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A generalized quasilinear technique is employed to derive iterative schemes
for nonlinear Volterra integral equations under various monotonicity and
convexity (concavity) conditions on the kernels. The iterates in the
schemes are linear, and converge monotonically, uniformly and quadratical-
ly to the unique solution. An application to a boundary-layer theory pro-
blem and examples illustrating the results are presented.
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1. Introduction

For the nonlinear Volterra integral equation

(t)- h(t)+ / K(t,,())d, (1.1)
0

when K is nondecreasing in u and satisfies a Lipschitz condition, the successive appro-
ximations method [9] yields a monotonic sequence converging uniformly to the unique
solution of (1.1). On the other hand, if K is nonincreasing in u and satisfies a Lip-
schitz condition, then there is an alternating sequence of successive approximations
converging to the unique solution of (1.1) in a closed set bounded by lower and upper
functions [8]. The iterates defining the above sequences are nonlinear and the rate of
convergence is linear. The iterates employed in the monotone iterative technique [3,
5] are linear, and so is their convergence rate. Based on the quaslinearization idea [1],
the generalized quasilinear technique initiated in [6] and later extended in [4] offers
two monotonic sequences of linear iterates converging uniformly and quadratically
(and hence more rapidly) to the unique solution of the initial value problem

u’ f(t, u), u u(t). (1.2)
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The generalized quasilinear technique has recently found its way [2] into the initial-
boundary value problem for the two dimensional analog of (1.2), namely

Uxu f(x,y,U, Ux, Uu) u u(x,y), (1.3)

whereas it is still open for the (more difficult) periodic-boundary value problem asso-
ciated with (1.3).

The purpose of this paper is to develop linearly defined and quadratically conver-
gent iterative schemes for (1.1) under various monotonicity and convexity (concavity)
conditions on K. Of special interest is the case when K is nonincreasing and convex
in u. The boundary-layer theory problem [10], when transformed into a Volterra inte-
gral equation has a nonincreasing and convex kernel (see Example 4.2). It is apt to
note that the method of successive approximations when applied to nonlinear pro-
blems is especially useful, even for numerical computations, when the nonlinearities
are nonincreasing [7, 8]. In this case, we employ coupled lower, and upper solutions
in the development of our schemes (see Theorem 3.2). We present examples illustrat-
ing the results obtained.

2. Volterra Integral Inequalities

ForTENandT>0,1et J-[0, T] and D {(t, s) EJxJ;s_t}. Consider

u(t)- h(t) + / g(t,s, u(s))ds, t e J,
0

where h C[J, N] and K e C[D x N, N].
A function v C[J,N] is called an upper solution of (2.1) on J if

v(t) >_ h(t) + / g(t,s, v(s))ds, t e J,
0

and a lower solution, if the reversed inequalities hold. If

v(t) <_ + f >_ + ]
0 0

tEJ,

then v and w are said to be coupled lower and upper solutions of (2.1) on J.
Theorem 2.1: Suppose that

(i) K1,K2 C[D x ,]; h, v, w C[J,], and the inequalities

v(t) h(t)-- / I’l(t,8 v(s))d8 -- /o o
K2(t,s,w(s))ds,

w(t)

_
h(t) + J Kl(t,s w(s))ds-t- / K2(t,s, v(s))ds

o 0

(2.1)

hold for t @ J;
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(ii)
(iii)

It"1 is nondecreasing and K2 is nonincreasing in u for each fixed (t,s) E D;
K1 and K2 satisfy one-sided Lipschitz conditions

Kl(t,s,c Kl(t,s, 13 <_ L(c- fl), K2(t,s,c K2(t,s, >_ L(c-

whenever a >_ fl and L > 0 is a constant.
Then, v(O)<_ w(O) implies

v(t) <_ w(t), 0 < t <_ T. (2.2)

Proof: Fore > 0, sufficiently small, set ve(t v(t)-eexp(2LT), we(t w(t)
exp(2Lt), so that ve < v and we > w on J, and from conditions (i)-(iii) we obtain

and

ve(t < h(t) + / [Kl(t,s re(s)) + K2(t,s we(s))]ds
0

we(t > h(t) + / [K(t,s, we(s)) + K2(t,s, ve(s))]ds.
0

Therefore, it suffices to show that

ve(t < we(t), for 0 < t _< T. (2.3)

