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A random map is a discrete time dynamical system in which one of a num-
ber of transformations is selected randomly and implemented. Random
maps have been used recently to model interference effects in quantum phy-
sics. The main results of this paper deal with the Lyapunov exponents for
higher dimensional random maps, where the individual maps are Jabtofiski
maps on the n-dimensional cube.
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1. Introduction

Ergodic theory of dynamical systems deals with the qualitative analysis of iterations
of a single transformation. Ulam and von Neuman [12] suggested the study of more
general systems where one applies at each iteration a different transformation chosen
at random from a set of transformations. In this setting one could consider a single
transformation, where parameters defining the transformation are allowed to vary dis-
cretely or even continuously.

The importance of studying higher dimensional random maps is, in part, inspired
by fractals that are fixed points of iterated functions systems [1]. Iterated function
systems can be viewed as random maps, where the individual transformations are con-

tractions. Recently, random maps were used in modeling interference effects such as

those that occur in the two-slit experiment of quantum physics [2]. For a general
study of ergodic theory of random maps, the reader is referred to the text by Kifer

[8]. Additional ergodic properties of random maps can be found in [4, 5, 10] and [11].
One of the most important ways of quantifying the complexity of a dynamical

system is by means of the Lyapunov exponent. This quantifier of chaos can be
defined for random maps. In this paper, we develop formulas for the individual Lya-
punov exponents for higher dimensional maps, where the basic maps are Jabtofiski
maps on the n-dimensional cube [7].
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2. Lyapunov Exponents

Our considerations are based on Oseledec’s Multiplicative Ergodic Theorem [9]. Let
(X,%,m) be a probability space and let r be a measurable transformation -: X--.X
preserving an invariant measure #, absolutely continuous with respect to m. Let A:
X--,GL(n, ) be a measurable map with f log + II A(. )11 d# < + c.

Then, in particular, the limit X

Av lim ,1-_log [I A(vl- ix)A(vk- 2x) .(A(vx))A(x)v II
exists for any vERn and # almost any xEX. The number Avcan have one of at
most n values A1,..., An.

In this note, X- In- [0, 1]n and m is the Lebesgue measure on In. v is a piece-
wise expanding C2 transformation and A(x) is the derivative matrix of r, where it is
well defined (it is not defined on a set of measure 0). In this case, the numbers
A1,..., An are called Lyapunov exponents.

More precisely, let z2- {D1,...,Dq} be a partition of In into subsets with piece-
wise C2 boundaries. Let

v(x) Cj(x), x Dj,

where Cj is C2, 1-1 and onto its image, j- 1,...,q. Then,

A(x) Aj(x), x Dj,

where Aj is the derivative matrix of Cj. If

Cj(x) (eli(X),..., Cnj(X)),

then

Aj(x)

c91j c91j
Ox1 Ox2
c92j c92j
cgx

1 Ox2

OCnj CgCnj
\ OXl Ox2

CgCnj

3. Jabtofisld Transformations

We say that r: In-.In is a Jabtofiski transformation if

r(x) (l(X),...,n(X)) (lj(Xl),...,nj(Xn)), x Dj, j 1,2,...,q,

where P-{D1,...,Dq} is a rectangular partition of In, i.e., Dj-II’=l[aij, bij),
where [a, b) [a, b] if b 1.
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These transformations are among the simplest non-trivial higher dimensional
transformations that have absolutely continuous invariant measures. They are useful
in approximating the ergodic behavior of more complex higher dimensional transform-
ations [3]. Jabtofiski transformations have also proven to be useful in modeling
cellular automata problems [6].

For the Jabofiski transformation v, the derivative matrix

A(x) Aj(x)
J(x2) 0

,xEDa...

0

If v is piecewise C2 and there exists a constant s > 1 such that

inf inf I} 1i,j [aij,bij
then ([7]) there exists a measure # invariant under v (with density f) with respect to
Lebesgue measure.

All measures considered in this paper are assumed to be probability measures.
The transformations v we consider have a finite number of ergodic absolutely contin-
uous measures. To simplify our considerations, we assume that the absolutely contin-
uous invariant measure # is unique. Maps, which are piecewise onto, will satisfy this
condition as will maps which are Markov and for which the matrix A is irreducible.
In the general case we would consider each ergodic absolutely continuous measure

1,..., k, separately and our formulas would hold for each of them #i-a.e.
For any = 1,2,..., n, the basic vector v = (0,..., 0, 1, 0,..., 0) (the only nonzero

term is in the th position), we have the th Lyapunov exponent of r:

lim log II A(vk- Ix) .A(rx)A(x)vi I!k---cx

log - f(x)dx log I- x) lf(x)dx
in J=IDj_

lglj(x)lf(x)dx.

J=IDj
We do not assume that the Ai’s are numbered in increasing order nor that they are

all different.
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4. Quasi-Jabtofiski Transformations

We now restrict ourselves to dimension 2. We say that r" 12---.12 is a quasi-Jabtoflski
transformation if v(z) (l(x),2(z)) (lj(X2),2j(Zl)), z E Dj, j 1,2,...,q,
where -{D1,...,Dq} is a rectangular partition of 12 and Dj-[alj, blj)
[a2j b2j). Note that 1j is a function of x2 and 2j is a function of x1.

For the quasi-Jabtofiski transformation , the derivative matrix is given by

A-Aj-
o (.)

xGDj.
(.) 0

If there exists a constant s > 1 such that

inf inf I}1 >,
i, j [aij bij

then r2 is an expanding Jabtofiski transformation and there exists a measure # invar-
iant under r2 with density f with respect to Lebesgue measure.

( 1 ), thenIf we takev1- 0

( o )A(X)Vl- 02(x)
{0, .02. ’,A(r)A(x)v1 -2t-)--(), 0

It follows that

lim log II A(’k- lx)...A(vx)A(X)Vl II

lim 2-log II A(r2k- lx’" .A(rx)A(x)vl IIk--,oo

lim 2-1 121(v2k-1 -02, 2k-2 C02( ,01,"

I -__ 0:(2_1 lim loglff-]-1 )] +--2 koo lg]-2 v2+

1 JloglO2 01

12 12

(log l].y(x=)l +logl’2j(Xl) l)f(x)dx.
D.

3
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/ \0
If we take v2 - 1 )then, as above, we have

"2 lim II A(rk- Ix) .A(vx)A(x)v2

j (lg ]J(x2)] + log l’2j(Xl)])f(x)dx Ai"
D.

3

It is easy to see that no other value is possible as a limit v"

5. Random Maps

c be a sequence of transformations from X into X. A random mapLet {rt} 1
3- {{rt}= 1, {Pt}tc= 1} is a discrete dynamical system, where at each iteration, r is
chosen with probability Pt, Pt > O, _,= lPt- 1.

(x) andFormally, we define 1(1)(x) 7tl
](k)(x) Ttk(](k-1)(x)) T o7" o. o (x),

k k-1 7"tl
where each ts is chosen with probability p, s 1,...,k, ts E {1,2,...}. We also
define: s

A(k)(x) --((k)(x)),

k--

where A (r )’ is the matrix derivative of 7"
8 8 8

The above definition represents as a Markov stochastic process with transition
probability function

.P(x,A) E PtXA(’rtx).
t=l

There is an alternative way [10] of defining the random map 3. Let f]- {w-
(Wo, Col,...): w 1,2,...; i- 0,1, 2, .}. Let (r" ft--,ft be the left shift, i.e.,

r(w0, Wl, c2,"" ") (Wl, c2,"" ")"

Then the random map 11 can be represented as the skew-product transformation
T: X x fX x f defined by T(x, w) (tWo(X), r(w)), (x, w)

6. Random Jabtofiski Transformation

Let X In and 3- {{vt}= 1, {Pt}tc= 1}" In’-In be a random Jabtofiski transforma-
tion, i.e., r is a Jabtoflski transformation for t- 1,2, Assume that there exists
an absolutely continuous measure with density f invariant under the random map
3. Sufficient conditions for existence are given in Theoretn 2 of [4]. For any measur-
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able subset B of In, we have E= lPt (rt-1B)- (B). Now consider the represen-
tation of the random map by a skew-product transformation T: In x ---* In x

Let P be the product measure on f, P((w0,...))= p, for any w0 E {1,2,...}.
We will show that the measure # given by #(Bx(w0,...))= (B)P(wo) where
P(wo)- P((wo,...)), is T invariant. We have:

#(T-a(Bx(wo"")) #(U [’[-1Bx(t’wo’’’’)]) #(v-lBx(t’wo’’’’))
t=O t=l

(rt- 1B)P(t)P(wo) P(wo) P(t) (rt- 1B)
t=l t=l

P(wo)Tt (b) #(B x (Wo,...)).

Theorem 1: LetS-{{vt}= 1,{Pt}= 1} be a random Jabtodnski transformation
for which there exists a unique absolutely continuous invariant measure. Then, the
Lyapunov exponents of are

fAi Z Pt lg13-/Idg, (6.1)
t=l

in

1, 2,..., n, where

(j(:Cl), ..., Cnj(Xn)), x Dj, j- 1,2,...,qt.

If n- 1, then (6.1) reduces to

1

" Y Pt log r(x)I f (x)dx.
t=l

0

o To
Proof: Let fi(x,w)- log o.()1. Since the shift (a,P) is ergodic (even

exact), and we assume uniqueness of the absolutely continuous rt-invariant measures,
there exists a unique t invariant absolutely continuous measures ([10]), and it gives
a T-ergodic measure #- P. We have:

h lim  log II A(k)(x)vi I[
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in
w0 1

t=l I

In the general case, we can have a finite number of such measures, not more then
minimal number of absolutely continuous invariant measures for vt, t 1,2, In
particular, if a least one of v has a unique absolutely continuous measure, then the 3-
invariant measure # is unique ([5]). In the case of more then one invariant measure,
the above formula holds for x in the support of any fixed , -a.e.

