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A random map is a discrete time dynamical system in which one of a num-
ber of transformations is selected randomly and implemented. Random
maps have been used recently to model interference effects in quantum phy-
sics. The main results of this paper deal with the Lyapunov exponents for
higher dimensional random maps, where the individual maps are Jablonski
maps on the n-dimensional cube.
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1. Introduction

Ergodic theory of dynamical systems deals with the qualitative analysis of iterations
of a single transformation. Ulam and von Neuman [12] suggested the study of more
general systems where one applies at each iteration a different transformation chosen
at random from a set of transformations. In this setting one could consider a single
transformation, where parameters defining the transformation are allowed to vary dis-
cretely or even continuously.

The importance of studying higher dimensional random maps is, in part, inspired
by fractals that are fixed points of iterated functions systems [1]. Iterated function
systems can be viewed as random maps, where the individual transformations are con-
tractions. Recently, random maps were used in modeling interference effects such as
those that occur in the two-slit experiment of quantum physics [2]. For a general
study of ergodic theory of random maps, the reader is referred to the text by Kifer
[8]. Additional ergodic properties of random maps can be found in [4, 5, 10] and [11].

One of the most important ways of quantifying the complexity of a dynamical
system is by means of the Lyapunov exponent. This quantifier of chaos can be
defined for random maps. In this paper, we develop formulas for the individual Lya-
punov exponents for higher dimensional maps, where the basic maps are Jablonski
maps on the n-dimensional cube [7].
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2. Lyapunov Exponents

Our considerations are based on Oseledec’s Multiplicative Ergodic Theorem [9]. Let
(X,B, m) be a probability space and let 7 be a measurable transformation 7: X—X
preserving an invariant measure p, absolutely continuous with respect to m. Let A:
X—-GL(n, IR) be a measurable map with flog T A() || dp < + oo

Then, in particular, the limit

A, 5 lim %log | A(7% ~1e) A(r% ~ 22).. (A(7z)) Az)v ||

exists for any v € R™ and g almost any ¢ € X. The number A, can have one of at
most n values Aj,..., A .

In this note, X = I" =[0,1]" and m is the Lebesgue measure on I™. 7 is a piece-
wise expanding C? transformation and A(z) is the derivative matrix of 7, where it is
well defined (it is not defined on a set of measure 0). In this case, the numbers
Afs-. A, are called Lyapunov exponents.

More precisely, let ¥ = {Dy,.. Dq} be a partition of I"™ into subsets with piece-
wise C? boundaries. Let

r(e) = ¥,(a), €D,
where ¢j is C?, 1-1 and onto its image, j = 1,...,9. Then,
A(z) = Aj(z), =€ D,
where A j is the derivative matrix of ¥ I If

ij(x) = (1/)11'(1’)7 ) d’nj(‘c))?

then
e VINNASY) 15\
8:::1 8:1;2 Tt an
81/)2J- 81/;2j 61/;2j
Oz oz cee oz
— 1 2

A j(x) = _n
3%;’ 81/)nj a¢nj
azl 8:1:2 toe axn )

3. Jablonski Transformations
We say that 7: I"—I" is a Jablonski transformation if
() = (Y1), V() = (¥1,(T1)s- - 0 ¥y j(2,))y 2 € D5 = 1,2, g,

where P ={Dy,...,D } is a rectangular partition of I", i.e., D;=1_la;

iy zg)’
where [a,b) = [a, b] 1f §=1.
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These transformations are among the simplest non-trivial higher dimensional
transformations that have absolutely continuous invariant measures. They are useful
in approximating the ergodic behavior of more complex higher dimensional transform-
ations [3]. Jablonski transformations have also proven to be useful in modeling
cellular automata problems [6].

For the Jablonski transformation 7, the derivative matrix

1 j(ml)
(ZHEDY 0
A(IL'):AJ(II?)= J . ,:L‘GDj.
If 7 is piecewise C? and there exists a constant s > 1 such that
inf
iyj [01J, 1]]l¢’]l =

then ([7]) there exists a measure p invariant under 7 (with density f) with respect to
Lebesgue measure.

