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1. Introduction

Let c (i -1, 2, .p) and j (j -1, 2, ., q) be complex numbers with j # 0,-1,
-2,...; j- 1,2,..., q. The generalized hypergeometric function pFq(Z) is defined by

zpFq(z)- pFq(Ol,...,Op;Jl,...,jq;Z nZ=o-(l)-. : n’ (1)

r(x+) A(A + 1)...( +n- 1) if n- 1,2,where pq+l, (A)0-1, and (A)n- r()
The series given by (1) converges absolutely for z[ < if p < q + 1, and for z in
the open unit disk U={z:]z] <1} ifp=q+l. For suitable values ofai and j,
pFq(z) is closely related to classes of analytic and univalent functions. A quote from
Miller and Mocanu [12] reads: "The surprising use of hypergeometric functions in the
recent proof of the Bieberbach conjecture by L. de Branges [4] in 1985 has prompted
renewed interest in these classes of functions. Prior to this proof, there had been only
a few articles in the literature dealing with the relationship between these special
functions and univalent function theory." It is well-known that hypergeometric and
univalent functions play important roles in a large variety of problems encountered in
applied mathematics, probability and statistics, operations research, signal theory,
moment problems, and other areas. For further references and applications see Exton
[6, 7] and RSnning [16]. In this paper we introduce a new approach for studying the
relationships between classes of hypergeometric and analytic univalent functions. We
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hope this approach will motivate further work in this direction. In Section 2 we

discuss the convolution properties of classes of hypergeometric functions 2F1 In
Section 3 we determine the conditions on the location of the zeros of the partial sums

of 2F1 that are close-to-convex of order a; a > 0.

2. Convolution Properties of 2F1
For p- q q- 1 2, the series defined by (1) gives rise to the Gaussian hypergeometric
series 2Fl(a,b:c’z). This reduces to the elementary Gaussian geometric series 1 +
z/z2+.., if (i) a-c and b-1 or (ii) a-1 and b-c. When Re(c)>Re(b)>O,
we obtain

fr(C) lb- 1(1 )a b 1

2Fl(a’ b; c; z) ,z
0

As a special case, we see that
1

2Fl(1 1;a;z)--(a-1)j (1-t)a-2
1-tz

dt

0
and

2F(a’l;1;z) (1
1
Z)a

so that

1 2Fl(1,1;1; z).2Fl(l’l;a;z)* 2Fl(a’l;1;z)- 1-z

The operator stands for the Hadamard product or convolution of two power series

f(z) n=oanzn and g(z)- n=obnz, that is, (f,g)(z)- f(z)*g(z)-
n oanbnz If f and g are analytic in U then the convolution f,g is also analytic

in U. An alternative representation for the Hadamard product is the convolution inte-
gral

(f,g)(z) 1 / lf()g()d, z7 I<1.

Two power series f and g are said to be the convolulion inverses of each other when-
ever the convolution f,g (give.s1) the identity power series 1/(1- z). In this case we

write f g( 1) or g f So, 2Fl(1,1; a; z) and 2Fl(a, 1; 1; z) are convolution
inverses of each other. The function Z2Fl(1 1; 1;z)= z/(1- z) is a typical example
of a convex univalent function. A function f(z) which is analytic in U is said to be
convez univalent in U [5] if f(z)is univalent and conformally maps the disk {z:
zl < r < 1} onto a convex region so that the boundary of the region is a simple

closed convex curve. Alexander [3] showed that f(z) is convex in V if and only if
zf’(z) is starlike in U. A function f(z) is said to be starlike in U [5] if every point of
the image of {z: z r < 1} under the conformal mapping f is "visible" from the
origin. A necessary and sufficient condition for f(z) to be analytic and starlike of

order a; a < 1 in U is that Re{zl’(z)}1() >_ a, z E U. Let S*(a) denote the class of func-
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tions f that are analytic and starlike of order a; a <_ 1 in U. With a simple
calculation [17] we see that if f E S*(a), a _< 1, then there exists a probability mea-
sure # on OU such that

f(z) / Z2Fl(2 2c, 1; 1; z)d#().
OU

In particular,

f(z) << z2F1(2 2c, 1;;z) z

(1 z)2-2a"
For the power series f(z)- On oanzn and F(z)- n oAnzn convergent in U
we say f(z) is dominated or marjorized by F(z), in notation, f(z) << F(z), if

lanl <_An.
For t> -1/2, k> -1/2, and xl <1 we define F(t, k, x) by

P(nt:k)(x!zn-IF(t,k,x) Z=op,,k),,(1
(t, (see Lewis [11]) the Jacobi polynomialswhere z E U, and Pn k)(x) are

p(nt, k)(x) (1 + t)n
n! 2F1(- n,t + k + n + 1;t + 1; ! - x).

From the definitions of F(t,k,x), convex, and starlike functions, it follows that
F(1/2,1/2, x)is convex in U and F(0, 0, x)is starlike of order 1/2 in U. Next, we use star-
like functions to construct a class of analytic functions which is the subject to our in-
vestigation in the following section. We say a function f(z) is analytic and close-to-
convex (or linearly accessible) in U [5] if the "complement" of the image of
{z: Ix _< r < 1} under conformal mapping f is the union of a family of non-intersect-
ing half-lines. A function f(z) is said to be analytic and close-to-convex of order ;
> 0 in U, in notation C(c), if and only if there exists a function g in S*(0) such

that

arg g(z) < zU.

Many authors including ([1, 2 and 10-18]) studied the properties of classes of convex,
starlike, and close-to-convex hypergeometric functions. In this paper we investigate
the locations of the zeros of partial sums of close-to-convex hypergeometric series.
We are not aware of any previous work that has adopted this approach.

3. Partial Sums of 2F1
Let 2Fl(a, b; c; z) be so that its n-th partial sums 2Fl(a, b; c; z)n can be written as

2Fl(a’b;c;z)n- H (1 / zeiCk),
k=l

where 0 _< 1 -- 2 --"" -- Cn -- 1 / 2r and z G U. For such polynomials we have
z

z3F2(a’b’l;c’2;Z)n- / 2Fl(a’b;c;)nd"
0
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Actually, this is true even without truncating the Gaussian hypergeometric series and
holds also true under certain convergence conditions for the infinite generalized hyper-
geometric series defined by (1).

Using the change of argument properties of close-to-convex functions in conjunc-
tion with a result due to the author (let/3 2 + c in [8]) we have the following theo-
rem.

Theorem 1: Let 1 < c < n. Then z3F2(a,b 1;c, 2;z)n is close-to-convex of order
c: c > O, if and only if

max{O’2(rn
n
++1-2 c)r} <- I +m--el <- min{2(m +n+21+ c)rr, 2r} (3)

where 2 <_ + rn <_ n and l <_ l, rn <_ n-1.
To see the relations between the parameters a,b,c, and Ck we examine a special

case when c- 1 and n- 2. For a- 1, inequality (3) reduces to

2mrr < el -el < 2(m + 2)rr
n+2- +m n+2 (4)

Consequently, for n- 2 we deduce that if zaF2(a,b, 1;c,2;z)2 is in C(1), then

2Fl(a, b; c; z)2 << 1 -+- v/-z + z2. (5)

An extremal case, which satisfies condition (5), is

2F1 (a X/r-2-2aa(/r-2-2a) )a+2 (a+2)V
;z

2"
For a non-extremal case, let a 1/2, b 2, and c 2 Therefore,

2

H (1 + zeiCk).2F1(1/2, 2; 1/2(-1 -+- T); z)2
k=l

In this case, cos- a( +
2 and 2- 2u-, which satisfies condition (4)

when n-2. As a more general case, let 2n-4. A necessary condition for
zaF2(a b, 1; c, 2; z)4 to be close-to-convex of order is that

5-a (2j + -6)i
2F(a, b; c; z)4 << P4(z;)- (1 +z)-a (1+ ze 6 ).

j=l

The polynomial P4(z; c) plays an important role in the convolution of close-to-convex
hypergeometric functions. The following theorem is a consequence of the above
argument and an application of a result due to the author [9].

Theorem 2: If z3F2(al,bl,1;Cl,2;z)4 and z3F2(a2, b2,1;c2,2;z)4 are close-to-
convex of order ; c=2,3 and 4, then the convolution z{5Fa(al,a2, bl,b2,1;
Cl, c2, 2; z)4*P4(z; o)} has the same property.

The above theorem for the case c 1 was proved by Suffridge ([19], Theorem 5).
We do not know if a similar convolution invariance property holds for the general
case c > 0. This remains open. A potential candidate for further investigation is the
extremal polynomial
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Pn(z; ) (1 + z)[a] 1 n+-[a](1 (2j+[]-n-2)i)n+2H +ze
=1

where [c] stands for the integer part of a. (See also the Conjecture in [9].)
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