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1. Introduction

This paper is concerned with the nonlocal Cauchy problem

u’(t) + Au(t) + G(u)(t) 9 O, 0<t<T

u(O)- g(u), (1.1)

in a Banach space X. Here A is an m-accretive (possibly multivalued) operator in
X,G: C([0, T]; X)--LI(O, T; X), and g:C([0, T];X)--X. Points of interest are the
existence, uniqueness, regularity, dependence upon data, and asymptotic properties
(as Tcx) of solutions of (1.1).

Much of the motivation for our study of (1.1) lies in the fact that we thereby
generalize result due to several other authors. Byszewski [5] proves the existence and
uniqueness of solutions to

u’(t) + Au(t) f(t, u(t)), 0 < t < T

u(O) + g(tl,... tp, u(tl),... U(tp)) Uo,
(1.2)

where 0 < t1 <... < tp <_ T are fixed, u0 E X, -A is the infinitesimal generator of a
linear CO semigroup on X, f:[0, T] X---X satisfies a Lipschitz condition in its
second variable, and g:[O,T]PXP---.X yields a Lipschitz continuous map from
C([O,T];X) into X. (A slightly more general nonlocal condition appears in [7].)
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Balachandran and Ilamaran [2] study (1.2) with f(t,u(r(t)))in place of f(t,u(t)),
where r:[0,T]--,[0, T] is absolutely continuous and f:[0,T] x X--X. In [6],
Byszewski discusses only the uniqueness of strong solutions to the nonlinear problem

u’(t) E Au(t), O < t < T

+
under the assumption that A:X--2X is dissipative, u0 E X, and g is a contraction
from C([0, T];X) into X. Lin and Liu [17] consider the semilinear integrodifferential
equation

u’(t) A[u(t) + / F(t s)u(s)ds] + f(t, u(t)), 0 < t < T, (1.4)
0

together with the same initial condition as the one in (1.2), where A generates a

linear strongly continuous semigroup on X, F(t) is a bounded linear operator on X
for all t [0, T], and f:[O,T]xXX. Concrete nonlocal initial-boundary value
problems for semilinear parabolic equations arising in physics (particularly in the
mathematical modeling of heat conduction or diffusion processes) are analyzed in [10,
13, 16].

The present work may be viewed as an attempt to develop a general theory for
abstract problems of the type (1.1). The existing studies of (1.2), (1.3) and (1.4) are
extended in various directions. Our basic tools are methods and results for
differential equations governed by rn-accretive operators in Banach spaces, as well as

fixed point techniques.
The outline of the paper is the following. In Section 2 we recall some facts about

rn-accretive operators and nonlinear evolution equations. Sections 3 and 4 contain
the main existence, uniqueness, and continuous dependence results. The asymptotic
properties of solutions of (1.1) are studied in Section 5, while Section 6 deals with the
case when A depends on time. A model nonlocal integro-partial differential equation
is presented in Section 7.

2. Preliminaries

For further background and details of this section we refer the reader to [8].
Let X be a real Banach space of norm I. A set-valued operator A in X with

domain D(A) and range R(A), is said to be accretive if

Xl x21 --< Xl x2 - h(Yl Yl) I, for all h > 0 and Yi Axi, 1,2. A is called
m-accretive if it is accretive and R(I + hA) X, for all .h > 0. (Here I stands for the
identity on X.) The Yosida approximation A.x (h > 0) of an m-accretive operator A
is given by A h-1(1- J), where J (I / hA)-1 is the resolvent of A. Accreti-
vity can also be formulated in terms of the mapping [., ]:X X--., defined by

[y,x] lim,-l( x +,y x ), Vx, y X.

Then A is accretive if and only if [y2-yl, x2-Xl] >_ 0, Vy Axi, 1,2. In the
case when X is a Hilbert space, rn-accretivity is equivalent to maximal monotonicity.
See [3, 4] for more details. An important subclass of maximal monotone operators is
that of sub-differentials. If p is a proper, convex, and lower semicontinuous (1.s.c.)
function from the Hilbert space X into (-oe, + c], then its subdifferential c3 is
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given by
O(x) {y E X: 9(z)- p(x) >_ (y,z- x), Yz D(9)},

where D()- {x X: (x) < oo}, and (,) denotes the inner product in X.
Next consider the Cauchy problem

u’(t) + Au(t) s f(t), O < t < T

(o) o,
(2.1)