To this end, suppose that there is a point to, 0 < to _< T, such that ve(v < we(v for
0 < r < to and re(to) we(to). Then conditions (i) and (ii) yield the contradiction

o

ve(tO) < h(to) + / [Kl(to’s’ ve(s)) + K2(to, s, we(s))]ds
0

o

<_ h(to)+ ] [Kl(to’s’we(s))+ K2(to, s, ve(s))]ds
0

<

which justifies (2.3) and therewith the theorem.
Utilizing the ideas of Theorem 2.1 we can prove the existence of solutions of a

finite system of Volterra integral equations in a closed set. (See [3] for a similar re-

sult for systems of ordinary differential equations.) In what follows, vectorial inequali-
ties mean that the same inequalities hold for their corresponding components. Recall
that a vector function is continuous or nondecreasing (nonincreasing) when all its
components are such. For Vo, Wo G c[g, Nn], such that Vo(t <_ wo(t on J, let

fn {(t,s, u) D x Rn’Vo(t) <_ u <_ w0(t)}. Consider the system

h(t) + ] n(t, t

0

(2.4)
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(a)
Theorem 2.2: Let u, h C C[J,n] and R(t,s, u) C C[fn,n].

If v0, wo E C[J, Rn], Vo(t

_
wo(t on J, are lower and upper solutions of (2.4)

on J respectively, and R is nondecreasing in u for each fixed pair of s and t,
then there exists a solution u of (2.4) such that

vo(t

_
u(t)

_
wo(t on J.

Furthermore, if R satisfies Lipschitz condition
n

Rj(t,s,u)-Rj(t,s,v)l <_LIE ui-vil’ l<_j_n, (2.6)
--1

then, u is unique;
(b) If Vo, W0 C[J,n], vo(t

_
wo(t on J, are coupled lower and upper solu-

tions of (2.4) on g and R is nonincreasing in u for each fixed pair of s and t,
then there exists a solution (unique solution, if R satisfies (2.6)) u of (2.4)
satisfying (2.5).

The following vector integral inequality of Gronwall type is required in establish-
ing the quadratic convergence of iterates.

Lemma 2.1: Let u(t)

_
h(t) + f Au(s)ds, t e g where u,h G c[g,n] and

0
A (aij) is an n x n constant matrix with aij >_ O. Then,

u(t)

_
h(t) + / A ezp(A(t- s))h(s)ds, t J.

0

3. Generalized Quasilinearizaion

In the result below, we employ upper and lower solutions to develop a quadratically
convergent iterative scheme for (2.1) when the kernel K is nondecreasing and convex
in u. For Vo, Woec[J,R] and vo(t)<u<wo(t on J, let ft {(t, s, u) eDxR;
vo(t

_
u

_
wo(t), t J}. Let ]l u II max u(t) I, t J.

Theorem 3.1" Suppose that
(i) v0, w0 C[J,], vo(t <_ wo(t on J, and Co, wo are lower and upper solutions

of (2.1) on J, respectively;
(ii) g C2[, ], gu(t s, u) >_ O, Kuu(t s, u) >_ O, for (t, s, u) .

a a

{wn(t)} in C[J,R] such that vn--u and wn--,u uniformly on J, and the following quad-
ratic convergence estimates hold:

(3.1)

for n 1,2,..., where A > 0 and B > 0 are constants.
Proof: By assumption (ii), we have

and
K(t,s, u2) >_ K(t,s, ul) + Ku(t,s, ul)(U2 Ul),
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K(t, s, u2) K(t, s, Ul) <_ L(u2 t1), (3.3)

for (t, s, ttl) (t, 8, tt2) Ef], tt2

_
ttl, and L > 0 a constant.

terra integral equations

v(;t) h(t) -I- / I"l(t, 8, v0(8); v(8))ds, t C=_ J,
o

and

where

w(t) h(t) + / K2(t s, Vo(S), Wo(S); w(s))ds, t e J,
0

Consider the linear Vol-

(3.4)

(3.4)’

Kl(t,s, vo(s);v(s)) K(t,s, vo(s))-t- Ku(t,s, vo(s))(v(s Vo(S)),

and

 q(t, +

From (3.2), it follows that v0, w0 are lower and upper solutions of (3.4) and of (3.4)’
respectively. Since Ku > 0, and K1 and K2 are nondecreasing in v and w, respective-
ly, by Theorem 2.2(a) and the fact that (3.4) and (3.4)’ are linear, there exist a

unique solution vl(t of (3.4) and a unique solution wl(t of (3.4)’ such that vo(t <
vl(t < wo(t and vo(t < wl(t < wo(t on J. Now,

and

vl(t h(t) + /[K(t,s, Vo(S)) + Ku(t,s Vo(S))(Vl(S Vo(S))]ds
0

<_ h(t) + /
0

(3.5)