All measures considered in this paper are assumed to be probability measures.
The transformations 7 we consider have a finite number of ergodic absolutely contin-
uous measures. To simplify our considerations, we assume that the absolutely contin-
uous invariant measure p is unique. Maps, which are piecewise onto, will satisfy this
condition as will maps which are Markov and for which the matrix A is irreducible.
In the general case we would consider each ergodic absolutely continuous measure pu;,
i = 1,...,k, separately and our formulas would hold for each of them pu -a.e.

For any i = 1 2,...,n, the basic vector v; =(0,...,0,1,0,...,0) (the only nonzero
term is in the 7t posmon), we have the itP Lyapunov exponent of 7:

A, =lim Llog || A(7F ~1z).. A(rz) A(z)v, ||
k—o0 k t

. Vi & Vi, \0Y;
= lim 2 log|| (r Lz)... i(m);,—m—i(z)ll

k-1 31/)- 61,0-
m k3 logl (el | = [ 1081 5ia)

Iﬂ

/ l0g 52(e) | S(x)d = 3 / log | 3240) | (2)d

j= 1
/ log | 41,(2) | £(2)da.
j =1y

We do not assume that the A;’s are numbered in increasing order nor that they are
all different.
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4. Quasi-Jablonski Transformations

We now restrict ourselves to dimension 2. We say that 7: I2>—I? is a quasi-Jablonski

transformation if 7(z) = (¢;(z),v4(z)) = (wlj(xz) 1/)2](331)), zeD; j=12,...,4,
where ® ={D;,...,D ;} is a rectangular partition of I?, and D;= [aIJ,bU) X
[a, J,b ). Note that 9, j is a function of z, and 1, ; is a function of zy-

For the quasi-Jablonski transformation 7, the d7er1vat1ve matrix is given by

0 ¥i,(xy)
A = AJ = y T (S D]'
Ypi(e) 0

If there exists a constant s > 1 such that

inf inf [¢j;] >,
b3 lag5bi

then 72 is an expanding Jablonski transformation and there exists a measure g invar-
iant under 72 with density f with respect to Lebesgue measure.

If we take v; =< é ), then

IS T
T\ 2w )

A(re) A(z)v, = (—Z—'g(m";—ff(w),o),

It follows that
.1 k—
A :kh_)ngo—,;log || A(7* ~1z).. . A(Tz) A(z)v, ||
= lim ——-—log | A(r%* ~ 1z, A(rz)A(z)v, ||

l[)1(,1_.2k—1 )8¢2( 2k—2 ) 61/)2( 2 )61/)1( )a"bZ( )I

=lim 5plog | 5 9z,

3 Jim [Zlogl k(e +Zlog| ’”l(ﬂ’“m}

oY oY
=4 [1og 1522 1du-+5 [ 1051 52 du
2 12

/ (log | 94 (a2) | +1o8 ] ¥h(21) )f (2)d.

]_1
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If we take v, ::( (1) ) then, as above, we have

Ny =Jim LA~ 1a). A(rz)Aa)v, |

=1

P
=53 [ (o ¥i (a0 | +1og 1 ¥h,a) NS @)z = .
D.
J
It is easy to see that no other value is possible as a limit A,.

5. Random Maps

Let {r,}7%; be a sequence of transformations from X into X. A random map
3= {{r}7% 1, {pr,}7% 1} is a discrete dynamical system, where at each iteration, 7, is
chosen with probability p,, p, >0, > ¢ 19, = 1.

Formally, we define 3(1)(71) = ‘rtl(m), and
We)=r, (* V@) =r, o, o..07 (a),

where each t, is chosen with probability p, , s=1,...,k, t,€{1,2,...}. We also
define: y

AW(@) = (W (@)y
=4, (F V@) 4, (“D@)...4, (V@) 4, (),
where A, = (7, ) is the matrix derivative of 7, .

