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1. Introduction

Properties of solution sets to stochastic inclusions play a crucial role in stochastic
optimal control theory. The first results dealing with this topic are given in the
author’s paper [4], in which, by rather strong assumptions the weak compactness of
the set of all solutions to stochastic inclusions

t t t
r,—x, € / F_(x.)dT + / G (z, )dw,_ + / /HT’ Az, )V (dr,dr)
s s 8 Rn

has been obtained. In the present paper, we show that for a given random variable A,
the solution set C, to an initial value problem

;=T E/F (z, )dr+/ G (x,.)dw, +/ /H ()0 (dr,dr),zq = A,

has quasi-retractive representation. As a result, we obtain lower semicontinuous
dependence of solution set Cy on an initial date.

We begin with basic notations dealing with set-valued stochastic integrals. Some
properties of fixed point sets to subtrajectory integral mappings are investigated.
Hence, the main results of this paper readily follow.

Printed in the U.S.A. ©1997 by North Atlantic Science Publishing Company 227



228 MICHAL KISIELEWICZ

2. Basic Definitions and Notations

Let (Q,%,(%,); > ,P) be a complete, filtered probability space. Given T >0, let I =
[0,T] and let B(I) denote the Borel c-algebra on I. We consider set-valued

stochastic processes (F';); ¢ 1, (G;); ¢ » @and (B, MelreR™ taking on values from

the space Conv(R™) of all nonempty, compact convex subsets of the n-dimensional
Euclidean space R™. These processes are assumed to be nonanticipative such that

T T T
J I F,l1%dt <oo; []16,]l°dt < oo; and [ Sro 1%l 2dtq(dz) < oo, a.s., where ¢
0 0 0

is a measure on a Borel o-algebra B" of R", A€ Conv(R"), and ||A|: =
sup{|a|:a € A}. The space Conv(R") is endowed with the Hausdorff metric h
defined in the usual way (i.e., h(4,B)=max{h(A4,B),h(B,A)}, for A,Be€
Conv(R™), where h(A,B)= {dist(a,B):a € A} and h(B,A) = {dist(b, A):b € B}).
Cl(X) denotes the family of all nonempty closed subsets of a metric space (X, p).

Filtered, complete probability spaces (Q,%,(%F,), > o, P) are assumed to satisfy the
usual hypotheses: (i) ¥, contains all the P-null sets of ¥; and (i) F, = [, 5 ;F,, all
t,0 <t <oo. As usual, we shall consider a set I X2 as a measurable space with the
product o-algebra B(I) ® ¥F.

(X})s ¢ ; denotes an n-dimensional stochastic process z, understood as a function
z: I x Q—R™ with F-measurable sections z,, each t € I. This process is measurable if
z is B(I) ® F-measurable. The process (z,); ¢ ; is F;-adapted or adapted if z, is F-
measurable for ¢t € I. