
Journal of Applied Mathematics and Stochastic Analysis, 10:2 (1997), 179-186.

REACTION DIFFUSION EQUATIONS AND
QUADRATIC CONVERGENCE

A.S. VATSALA and MOHAMED A. MAHROUS
University of Southwestern Louisiana

Department of Mathematics
Lafayette, LA 70504-1010 USA

HADI YAHYA ALKAHBY
Dillard University

Department of Mathematics
New Orleans, LA 70122-3097 USA

(Received January, 1996; Revised August, 1996)

In this paper, the method of generalized quasilinearization has been extend-
ed to reaction diffusion equations. The extension includes earlier known re-
sults as special cases. The earlier results developed are when (i) the right-
hand side function is the sum of a convex and concave function, and (ii)
the right-hand function can be made convex by adding a convex function.
In our present result, if the monotone iterates are mildly nonlinear, we

establish the quadratic convergence as in the quasilinearization method. If
the iterates are totally linear then the iterates converge semi-quadratically.
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1. Introduction

The method of quasilinearization [1, 2, 3] is known to be a constructive approach to
prove the existence of a solution of initial and boundary value problems. However,
this method is applicable only if the right-hand side function is convex or concave.

Also, the method yields either an increasing or decreasing sequence of approximate
solutions which converge quadratically to the exact solution. The main advantage of
the method is that the iterates are solutions of linear differential equations. Recently,
the method has been extended, generalized, and revitalized so that it applies to a

larger class of functions. See [6-13, 15-19] for details. In addition, two-sided bounds
for the solution are obtained as in the monotone method. This method is now referr-
ed to as generalized quasilinearization. Recently, the method of generalized quasilin-
earization was extended to a dynamic system on time scales [13] so that it applies to
many situations. This paper deals with an extension of the method of generalized
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quasilinearization to reaction diffusion equations.
know results [19, 21] as special cases.

The present result yields the earlier

2. Preliminaries

In this section we list the assumptions and recall some known existence and
comparison theorems which are needed to establish our main result. See [4, 5, 15, 21]
for more details.

Consider the reaction diffusion system with initial and boundary value problem
(IBVP for short) of the form

u f(t, z, u) in QT
Bu- on FT (2.1)

u(O,x)- Uo(X in ,
where fl is a bounded domain in Rm with boundary 0fl E C2+a and closure ,
QT (0, T] , rT (0, T) 0fl, (T [0, T] x , rT [0, T] 0n, T > 0. Here
is a second order differential operator defined by

O_ L

+L aij(t’ X)OxiOxj 1i,j=l

and B is the boundary operator given by

Bu p(t, x)u + q(t, x)du (2.4)dT’
where -- denotes the normal derivative of u, and 7(t,x) is the unit outward normal
vector eld on O for t E [0, T].

We list the following assumptions for convenience.

(A0) (i) For each i, j 1,...,_m, aij bj C/2’ a[T, R] and is strictly uni-
formly parabolic in QT;

(ii) p, q G C1 + a/2,1 + a[T, ], p(t,x) > 0, q(t,x) 0 on FT;
(iii) 0fl belongs to C2 + a;
(iv) f G Ca/’ a[[0, T] x x R, R], that is f(t, x, u) is HSlder continuous

a and a respectively;in t and (x, u) with exponent y

(v) C + a/2,1 + a[T, ], and Uo(X G C2 + a[, R];

(vi) The initial boundary value problem (2.1) satisfies the compatibility

condition of order [(1+2 a)]. See [4] for definition.

We say a function vo G CI’2[QT, R] is called a lower solution ofDefinition 2.1:
(2.1), if

Vo
_

f(t,x, vo),
 0(0, B 0(t,
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and upper solution of (2.1) if reversed inequality holds.
We denote the closed set

h -[,: Vo(t,x) <_ <_ ,o(t, :), (t,) Q].
We recall a known existence result which proves the existence of a solution of (2.1) in
the closed set defined by means of the upper and lower solution of (2.1).

Theorem 2.1: Assume (Ao) holds, and that there exists vo and wo e CI’2[QT,_R
which are lower and upper solutions of (2.1) such that Vo(t,x

_
wo(t,x on (T"

Then the initial boundary value problem (2.1) has a solution belonging to
C1 +a/2,2 +a[T,R] such that vo(t,x

_
u(t,x)

_
wo(t,x on T"

See [4, 14, 19] for details. Next we give two comparison theorems which we need
in the main result to prove the monotonicity of the iterates and quadratic conver-
gence part respectively.