where A is m-accretive (or A+wI is m-accretive for some w ) in
X,I LI(o,T;X) and uo D(A). It is well-known that (2.1) has a unique mild
solution u E C([0, T]; D(A)), which is the uniform limit of a sequence of approximate
solutions. (Each approximate solution is a piecewise constant function which is
defined recursively by means of the resolvent of A; see [8] for a precise definition.) If
u and fi" are respectively mild solutions of u’ + Au f and ’ + A f, with A m-

accretive, then

I()- ()1 _< I(0)- (0) + I/(s)-/() , v e [0, ]. (.)
0

In the case A + wI is m-accretive (w 7 0), (2.2) changes to

O<t<T.
(2.3)

u(t)- (t) _< t (o)- (o) + / ’(*- )lf(s)- ](s) lds,
0

3. Existence Results

We consider the nonlocal initial-value problem (1.1) under the following basic
assumptions:
(H1) A is m-accretive on X,
(H2) G: C([0, T]; D(A))LI(O, T; X) satisfies

(H3)

II a()-a(v)II LI(o,T;X) -- M II u- v II C([O,T];X)’ Vt,v C([O,T];D(A)),

for some M > 0,
g: C([0, T]; D(A))D(A) is such that

g()- g(v) m II - v II C([O, T]; X), Vu, v C([O,T];D(A)),

with m > 0.
Definition 3.1: A function u E C([O,T];D(A)) is said to be a mild solution of

(1.1) if it is a mild solution of (2.1) with -G(u) and g(u)in place of f and u0,
respectively.

Definition 3.2: A strong solution of (1.1) on [0, T] is a function u E
W1’ 1(0, T; X) Ci C([O, T]; D(A)) satisfying u(O) g(u) and u’(t) + Au(t) + G(u)(t)
O, a.e. on (0, T).

Our first result establishes the existence and uniqueness of mild solutions to (1.1).
Theorem 3.3: Let (H1), (H2) and (U3) hold. In addition, assume that
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m + M < 1. (3.1)
Then problem (1.1) has a unique mild solution.

Proof: Let v E C([O,T];D(A)) be fixed, and consider (2.1) with -G(v)and g(v)
in place of f and u0, respectively. Denote the corresponding mild solution by Jr.
We have thereby defined a mapping g of C([O,T];D(A)) into itself. By (2.2), we
obtain

(Jv)(t) (Jw)(t) <_ g(v) g(w) / / G(v)(s) G(w)(s) ds, (3.2)
0

for all 0 _< t _< T, and v, w E C([0, T]; D(A)). Using (H2) and (H3) in (3.2) yields

11 Jv- Jw 11 C([0,TI;X) -- (m + M)II v- w 11 C([0,TI;X),
for any v,w e C([O,T];D(A)). In view of (3.1), this implies that J is a strict
contraction on C([O,T];D(A)). The unique fixed point of J is obviously the desired
mild solution of (1.1) (cf. Definition 3.1). The proof is complete.

If in place of (H1) we assume

(HI’) A + wI is m-accretive for some w > 0,

then the conclusion of Theorem 3.3 holds provided that condition (3.1) is changed to

m + M < e-T. (3.3)
An obvious modification in the proof of Theorem 3.3 (use (2.3) in place of (2.2))
leads to"

Theorem 3.4: Let (HI’),(H2),(H3) and (3.3) be satisfied. Then (1.1) has a

unique mild solution.
Condition (3.1) can be weakened in the case when G is a Volterra type operator.

Specifically, let G: C([0, T]" D(A))---,LI(O, T; X) satisfy

II G(tt)-G(v) II LI(o,t;X) -- J ")’(s) [l lt-- v II L(O,s;X)ds,
0

for all u, v C([0, T]; D(A)), with 7 LI(0, r), 7 >_ 0.
In addition, assume

> o,
0

0 _< t _< T, (3.4)

for any t [0, T], and u, v E C([0, T]; D(A)).
lmark 3.5: Conditions (3.4) and (3.5) are satisfied if X is a Hilbert space, and

G(u)(t) fa(t-s)u(s)ds, Vu C([0, T];X), where a e LI(0, T) is a kernel of
0

positive type [18].
Theorem 3.6: /f (H1), (H3), (3.4), (3.5) hold and m < 1, then there exists a

unique mild solution of (1.1). T
Proof: First note that (3.4)implies (H2) with M f 7(s)ds. However, since we

0
do not restrict the ’size’ of 7, condition (3.1) is not satisfied in general, so that
Theorem 3.3 does not apply.
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Let v e C([0, T]; D(A)) be fixed, and consider the problem

u’(t) + Au(t)+ G(u)(t) O, 0 < t < T
(3.6)

Taking into account (3.4), we can invoke Theorem 1 in [9] to conclude that (3.6) has
a unique mild solution u E C([0, T]; D(A)). Furthermore, because of (3.5), if u, are
mild solutions of (3.6) corresponding to v, respectively, then by [14, Remark 3.2],

u(t)- (t) <_ g(v)- g(V) 0 t <_ T. (3.7)

Employing (H3) (with m < 1)in (3.7)we arrive at the conclusion that the map J
that associates with each v C([O,T];D(A)) the uniquemild solution u of (3.6) is a
strict contraction on C([O,T];D(A)). It follows that J has a unique fixed point,
which is the mild solution of (1.1). This completes the proof.

We next examine two cases when the mild solutions of (1.1) have greater
regularity than mere continuity. (In particular, they are strong solutions, in the sense
of Definition 3.2.)

Theorem 3.7: Let X be a Hilbert space and A- Oa where a: X---,(- oo, -t-oc] is
proper, convex and 1.s.c. In addition, assume (H2), (H3), (3.1), and let u be the
mild solution of (1.1). If G(u) L2(O,T;X) then u e WI’2(e,T;X), VO < < T, and

satisfies (1.1)1 a.e. on (O,T), and (1.1)2. /f also g(u) D(99), then u WI’2(O,T;X)
is a strong solution of (1.1) on [0, T].

Proof: The existence and uniqueness of u is guaranteed by Theorem 3.3. Notice
that u is a mild solution of (2.1) with f- -G(u) and uo g(u). Apply [4, Theorem
3.6] to conclude.

Theorem 3.8: Let the conditions of Theorem 3.6 be satisfied. In addition,
suppose that there is a function c: [0, oc)--[0, oc) such that

var(G(u): [0, t])

_
a(R)(1 + car(u: [0, t]), 0

_
t

_
T,

+)1 _<
(3.8)

whenever u C([0, T]; D(A)))is of bounded variation and II II c([o,T];X) n. Lt
be the mild solution of (1.1. If g(u) e D(A), then u is Lipschitz continuous on

[0, T]. If also X is reflexive, then u is a strong solution to (1.1).
Proof: Theorem 3.6 yields the existence and uniqueness of u. Clearly u may be

viewed as a mild solution to (3.6) with v--u. Because of (3.8) we may appeal to [9,
Theorem 2] to obtain the desired conclusions, provided that, in addition,
u(O)-- g(u) D(A).

4. A Continuous Dependence Theorem

Throughout this section we assume that A,G, and g satisfy (H1), (H2), and (H3),
respectively, and that (3.1) holds. For each n- 1,2,..., we consider an m-accretive
operator An in X and two mappings Gn: C([0, T]; X)---LI(0, T; X), and gn: C([0, T];
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X)-*D(An) satisfying the following conditions:

nli_,rn(I + AAn)- ix (I q- AA)- ix, VA > 0, x e X,

II an(it)- Gn(v)II LI(0, T; X) - M II u- v II c([0, T]; X)’

for all u, v e C([O,T]; X), with the same constant M as in (H2),

(4.2)

nli__,rnGn(u) G(u) in LI(0, T; X), Vu e C([0, T]; D(A)), (4.3)

(4.4)

where m is the constant which appears in (H3),

nli_,rngn(u) g(u), Vu e C([0, T]; D(A)). (4.5)

Let u be the mild solution of (1.1). By virtue of (3.1), (4.2), and (4.4), Theorem 3.3
can also be applied to (1.1) with An, Gn and gn in place of A, G and g, respectively to
obtain the corresponding mild solutions un (n 1, 2,...).

Theorem 4.1: Let assumptions (H1)-(H3), and (3.1), (4.1)-(4.5) be satisfied.
Then

nlimun u in C([O, T]X). (4.6)

Proof: Let vn denote the unique mild solution of

v’n(t + Anvn(t + Gn(u)(t O, 0 < t < T

v.(O) .(u),
(4.7)

where u is the mild solution of (1.1). By (2.2), we have
.(t)- (t) _< ,(t)- v,(t) + v,(t)- (t)

T

< g,(r,) g,,() + v.(t) u(t) + f G,(,,)() O(u)(s)lds,
0

for any t e [0, T]. Taking into account (4.2) and (4.4), we infer from (4.8) that

(4.8)

(1 m- M)II ,,- ,, II c([o, T]; x) -< II ’,- ’ II c([o, T]; X)" (4.9)

Conditions (4.1), (4.3), and (4.5) enable us to apply Theorem 6 of [8] to (4.7) and
conclude that vnu in C([O, T]; X), as noc. The latter, (3.1)and (4.9)lead to
(4.6). The proof is complete.

