necessarily the o-
additivity property) will be referred to as a finitely additive measure. Let M(X) be
the Banach space of signed measures on (X,%) equipped with the total variation
norm | - |y, simply denoted | - |.

Note that M(X) C Mb(X)' and for every f € Mb(X), p€ M(X), [ fdu=(u,f)
when g is considered to be an element of Mbb(X)".

Also note that any element ¢ € S’ can be associated with a finitely additive
nonnegative measure (also denoted ¢) p(A): = (p,1,),VA € B, so that p(AUB) =
o(A)+¢(B), VA, B€ B with ANB=0. Thus, p(A) <p(X)= ||, VAE B (see
e.g., [3]).

For a topological space X, by analogy with sequences of probability measures in
a metric space, a sequence of measures {y,} in M(X) is said to converge weakly to
u € M(X), iff

[ sdn= [ rdn, vrecw.

. kl
This type of convergence is denoted p,, v yu.

Similarly, and again, by analogy with sequences of probability measures in a
metric space, if X is a locally compact Hausdorff space, a sequence of measures {u, }
in M(X) is said to converge vaguely to p € M(X), iff

/fd,un—>/fdu, Vf e Cy(X),

. . l .
and this type of convergence is denoted p,, VAL yu. In fact, because the topological

dual of Cy(X) is M(X) (see e.g., [1]), the vague convergence is simply the weak™ con-
vergence in M(X).
A sequence {u, } in M(X) is said to converge setwise to u € M(X) iff
i BY—u(B), VB € B,

. . setwise
and this convergence is denoted p,,

Finally, a sequence {u,} in M(X) converges to u € M(X) in total variation (or
convergences strongly (or in norm) to p) iff | g, — p| —0 as n—oo. This convergence

is denoted by ,unjlfp.

3. Preliminaries

In this section, we present some results that we will repeatedly use in the sequel.
For a nonnegative finitely additive measure p, proceeding as in [6], let:

P(p): ={ve M(X)|0<v<p}, A(p): ={veM(X)|p<v}
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where by v < p we mean v(A) < p(A), VA € B.
Given two (o-additive) measures ¢ and 1, let

sup(p, ) = o Vi = "p—d)'2+¢+¢

where for a signed measure v, || is its corresponding total variation measure.
With the partial ordering <, M(X) is a complete Banach lattice (see e.g., [5]).

Lemma 3.1: Let pu be (nonnegative) finitely additive measure. Then,

(3) T(u) has a mazimal element p € M(X) ™.

(i3) If A(p) £ 0, then p is o-additive.

Proof: To prove that I'(#) has a maximal element we use arguments similar to
those in [6]. Let é: =sup, . F(”)V(X). Of course, we have § < u(X) =1. Thus, con-

sider a sequence {v,,} in M(X) T, with v (X)16. Define
P =V Vi V,. (3.1)

{¢,} is an increasing sequence in I'(x). Indeed, for any two measures 7 and x in
L(p), (1 VX)(A) < u(A) VAEB.

Since ¢, (A) < u(A), VA€ B, and ¢, is increasing, it converges setwise to an
element ¢ < p. That ¢ is a (o-additive) measure follows from the fact that {¢,} is
an increasing sequence (see e.g., [2]). It follows that ¢ € I'(y) and ©(X)=4. We
now prove that ¢ is a maximal element of T'(u).

Consider any element x € I'(x). Assume that there is some A € B such that
x(A) > p(A). Let 7: = xVp. From the Hahn-Jordan decomposition of (x —¢),
X, X, with X; UX, =X, X;NX, =0 so that

T(A) = x(ANX;)+¢(ANX,), A€B.
Thus, x(X;) > ¢(X,) and, therefore,
7(X) = x(X}) + o(X,) > p(X, U X,) = 6,

is a contradiction with 7 € () and 6 = max{v(X)|v € I'(n)}. Hence, x <¢. In
fact, ¢ is the o-additive part in the decomposition of u into a o-additive part u, and
a purely finitely additive part p,, with g = p + p, (see [6]).

To prove (i¢), note that if 0 < u <, where ¢ is o-additive, then p is o-additive
(see e.g., [3], [6]). Indeed, for any decreasing sequence of sets {A,.} in B with A, [0,
we have 0 < pu(A,,) <¥(A4,,)10 which implies, u(A,,)]0, i.e., p is o-additive. a

Lemma 3.2: Let {u,} be a sequence of (nonnegative) o-additive measures on
(X,B) with sup, p,(X)<oco. Then,

O —liminfp,: :k\_>{1 nlz\kpn is a (finite) o-additive measure. (3.2)

If p, <v(€ M(X))Vn, then,

O — lim supp

is a (finite) o-additive measure. (3.3)
n—oo

= A Vv
" ok>1 n> Khn
Proof: Let ¢p,.: = ppApp g1 A Apye {ppnln >0 is a decreasing sequence so
that it converges setwise to a (finite) o-additive measure ¢, (see e.g., [4]). In turn,
{1} is an increasing sequence with supyp.(X) < co. Hence, ¢ converges setwise to
a (finite) o-additive measure and (3.2) follows from
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= l
31 n D4 TPk
(3.3) follows from 0 < p,, < v for all n and the fact that M(X) is a complete Banach
lattice (see e.g., [5]). a
In the sequel, to avoid confusion, the reader should be careful in distinguishing

(O —liminfu,)(B) from liminfu (B) B€ B,
for we have in fact,

(O—limjnfu,)(B) < liminfu,(B) Be 3.