Wl(t h(t) + ] [K(t,s, wo(s)) + Ku(t,s, vo(s))(Wl(S Wo(S))]ds
0

>_ h(t)-t- / {Kt, S, Wl(S)) +[Ku(t,s, wl(s Ku(t,s, vo(s))](Wo(S Wl(S))}ds
0

>_ h(t) + / K(t,s, wl(S))ds. (3.5)’
0

To arrive at (3.5) and (3.5)’, we have used (3.2) and the facts that vl(t >_ vo(t),
Wo(t >_wl(t), wl(t >_Vo(t on J, and Ku(t,s,u is nondecreasing in u. Also,
vl(0) h(0)= Wl(0), K nondecreasing in u and satisfies one-sided Lipschitz condition
(3.3). Therefore, Theorem 2.1 implies that vl(t _< wl(t on J, and, consequently, we
have vo(t <_ vl(t _< wl(t _< wo(t on J. Continuing this process, we obtain a non-

decreasing sequence {vn(t)} and a nonincreasing sequence {Wn(t)} in C[J,N] where
vn(t and wn(t are (unique) solutions of the linear Volterra integral equations
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and

Vn(t)- h(t)+ j" Kl(t,s, vn_l(S);vn(s))ds, t E J,
0

wn(t h(t)+ / K2(t,s, vn_l(S), Wn_l(S);Wn(s))ds, t e J,
0

respectively, and satisfy

vo(t

_
vl(t

_
v2(t

_ _
vn(t

_
wn(t

_ _
w2(t

_
wl(t

_
wo(t (3.6)

on J. Employing standard arguments [3], it is easy to see that Vn-U and wn-u
uniformly on J, where u is the unique solution of (2.1) on J. It remains to show that
the sequences satisfy the estimates (3.1). To this end, by setting Pn(t)=
u(t) Vn(t >_ O, and qn(t) = wn(t -u(t) >_ O, we obtain

] [K(t’s’u(s))-K(t’s’vn-l(S))-Ku(t’s’vn-l(S))(Pn-l(s)-pn(s))]ds
0 -- f Kuu(t’s’(s))[Pn- l(S)]2ds -- / Ku(t’s’vn_ l(s))Pn(S)ds

0 o- / Ml[Pn-l(8)]2d8 + f M2Pn(8)ds’
0 0

where vn 1 < o < U, M1 --maxKuu and M2 -maxKu. Similarly,

qn(t)

-/ [Kt, s, wn 1(8) K(t,8, u(8)) -- Ku(t,s vn 1(8))(qn(8) qn- 1(8))]d8

<_/guu(t’s, fl(s))[qn 1(s) -- Pn- l(s))qn l(S)ds

+ f Ku(t’s’ vn l(s))qn(S)ds
0-- / {2Ml[qn_ 1(8)]2 -+- Ml[Pn_ 1(8)]2}d8 + / M2qn(s)ds’

0 0

where vn_ 1 < < wn-1" The desired inequalities in (3.1) now follow by applying
Lemma 2.1 to (3.7) and (3.7)’, thereby completing the proof.

In our next result, we employ coupled lower and upper solutions to make use of
the predominant effect of the nonincreasing character of K.

Theorem 3.2: Suppose that
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(i) v0, w0 E C[J,R], vo(t

_
Wo(t on J, and v0, w0 are coupled lower and upper

solutions of (2.1) on J;
(ii) g 62[, ], Ku(t s, u) <_ O, Kuu(t, s, u) >_ O, for (t,s, u) e .
Then, there exist monotone sequences {vn(t)} and {wn(t)} converging uniformly and
quadratically to the unique solution of (2.1) on J.

Proof: The assumption that Kuu >_ 0 yields the following inequalities which, in
view of the fact that Ku

_
O, are better suited in the context of coupled lower and

upper solutions:

and
K(t,s, u2) _< K(t,s, tl) -- Ku(t,s u2)(u2 tl)

K(t,s, u2) K(t,s, tl) >_ L(t2 tl)

(3.s)

(3.9)

for (t, s, t/l) (t, 8, tt2) l , u2 ttl, and L > O, a constant.
the coupled system of linear Volterra integral equations

For n 1, 2,..., consider

and

where

Vn(t h(t)+ f Rl(t,s, wn_l(S);Wn(S))ds, t G J
0

wn(t h(t)+ / R2(t,S, Wn_l(S),Vn_l(S);Vn(s))ds, t G J,
0

R1 (t, 8, wn 1(8); Wn(S))

K(t,s, wn 1(8)) -- Ku(t,s wn l(8))[Wn(8) Wn 1(8)]

and
I2(t,S, Wn_l(S),Vn_l(S);Vn(S))- K(t,S, Vn_l(S))-- Ku(t,S, Wn_ l(S))[Vn(S Vn_ l(S)].