The above definition represents 3 as a Markov stochastic process with transition
probability function

P(z,A) = io: PeX A(T,2)-

t=1
There is an alternative way [10] of defining the random map 3. Let Q@ = {w =
WpyWyy-.)iw, =1,2,..5 1=0,1,2,...}. Let 0:Q—Q be the left shift, i.e.,
01 1

0 (wg, Wy, Woy...) = (wq, Wy, ...).
Then the random map 3 can be represented as the skew-product transformation

T: X x Q—X xQ defined by T(z,w) = (7, (z),0(w)),(z,w) € X xQ.
“o

6. Random Jablonski Transformation

Let X =1" and 3= {{7,}7% 1,{p,}7% 1}: I"—I" be a random Jablonski transforma-
tion, i.e., 7, is a Jablonski transformation for t =1,2,.... Assume that there exists
an absolutely continuous measure zi with density f invariant under the random map
3. Sufficient conditions for existence are given in Theorem 2 of [4]. For any measur-
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able subset B of I", we have 3¢ ;p,fi(r; '!B) = i(B). Now consider the represen-
tation of the random map by a skew-product transformation T:I" x Q— I™ x Q.

Let P be the product measure on Q, P((wy,...)) = Pugy for any wy € {1,2,...}.
We will show that the measure p given by p(Bx (wo, .)) = B (B)P(wy), where
P(wg) = P((wgs...)), is T invariant. We have:

(T =B x (wg, .. U 77 1B x (t,w,.. :ti_o:”(Tt 1B (4 wg,...))
= tilﬁ (77 'B)P(t)P(wy) = P(wo)tilp(t)ﬁ (=7 1B)

= P(ug)(3) = H(BX (4. )
Theorem 1: Let 3= {{r,}{% 1,{P,}i% 1} be a random Jablonnski transformation

for which there exists a unique absolutely continuous invariant measure. Then, the
Lyapunov exponents of 3 are

A= ipt/logl—g—f—fl dfi, (6.1)
i=1,2,...n, where o
Ty(z) = (Y1), ¥n(z)
= (¥ (21),- 0 ¥l (2,))s T € DY, 1 =1,2,. 0,

Ifn=1, then (6.1) reduces to

=3 / og | 74(2) | F (2)da.

w

Proof: Let f,(x,w)= logl ax (z')| Since the shift (o, P) is ergodic (even

exact), and we assume uniqueness of the absolutely continuous 7,-invariant measures,
there exists a unique J invariant absolutely continuous measures zi ([10]), and it gives
a T-ergodic measure p = fi P. We have:
— L 1 k
N = lim  Hog || AC@)v,|
iy (5
8
= log ¢ Zlogl L (3 ()]

k—o0

= hm Z:: f{(T%(x,w)) = / fi(z,w)dp

//f (z,w)dpdP o

mnQ
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0o w
=/ Xn
Inw0=1

o f
= logl 'ld"
t:lt oz

In the general case, we can have a finite number of such measures, not more then
minimal number of absolutely continuous invariant measures for 7,, t =1,2,.... In
particular, if a least one of 7, has a unique absolutely continuous measure, then the 3-
invariant measure g is unique ([5]). In the case of more then one invariant measure,
the above formula holds for z in the support of any fixed i, fi-a.e.

7. Random Quasi-Jablonski Transformation

Let 9= {{r,}5% 1;{p,}% 1}: I*~I? be a random quasi-Jablonski transformation. If
for t=1,2,...,7, = (d)t(:c) t/)%(:r)) satisfies all the conditions in Section 4, with a

partition P, = {Di, Dt }, then % = {ry Tappgat,s =1,2,...1 I?-71? is a random
Jablonski transformatlon which satisfies all the COl’ldlthﬂS in Section 6 and there
exists an absolutely continuous measure 7 with density f invariant under 3%. For
any measurable subset B of I2, we have

i i ppo (1 (71 B)) = R (B).