Theorem 2.2: Assume that
(i) v,w E cl’2[t,R],f C[TR,R and

v <_ f(t,x, v),
Lw

_
f(t,x, w) on QT,

(ii) (a) v(0, x) _< w(0, x), x e ,
(b) Bv(t,x) <_ Bw(t,x) on FT, where the boundary operator B is as in

(2.4) such that p(t,x)>O, q(t,x)>_O and p(t,x)+q(t,x)>O on
FT

Then if f(t,x, u) is Lipschitzian in u for a constant L > O, then v(t,x) <_ w(t,x).
See [4] for the details for the proof.
The next result is a special case of Theorem 10.2.1 of [5].
Theorem 2.3: Suppose that
(i) mGCI’2[QT, I+] such that m<_f(t,x,m) where f(t,x,u) G

C[QT R, R] where the operator is parabolic,
(ii) g G C[[0, T] R +,R] and let r(t, O, Yo) -> 0 be the maximal solution of the

differential equations

’ (t, ), (o) o > o,
existing for t >_ 0 and

f(t,x,z) <_ g(t,z), z >_ 0;

() -(0,) < r(0, 0, 0) o .
Then m(t, x) <_ r(t, 0, Y0) on QT"

3. Generalized Quasilinearization

Theorem 3.1: Suppose that there exist functions Vo, Wo, Sj, j- 1,2 under the follow-
ing assumptions:

(A1) Vo, w0 CI’2[QT, I], Lv0 <_ S,i(t,z Vo, Vo, Wo) and Lw0 >_ Sj(t,x, Wo, Vo, Wo)
for j- 1,2 such that vo(O,x) <_ Uo(X <_ wo(O,x in 2, Bvo(x <_ (x) <_
Bo( on rT, o < o on QT;

(A2) jC/2’[[O,T]A3, R], that is j is Hilder continuous in t andx,
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u with exponent /2 and respectively, where Sj(t,x,u,v,w) is such that

Si(t, X 1, it, W) f(t, u),S(t,x, u, v, u) f(t, u),
and Sj(t,x, u, u, u) f(t, u);

(A3) Sl(t,x,u,v,w <_ Sl(t,x,u,u,w if v <_ u for each w on A and
S2(t, x, u, v, w) >_ S2(t x, u, v, u) if w <_ u for each v on A;

(A4) Further, Sj’s are such that

<_M[U-Ul[ +N[lu-v[l+’-F ]u-wl 1+’]
for 0 < l <_ 1, where M, N are nonnegative constants.

Then, there exist monotone sequences {v_u(t,x)} and {Wn(t,x)} which converge uni-
formly to the unique solution of (2.1) on QT and the convergence is superlinear.

Proof: Consider the initial boundary value problems

.v1 Sl(t, x, Vl, Co, Wo) in QT, [ (3.1
v1(0, x) Uo(X on , Bvl(t, x) on FT,

and

wI S2(t,x wl, Co, Wo) in QT,
(3.2)

Wl(O,x to(X on , BWl(t,x on FT,

where vo(O,x

_
Uo(X

_
wo(O,x and Bvo(t,x

_ _
Bwo(t,x on fl and FT, respec-

tively. With assumptions (A1) and (A2) we have

v0 _< f(t,x, Co) Sl(t,x Co, Co, WO)
and

w0 >_ f(t, x, Wo) S1 (t, x, Wo, Co, Wo).
Consequently, Theorem 2.1 yields the existence of a unique solution vl(t,x of (3.1)
satisfying vo(t,x <_ vl(t,x <_ wo(t,x on QT"

Similarly, in view of (A1) and (A2) we also have

v0 < f(t, x, Co) < S2(t x, Co, v0, w0)
wo >_ f(t, x, Wo) > S2(t x, Wo, Co, Wo);

which, by Theorem 2.1, yields the existence of a unique solution wl(t,x of (3.2) with
Vo(t,x

_
wl(t,x

_
Wo(t,x on QT"

Now, since vo _< v and w _< wo on QT, using (An) we have,

.V1

__
l(t, X, Ca, V0, W0)

__
l(t, X, Vl, Vl, W0) f(t, Vl)

-> >-
Hence, by Theorem 2.2, we get v(t,x) <_ wl(t,x on QT and this proves that

V0_ V1

__
W1 W0 on QT" (3.3)
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Furthermore, it proves that v1 and W1 are lower and upper solutions of (2.1).
Assume now that for some k > 1 and for (t,x) E QT,

vk <_ f(t, x, vk) in QT,
vlc(O,x Uo(X on f, (3.4)

Bvk(t,x on FT,
and

w} >_ f(t,x, w) in QT,
wk(O,x --Uo(X on f, (3.5)

Bwk(t,x) on FT,
and vo<_vk<_wk<_wo on QT" Certainly it holds true for k-1. Then consider the
initial boundary value problems

Vk + 1 l(t’ X, vk + 1’ Vk’ Wk) on QT,
Vk + 1(0, X) tO(X on it, (3.6)

BVk + 1 (t, x) on FT,
and

Wk + 1 S2(t, x, wk + 1, Vk, Wk) on QT,
wk + 1(0, x) Uo(X on it,

Bvk+l(t,x)-on FT
It is easy to see from assumptions (A2) that

and

(3.7)

vk <_ f(t,x, vk) Col(t,x vk, vk, wk) in QT,

vk(O,x Uo(X on f,

on rT,

wk >_ f(t, x, Wk) S2(t x, Wk, Vk, Wk) in QT,

wk(O, x --Uo(X on ft,

Bw(O,x) on FT.
By Theorem 2.1, there exists a unique solution vk + l(t,x) of (3.6) satisfying

vk(t,x <_ vk + l(t, x) _< wk(t,x on QT"
Similarly, one can show the existence of a unique solution wk(t,x) of (3.7) satisfy-