7. tLdom Quasi-Jabto/ski Transformation

Let 3--{{7"t}tc= 1; {Pt}tc= 1} "I2--I2 be a random quasi-Jabtofiski transformation. If

for t--1,2,...,7t--((x),(x))satisfies all the conditions in Section 4, with a

partition 2t {-D1,...,Dq,}, then {vt.;ptp;t,s 1,2,...}:I2I2 is a random
Jabtofiski transformation "which satisfies all’ the onditions in Section 6 and there
exists an absolutely continuous measure with density invariant under 2. For
any measurable subset B of 12 we have

PtPs (vV 1(7:1B)) fi (B).
t=l s=l

Theorem 2: Let {{Tt} 1, {Pt)t 1) be a random quasi-Jabtofiski transforma-
tion. Then

t=l s=l
12

1/2 fA2 PtP (log llO-! +log[-21)d,
t=l s=l

12
where is ]2-invariant and absolutely continuous. If 2 has a unique absolutely con-
tinuous invariant measure (e.g., if at least one rt, t {1,2,...} has a unique absolu-
tely continuous invariant measure) then is also ]-invariant and

P
j

(log I1 + og I)d.A1--A2
t=l

12
Proof: The first part of the theorem follows from Theorem 1 and the observation

that A(3)- 1/2A(32). The last equality follows from the definition of Lyapunov expo-
nent and the fact that there are two iterations of 3 for each iterate of 32.

If is 32 invariant, then the measure

1 .. + PtTt,
t=l
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where rt.t - or 1, is 3-invariant. Since any 3-invariant measure is 32-invariant,
if is unique, then #]51 and is also 3-invariant. This implies that for any
integrable function f E (X, %, m),

slPs f o vsd fd,
12 12

which simplifies formulas for )1 and A2.

8 Random Composition of Jabtofiski and Quasi-Jabto,Sski
Transformations

Let r1 be a Jabtofiski transformation and r0 a quasi-Jabtofiski transformation on 12.
In this section we will find Lyapunov exponents for a random map {rl, Vo, p,q},
wherep, q>_0, p+q=l.

Consider a sequence of Jabtofiski transformations:

T1 T1

T3 - TO 0 T1 0 TO

T TOoT-2oTO,

pt- 2q2,and let Pl- P, Pt t- 2,3, Instead of :], we will consider the random
Jabtofiski transformation 1- {{7t}__ 1, {Pt}t--}"

Lemma 1: Ai( Ail(1), i- 1,2.
Proof:

Ai( -_,li log I[ A(k)(x)vi II
lim

k+oo

For Ai(tl) we have the same expression under the norm sign, but the averaging, factor
k is different. It is enough to prove that, on average, there are two iterations of for
each interaction of

The average number of iterations of in each iterate of 1 is:

Pt {number of iterates of in vt} p + pt-2q2t 2.
t=l t=2

Lemma 2: If # is 5-invariant, then # is 5l-invariant.
Proof: If # is l-invariant then (prl, + qv0,)# #. Then qvo,# #- P’I,#" To

prove that # is ]-invariant, we have to show that
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It p7"1 It + E pt-2q2, 7"0,T, 2T0,1t It.
t=2

We have

pTe,it-!- Ept--2qro,V--2it Ept--lqVo rt-1
* * 1. It PT"l,It + qT"o,It It"

t=2

Theorem 3: Let - {rl,ro, p,q} where 7"1 is Jabtofiski and 70 is quasi-Jabtofiski
on 12. Then the Lyapunov exponents of ] are

12
t=2

/(log ll. OV-2orol /lglr-arol
12

and

+...+logl-20rol +1og122 dfi

12
t=2

f(x log l2 o’r-2 o 7"0 + lgl-l o-r- o 70

12

+... +log]-l o ro + lg]--l d,

where is the l-invariant absolutely continuous measure. If is unique (e.g., if v1
or v0 admits a unique acim), then is also invarian and then:

t,og + log I1 )d
12

f
o )+1/2q (lg 1ff--2 + log I--lld

12
Proofi The first part of the theorem follows from Theorem 1 and Lemma 1. If

is unique, then from Lemma 2 it follows that is also invariant. This means that
for any f LI(x, ,rn), we have

(pf o 7 -j- qf o vo)dz / fd.
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Using this equality we can prove, for s O, 1,2,...

in t=2+s

pt-2qfo’-2-s pt-2+lqfor-2-s+l
in t=2+s t=2+s

pSq ] fdt.

This in turn, applied to the general formulas for A1 and A2, reduces them to the last
statement of the theorem. El
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