t=1 s=1
Theorem 2: Let 3 = {{r,};% 1, {p:}7= 1} be a random quasi-Jablonski transforma-
tion. Then

o) o) 61/)‘ 3¢8
=5 log | =07, | +lo 21)dp
P }z:lptps]Q( 81550, | +log| 52 |
I
l_ o) 0 —a—w—é 61/); B
z; Z::lptps/2(log|axlo7's|+10g|6$2|)d,u,
I

where [ 1s 9% invariant and absolutely continuous. If 9 has a unique absolutely con-
tinuous invariant measure fi (e.g., if at least one 7, t € {1,2,...} has a unique absolu-
tely continuous invariant measure) then fi is also 3-invariant and

oy |
n=a=h o, [ tog 1951 1081 9% g

t=1
12

Proof: The first part of the theorem follows from Theorem 1 and the observation
that A(9) = 1)\(.‘]2) The last equality follows from the definition of Lyapunov expo-
nent and the fact that there are two iterations of 3 for each iterate of 3.

If 7 is 9 invariant, then the measure

1 0
ulz—j(ﬁ_i_zptTt*ﬁ)’

t=1
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where 7, *ﬁ =poT, ! is $invariant. Since any J-invariant measure is $*-invariant,
if i is unique, then p; =7 and 7 is also Jinvariant. This implies that for any
integrable function f € L1(X,%B,m),

>op. [ roridn = [ san,

s=1

which simplifies formulas for A; and A,. O

8. Random Composition of Jablonski and Quasi-Jablonski

Transformations

Let 7, be a Jablonski transformation and r, a quasi-Jablonski transformation on I 2,
In this section we will find Lyapunov exponents for a random map 3 = {r,,7(,p,q},
where p,¢ >0, p+q=1.

Consider a sequence of Jablonski transformations:

="
_ .2
T2 =To

T3=Ty0T, 0T,

— t—2
Tt—TOOTl OTO,

and let p; =p, p,=p" ™ “¢", t =2,3,.... Instead of 3, we will consider the random
Jablonski transformatlon 31 = {{Tt}t 1 { Plie=1}

Lemma 1: )\,(9) = /\ (8, i=1,2.

Proof:

MO zlim g || AO)v, |
=lim  plog|| 4, (1~ V@))...4,(r, (@)4, @)l

For X;(3;) we have the same expression under the norm sign, but the averaging factor

k is different. It is enough to prove that, on average, there are two iterations of J for
each interaction of J,.

The average number of iterations of J in each iterate of 3 is:

Z p, {number of iterates of 3in 7,} = p+ Z pt 72k =2,
t=2

Lemma 2: If p is 3-invariant, then p is 3;-invariant.
Proof: If 41 is 3-invariant then (p7,, +q7¢, ) = p. Then q7y, = p— pry p. To
prove that u is J;-invariant, we have to show that
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o0
B=prist Yyt Tl P =
t=2

We have

(e8] o0
Bo=pryut Y0t "o, i = pt T lerg, i = pry b g =
t=2 t=2

o

Theorem 3: Let 3 = {r,,7(,p,q}, where 7, is Jablonski and 7 is quasi-Jabloniski
on I%. Then the Lyapunov ezponents of 3 are

Y1
A —2p/10g|31|du+ Zp” s
12

Y9 oy
x/ log|6 Y 07'0|+log|(9 2ort=307,

1
+. +log|a o7'0| +log|8 1|>d_

and

1 o]
_1 Oy 1 pt— 242
/\z—ip/log|ax2|du+2 §=:
72

1
+.. +log|5—o7'0| +log|a 2l)d_

where [i is the 3;-invariant absolutely continuous measure. If fi is unique (e.g., of T4
or Ty admits a unique acim), then fi is also 3 invariant and then:

P V3
5= /(loga‘l+1g|azl)d
Y
tho( [ o158 1108152 4z
12

Proof: The first part of the theorem follows from Theorem 1 and Lemma 1. If
is unique, then from Lemma 2 it follows that & is also J invariant. This means that
for any f € Ll(X,G.B,m), we have

/(Pf°T1+¢1f0'r0)dﬁ = /fdﬁ.
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Using this equality we can prove, for s = 0,1,2,...

[o.2]
/( Z pt—ZquOTt—Z—so,rO)dﬁ

n t=2+s

= p“’q/fdﬁ-

This in turn, applied to the general formulas for A; and A,, reduces them to the last
statement of the theorem. 0
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