As in Theorem 3.1, we obtain two monotone sequences {vn} and {Wn} satisfying (3.6)
and converging uniformly to the unique solution u of (2.1) on J. Setting
pn(t) u(t)- vn(t and qn(t)= Wn(t -u(t) we obtain the following inequalities in
place of (3.7) and (3.7)’:

Pn(t) < / Ml[qn_l(S)]2ds + / M2qn(s)ds, (3.10)
0 0

and

qn(t)

_
/ {2MI[Pn_ 1(8)]2d8 q- Ml[qn 1(8)]2}d8 + / M2Pn(S)ds’
0 0

(3.10)’

with the same constants M1 and M2 as before. Let

qn(t
and Q-

M2 0 2M1 M1
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Then (3.10)and (3.10)’ can be written as a system

rn(t) -- / Q[rn-l(S)]2ds+ ] Prn(s)ds"
o o

Lemma 2.1 now yields the required quadratic estimate

IIr. II <_ Q exp(AT)T II rn- 1 II 2,

and the proof is complete.

4. Examples and Other Related Results

The following examples illustrate some of the results in Section 3.
Example 4.1: Consider

where

K(t,s,u)

u(t)- / K(t,s,u(s))ds,
0

st- 2, if u < 0

st- 2cos u, if 0 < u < -st, if u > 7"

(4.1)

(4.2)

Then, K is nondecreasing and convex on [0, 1] [0, 1] [0,] and vo(t 2t and
wo(t --t are lower and upper solutions of (4.1) on [0,1] respectively. Theorem 3.1
therefore applies.

Example 4.2: The third order ordinary differential equation

y’" + 2yy" O, 0 < t < oc, y(O) y’(O) O, y"(O) 1 (4.3)

arises in connection with the boundary-layer theory of fluid flow [10].
formation u- -In y" reduces (4.3) to the Volterra integral equation

/ K(t,
0

in which the kernel

K(t, s, u) { (t s)2exp((t-s)2,-
u), ifif Uu >< 00

The trans-

(4.4)

3
is nonincreasing and convex in u. The functions vo(t -0 and w0 --$ form a pair of
coupled lower and upper solutions of (4.4) on any interval J [0, T], T > 0.
Theorem 3.2 therefore yields a quadratically convergent linear iterative scheme for
(4.4) whose convergence is more rapid than the (nonlinear) alternating sequence
scheme of [8, page 282].

By appropriately modifying kernel inequalities (3.2), (3.3), (3.8), (3.9), and defin-
ing the iterates vn and wn accordingly, we can obtain the following related results.
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Theorem 4.1: Theorem 3.1 holds if condition(ii) therein is replaced by
(ii)’ K E C2[a,N], Ku(t,s, u) >_ O, Kuu(t,s, u) <_ O, for (t,s, u) a.

Theorem 4.2: Theorem 3.2 holds if condition (ii) therein is replaced by
(ii)" It" e C2[ft, N], Ku(t,s, u) <_ O, Kuu(t, s, u) <_ O, for (t, s, u) e ft.

Example 4.3: Let A > 0 and 0 < a < 1 be real numbers. The kernel

0, if u<0

K(t,s, u) (u + 1)c, if 0 _< u _< A (4.5)

(A + 1)c, if u > A

satisfies the conditions of Theorem 4.1 with h(t)=0, v0(t)=t, and w0(t)=
(A + 1)at. The kernel

0, if u<0

g(t,s, u)- -u2, if 0 _< u < A (4.6)
--A2, if u > A

satisfies the conditions of Theorem 4.2, with vo -A2t and wo(t -0 as a pair of
coupled upper and lower solutions, and h(t) =_ O.

Example 4.4: Consider

u(t)-- / K(t,s,u(s))ds, (4.)
0

where

st 2, u < 0

K(t, s, u) st- 2cos u- u2, 0 < u <
2

St r

(4.8)

Notice that K in (4.8) is not of any of the types considered in Examples 4.1-4.3 but
can be expressed as K K1 + K2 where K1 is of type (4.2) and K2 is of type (4.6).
The following result, which combines the features of Theorem 3.1 and Theorem 4.2,
is applicable to (4.7).

Theorem 4.3: Let K K1 + K2. Suppose that
(i) h, Vo, wo @ C[J,], vo <_ wo on J, and satisfy

vo(t <_ h(t)-- / [Kl(t,s Vo(S))+ K2(t,s Wo(S))]ds t J,
0

wo(t >_ h(t)+ / [K(t,s, wo(s))+ K2t, s, vo(s))]ds J;
0

(ii) K1, K2 @ C[a, ], Klu(t, s, u) >_ O, K2u(t s, u) <_ O, Kluu(t, s, u) >_ O,
K2uu(t,s, u) <_ O, for (t,s, u) e f.

Then, there exist monotone sequences {Vn} and {wn} on J, converging uniformly and
quadratically to the unique solution of (4.7) on J.
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