4. Setwise Convergence

We now give sufficient conditions for setwise convergence of an F-converging se-
quence, where F' is a subset of Mb(X) separating points of M(X) and such that
p€M(X)and 0< [ fdu VO< f€F imply p>0. Typical examples of such F are
C(X) for a topological space X and C(X) or Cy(X) for a locally compact Hausdorff
space X.

Lemma 4.1: Let F be a subspace of Mb(X) separating points in M(X) and such
that for every pe M(X), 0< [fdu VO<f€F yields that p>0. Let {p,} be a
sequence of (nonnegative) measures on (X,B) with sup,p, (X) <oo. Assume that

F .
p,—p € M(X), ie.,

/fdpn—»/fdy VfeF. (4.1)

(?) If (O—lim inf p)(X) = p(X) then p setgiseﬂ'

(1) If for some v € M(X), p,, <v Vn, then p setiu_)zsell'
(#3) If (O —liminf, pu )(X) = u(X) = (O —limsup, p,)(X) then p,, —’H

Proof: (i) Since sup,,pu,(X) < oo, the sequence {u,} is in a weak™ compact set in
Mb(X)". Thus, there is a directed set D and a subnet (not a subsequence in general)
{u,, ;a € D} that converges to some 0 < ¢ in Mb(X) for the weak* topology in
M,0X), and ¢ is a finitely additive measure. From (3.2) in Lemma 3.2,
O —liminf p, exists and ¢ > O —liminf, p,. Now, ¢ has a unique decomposition
into a o-additive (nonnegative) part ¢, and a purely finitely additive (nonnegative)
part p,, with o = ¢, +¢,, (see e.g., [6]).

From o-additivity of O —liminf, y,, and O —liminf u, < ¢, we have that O —
liminf p, < ¢, since ¢, is a maximal element of I'(p) (see the proof of Lemma 3.1).
Therefore, ¢ (X) > (O —liminf, p, )(X) = p(X). In addition,

(1 f) = (e ) +{p,f) VfEF.

In particular, for f >0 in F,
fd(u—p) 20 VO< fEF.

Thus, 4> ¢, and p(X) = ¢ (X) which in turn implies ¢, = p and ,(X) =0, ie, ¢
is o-additive and ¢ = p. As ¢ was an arbitrary weak* accumulatlon point, all the
weak™ accumulation points are identical and equal to , i.e., pp,—p for the weak™
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setwise
—_— u.

topology in Mb(X)' and, in particular, u,,
(#) As p, <v for all n, the sequence {y,} is in a weakly sequentially compact

set of M(X). Indeed, for all n, p, are norm-bounded and the o-additivity of u,, is

uniform in n (if A0, v(A;)—0 so that pu, (Ag) ( <v(AL))—0 uniformly). Therefore,

from Theorem 2, p. 306 in [3], {yu,} forms a weakly sequentially compact set in

M(X). Hence, there is a subsequence {yu, } that converges weakly to some ¢ €

. . k
M(X), and, in particular,

/fdﬂnkﬁ/fchp Vf € Mb(X), (4.2)

so that, from the F-convergence of p , to p,

/ fdp= / fdp VfeEF. (4.3)

As both ¢ and p are in M(X) and F separates points in M(X), (4.3) implies p = ¢.
As ¢ was an arbitrary weak-limit point of {g,} in M(X), we also conclude that all
the weak-limit points are all equal to . In other words, u:etﬂweu.

(744) From (i) we conclude that O —liminf u = p and with similar arguments,
O —limsup,u, = p, ie., the sequence {u,} in M(X) has an O-limit p, or
equivalently (see e.g., [5]), there exists {w,} in M(X) such that

|, — | <w,, with w,]0.

Clearly, this implies convergence in total variation since

|, — o] (X) w,(X) with w, (X)]0. O
Lemma 4.1 applies to the following situatiggsue
e X is a locally Hausdorff space and p,, 7 y;z € M(X), i.e.,
/fdpn—A/fdp VfeCy(X)=:F (4.4)
or if
/fdun-—»/fd;z VieC(X)=:F (4.5)

. . kl .
e X is a topological space and unwe—a—) yu € M(X), i.e.,

/ fdu,— / fdp VfeC(X)=:F. (4.6)

As a consequence of Lemma 4.1 we also get:

Corollary 4.2: Let X be a locally compact Hausdorff space and X a o-finite
measure on (X,B). Consider a sequence of probability densities {f,} € Ly()\) with
almost everywhere limit f € Ly(X). Let

u(B): = / fd), o (B): = / f,d\ BEB, n=1,.. (4.7)
B B

l
Assume that p:agﬁf yu. If p,, <v for some v € M(X) then:
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/ | f,— f|dA—0 as n—oo (4.8)

and pnT—Yu. In addition, if X is finite, the family {f, } is uniformly integrable.
Proof: Since the p’s are order-bounded, from Lemma 4.1(i7) with F: = Cy(X),

setwise

we conclude that p, =" p. In particular, this implies that

/fnd)\—>/fd/\ as n—oo,
and by Scheffe’s Theorem,

/ | f,.— f|dA—0 as n—oo,

which yields (4.8). That [LnT—‘)/[,L follows from the L, convergence of f  to f, i.e.,
(4.8). If X is finite, the uniform integrability of the family {f,} follows from [2], p.
155. O
Note that if instead of pu, <v, we had | f, | < g € L;(}) then by the Dominated
Convergence Theorem, [ fpdd— J fdX and (4.8) would follow from Scheffe’s Theor-
em. However, note that the condition u,, < v does not require v to have a density.
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