5. Asymptotic Properties

We discuss problem (1.1) on [0, oc) rather than on a finite interval. A mild solution
to (1.1) on [0, ec)is a continuous function u:[0, ec)X satisfying Definition 3.1 for
any T e (0, oc). We will use BC([O, oc);X) to designate the space of all bounded
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continuous functions from [0, oe) into X; this is a Banach space when equipped with
the standard sup-norm.

We assume throughout that (H1) holds, and that, in addition,

A-10 7 0. (5.1)
We first modify (H2) and (H3) as follows:

(H2’) G: BC([0, ec); D(A))-,LI(O, oc; X) is such that

a(u)-a(v) II LI(0,x;X) < M II u-v II BC([o,);x),Vu, v - BC([0 oe); D(A))
with M > 0,

(H3’) g: BC([0, cx)); D(A))---,D(A) satisfies

g(u)- g(v) < m II u- v II BC([0, ); X), Vu, v e BC([0, c); D(A)),
for some rn > 0.

Remark 5.1: A simple case when (H2’)is satisfied corresponds to G(u)(t)-
f(t,u(t)), Vu E BC([0, oo);X), where f’[0, oc) X-,X is a Carathodory type
function with the property that f(., 0) E Li(0, oc), and f(t, u)
f(t,v) <_6(t) lu-v[, for all t>_0, u, veX, where 6>_0, 6e51(0,cx). As regards

1 f O(s)u(s)ds(u e BC([0, oe);X)) with 0 eg, one may take g(u)-IIoll LI(0,) u
Li(0, c), II 0 11L1 > 0. Then (H3’) is obviously satisfied. Such a condition of

integral type appears in [10].
Theorem 5.2: Let (H1), (H2’), (H3’), (3.1), and (5.1) hold. Then (1.1) has a

unique mild solution u e BC([0, c); X) such that

lim In(t)- x exists, Vx e A-10. (5.2)
Proof: For each fixed v BC([0, ee);D(A)), let w be the unique mild solution of

w’ + Aw -G(v), w(O) g(v). Since G(v) L1(0, oe;X) and (5.1) holds we can use
Lemma 3.2 of [14] (take G 0 there to conclude that w L(0, c; X). We thereby
define the map F: BC([0, oe); D(A))---,BC([O, cx); D(A)) by Fv w. With the
arguments as in the proof of Theorem 3.3 (el. (3.2)) we deduce by (H2’), (H3’), and
(3.1) that F is a strict contraction on BC([O, cx);D(A)i. The unique fixed point u of
F in BC([O, oe);D(A)) is the mild solution of (1.1) on [0, c). To derive (5.2) we
first observe that u is a mild solution to (2.1) with f- -G(u) LI(0, o;X) and
uo g(u), and then apply again [14, Lemma 3.2].

We next consider the case in which G is an operator of Volterra type (cf.
Theorem 3.6). Specifically, we study the functional differential equation

u’(t) + Au(t) + G(u)(t) f(t), t >_ O,

under the following assumptions on G (cf. (3.4), (3.5)):
G: C([0, c); D(A))---,Loc([O cx); X)

and
G" C([0, cx); D(A))LI(O, T; X) for all T > 0,
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with
G(uT) -(G(u))T, Vu e C([0, c); D(A)),

where uT and (G(u))T denote the respective restrictions of u and G(u) on [0, T].
There exists 7 e Loc ([0, oc); + such that

II G(vt)-G(v) [I LI(o,t;X) -- / ’(s) II z-- v ll LCx)(O,s;X)ds,
0

(5.4)

for all u, v E C([0, oc); D(A)),

t >_ 0 (5.5)

> 0,
0

t > o, (5.6)

for any u, v E C([0, c); D(A)).
As regards f, we assume that

f LI(0, oo; X). (5.7)
Theorem 5.3: Let (H1), (H3’) (with 0 < m < 1), (5.1), and (5.4)-(5.7) be

satisfied. Then problem (5.3) has a unique mild solution u BC([O, oc);X). If (5.6)
is strengthened to G(v) LI(0, oc;X) for each constant function v(t)-v D(A),
and