"Wk -- 1 S2(t’ x, Wk + 1’ Vk’ Wk) -- S2(t’x’ Wk + 1’ Vk’ Wk + 1) f(t,x, wk + 1)"
By Theorem 2.2, it follows that v + 1 --< Wk-i-1 on QT" Thus we have

"Vk -t- 1 Sl(t’ X, Vk + 1’ Vk’ Wk) -- Sl(t’ X, Vk + 1’ Vk + 1’ Wk) f(t, x, vk + 1)
and

ing vk(t,x < wk + l(t,x) _< wk(t,x on QT" Using (A3) and the facts that vk < vk +1
and wk + 1 <-- wk, we can see that
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vk -- vk -t- 1 -- wk -t- 1 -- Wk on QT"
By induction, we then we have for all n,

vO<_v1 <_v2<_...<_vn<_wn<_...<_w1 <_wOonQT,
with

and

"vn + 1 l(t, x, Vn + 1, vn, Wn) in QT,

v. + 1(0, ) 0() on ,
Bv, + (t, x) on rT,

Wn + 1 S2t, x, Wn + 1, Vn, Wn) in QT,
Wn q_ 1(0, X) t0(X on

Bw, + (t,x) on FT.
Employing standard arguments and using Theorem 2.2, we can conclude that the
sequences {Vn(t,x)} and {wn(t,x)} converge uniformly and monotonically to the
unique solution u(t,x) on (2.1) on QT"

In order to prove superlinear convergence of Vn(t,x and Wn(t,x to u(t,x), we set

Pn + l(t, x) u(t,x) Vn(t,x)_and qn + l(t, x) Wn(t,x) u(t,x) so that Pn + l(t, x)_
>_0 and qn+l(t,x)>-O on QT" Also, we have Pn+l(O,x)-O-qn+l(O,x) on
and BPn + l(t, x) 0 Bqn + l(t,x) on FT. Using (A4) we obtain

Zpn + l(t) _< Mpn + l(t, x) -k- N[ pn(t,x) 1 + rt -k- qn(t,x) 1 + rt], on (T"

Now using Theorem 2.3 and computing the solution of the corresponding ordinary
linear differential equation we get

0 Pn +l(t’ X)

_
/ eM(t -)NIax[Ip(s)l 1 + u / q(s) 11 + U]ds.
0

This in turn proves

(eMT--M 1)N[mx (t, ) v + l(t, ) < %x (t,) v(t,)ll+"
QT

+ mx (t,)- (t, )1 +
QT

Similarly, we can get the estimate

max wn + l(t x) u(t,x) -< (eMT--M 1)N[x (t, )- v(t,) +.
QT T

+ max Wn(t, x)- u(t, X) -t- r/].
QT

This completes the proof.

The following result can be proved as an application of Theorem 3.1.

Theorem 3.2: Assume that all of (Ao) holds except (iv). Furthermore, assume
that

(A1) vo and wo G CI’2[T,R] which are lower and upper solutions of (2.1) such
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(A2)
that vo(t,x

_
wo(t,x on QT"

Let f(t,x,u) fl(t,x) + f2(t,x,u) + f3(t,x,u) are such that fl(t,x,u) +
(t,x,u) and (t,x,u) are uniformly convex in u on A (i.e.,
fluu+puu>_O and (tx, u)>_O). Also let f2(t,x,u)+t(t,x,u) and
t(t,x,u) be uniformly concave in u (i.e., f2uu W uu <- 0 and

(t,x, u)_< 0) on A, and f3(t,x, u) be Lipschitzian in u on A, i.e.,

f3(t, x, 721)- f3(t, x, u2)

_
]ttI it21

(t, x, u) and f3(t, x, u) E Ca/2, a[[0, T] x x R, R]. That is, F(t, x,) G(t, x, u),
f3(t,.,) a Hd cotnuou n t,. ad of od /, pctV. Thn
there exists monotone sequences {Vn(t,x)} and {Wn(t,x)} which converge uniformly
and monotonically to the unique solution of (2.1) and the convergence is quadratic.

and

Proofi Choose Sj as follows"

Sl(t,x u, v, w) fl(t,x, v) + f2(t,x, v) + f3(t,x, u)

+ [r(t,, ) + a(t,,) %(t,., ) (t,, v)]( v)

S2(t x, u, v, w) fl(t, x, w) + f2(t, x, w) + f3(t, x, u)

+ [Fu(t x, v) + Gu(t x, w) (u(t, x, w) qZu(t x, v)](u w).
One can easily verify that Sj, j- 1,2, defined above, satisfy all the hypotheses of
Theorem 3.1. Hence the conclusion follows.

We note that Theorem 3.2 includes results of [21] as a special case if we choose

f2- f3- 0 in Theorem 3.2. Also the iterates generated from (3.6) and (3.7) from
the Sj defined above are nonlinear due to f3(t, x, u) term. If we make it linear as in
the monotone method we get semi-quadratic convergence as in [18] for initial value
problems.
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