[G(v)(t) G(w)(t), v(t) w(t)] >_ t(k, v w (t)), a.e. on (0, o) (5.8)
1,1for all v,w loc([0,o,);X), where k Ll(0, o) is nonnegative and nonincreasing,

and ’,’ stands for the convolution product, then (5.2) also holds true.
Proof: For each v BC([0, cx); D(A)) we consider the Cauchy problem

w’(t) + AT(t) + G(w)(t) f(t), t >_ 0
(5.9)

By the results in [9], (5.9) has a unique mild solution wC([O,c);D(A)).
Moreover, in view of (5.1) and (5.6) we may apply [14, Remark 3.1] to conclude that
w e BV([O, oc);X). As in the proof of Theorem 3.6 it then follows (use (3.7) and
(H3’) with 0 < m < 1) that the map that associates with each v BC([O, oc);D(A))
the mild solution w of (5.9) is a strict contraction on BC([O, oc);D(A)). Its unique
fixed point u BC([O, oc);X)is the desired mild solution of (5.3). If (5.8) holds,
then Lemma 3.2 of [14] (when applied, to (5.3)) implies (5.2). The proof is complete.

Remark 5.4: i classical example of a mapping G satisfying (5.4), (5.5), and

(5.8) is given by G(u)(t) (k.u)(t) k(O)u(t) + f u(t s)dk(s), Vu C([0, oc); X),
0

where k: [0, x)--[0, oc)is nonincreasing and k Ll(0, cx). See [12, Lemma 2.7] and
[14, Lemma 5.1].

Analogs of other asymptotic results for Volterra equations [1, 12, 14] can also be
proved for problems of the form (5.3). For instance, Theorem 3.3 in [14] leads to:

Theorem 5.5: Let (H1), (H3’)(with 0 < m < 1), (5.1), (5.4), (5.5), (5.7), and
(5.8) hold, and let u be the unique mild solution of (5.3). If, in addition, X is

reflexive and has a weakly sequentially continuous duality map, then the following



Functional Differential Equations with Nonlocal Initial Conditions 153

conditions are equivalent"
(i) a-_(),
(ii) weak-limtou(t exists and belongs to A-10,
(iii) Ww(U C A-10, with cow(u (y C X:y weak-limn_,U(tn) for some

Well-known examples of reflexive Banach spaces with weakly sequentially
continuous duality maps are Hilbert spaces and gp sequence spaces (1

6. The Time Dependent Case

The existence-uniqueness theory for (1.1) can easily be extended to the case when A
depends on time. Consider a family {A(t), 0 < t < T} of operators in X satisfying

For almost every t C [0, T], A(t)is m-accretive. (6.1)

There exist A0 > 0, h LI(0, T;X),
L: [0, cx)[0, cxz) such that

and a nondecreasing continuous function

A(t)x- A(s)x < h(t)- h(s) lL(I x I) (6.2)

for all0<A_<0, xGX, and almost all 0 _< s, t_<T.
Assumptions (6.1) and (6.2)imply (cf. [11, Lemma 3.1]) that D(A(t))-D

(constan.t), a.e. on [0, T]. Also recall (see Theorem 1 in [11]) that if (6.1) and (6.2)
hold, then the evolution equation

u’(t) + A(t)u(t) f(t), 0<t<T
(6.3)

where f e LI(0, T; X) and u0 e D, has a unique mild solution u C C([0, T]; D). (The
mild solution of (6.3) is obtained in essentially the same way as in the autonomous
case, as a uniform limit of approximate solutions; see [11] for details.) Moreover, (cf.
[1..1, Theorem 3]), if u and ff are mild solutions of (6.3) corresponding to (f, u0) and
(f, if0)respectively, then (2.2) holds.

We now consider the time-dependent Catchy problem

u’(t) + A(t)u(t) + G(u)(t) O, 0 < t < T
(6.4)

where G: C([0, T]; D)---LI(0, T; X) and g: C([0, T]; D)--D satisfy (H2) and (H3) with
D in place of D(A). As in Section 3, we say that u G C([0, T]; D) is mild solution of
(6.4) if it is a mild solution to (6.3) with f -G(u) and u0 g(u). By adapting
the proof of Theorem 3.3 we arrive at the following result:

Theorem 6.1: Let (6.1), (6.2), (H2), (H3) (with D instead of D(A)), and (3.1)
be satisfied. Then problem (6.4) has a unique mild solution.

If X is a Hilbert space and A(t) are cyclically maximal monotone operators in X,
we may allow D(A(t)) to vary in time. In this case we obtain a strong solution to
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(6.1), that is a function u E WI’I(o,T;X) satisfying (6.4)1 a.e. on (0, T), and (6.4)2.
Following [15], we specifically assume that A(t)- Opt, where {t,0 _<t_< T} is a
family of proper convex, 1.s.c. functions from X into (- c, + o] satisfying:

For each r > 0, there are functions cr E WI’2(0, T), dr WI’I(0, T) with the
property that for all s,t [0, T], s_< t, and z D(ps) with z _< r, there exists
z1 D(t) such that

and
Zl Z -- Cr(t) --Cr(S) (1 + S(z) 1/2)

(flt(Zl)- 99S(z)

_
dr(t)- dr(s) (1 +

Theorem 6.2: Assume that X is a Hilbert space and A(t) Opt, 0 <_ t <_ T, with

t satisfying (6.5). Let (H2), (H3) (with X in place of D(A)), and (3.1) hold. If
also R(G) C L2(O,T;X) and R(g) C D(), then (6.4) has a unique strong solution
u ( W1’2(0, T; X).

Proof: By Theorems 1.1.2 and 1.5.1 in [15], it follows that under the assump-
tions of Theorem 6.2 the initial value problem

(t) + o((t)) + a()(t) o, 0 < t < T

(0)- (v)

has a unique solution u W1’ 2(0, T; X) for each v C([0, T]; X). Define J" C([0, T];
X)---, C([O,T];X) by Jv- u, where u solves (6.6). Use Theorem 1.1.1 in [15] in
conjunction with (H2) and (H3) to obtain

I] Jv- Jw I1 c([0, T]; X) -- (m -t- M)11 v- w II c([0, T]; X)

for any v,w C([O, T]; X). By (3.1), this shows that J is a strict contraction on

C([0, T]; X) and establishes the result.

7. An Example

An Ft be a bounded domain in NN with smooth boundary I’. We consider the initial-
boundary value problem

T

ut(t,x Axu(t,x + fl(t, u(t,x)) + / a(t,s)f2(s u(s,x))ds O,
0

a.e. on (0, T) x f,

Ou(t x) on (0, T) x F,0-’ e Z((t,)), ..
T

u(O,x)- E hi(x)u(ti’x)+ b(s)f3(s,u(s,x))dx a.e. on a,
=1 0

(7.1)

where O/Ou denotes the outward normal derivative, and 0 < I < < tn <_ T are



Functional Differential Equations with Nonlocal Initial Conditions 155

fixed. The following conditions will be imposed on the data of (7.1)" fi: [0, T] x
(i 1, 2, 3) are Carath6odory type functions such that

fi(’,O) G L2(O,T) and fi(t,x)-fi(t,y)[ < ki(t) x-y for all x, y G N,

and a.a. t E (0, T), with k e L2(0, T),

/3 is a maximal monotone graph in N x I with 0 G (0), (7.3)

a e L2((0, T)2), b G L2(O,T), h G Lee(f) (i- 1,...,n). (7.4)

Let X- L2(ft) and set

r}.a A, D(A) {u H2(f) --- G/3(u), a.e. on

By [3, Theorem 12], A is cyclically maximal monotone in X; moreover, by (7.3),
D(A) X. Next define G: C([0, T]; X)--+L2(0, T; X) and g: C([0, T]; X)--,X by

T

G(u)(t,.) fl(t,u(t,.)) + ] a(t,s)f2(s,u(s,.))ds,
o

and, respectively,
T

g(u)( E hi(" )u(ti’ )+ b(s)f3(u(s ))ds.
i=1 o

(7.6)

In view of (7.2) and (7.4) it is easily seen that G and g satisfy (H2) and (H3) with

T T T

M-/ kl(t) dt + / / a(t,s) k2(s) dsdt,
o o o

T

m E II hi II Lee(a)+
i=1 0

Hence, if we require that
n

II kl II LI(0,T)nt- II ak2 II Ll((0 T)2)+ II b]3 [1LI(0 T)-4- E II hi I[ Lee(a) < 1, (7.8)
i=1

then (3.1) holds.
It is now obvious that (7.1) can be rewritten in the abstract form (1.1) in

X L2(t2)with A, G, and g given by (7.5), (7.6), and (7.7) respectively. A direct
application of Theorem 3.7 (first part) yields.

Theorem 7.1: /f (7.1)-(7.4) and (7.8) are satisfied, then problem (7.1) has a uni-
que solution u G C([0, T]; L2(ft)) 71WI’2(e, T; L2(f)) (Ve G (0, T)), with u(t,. e
H2(a), a.e. on (O,T).
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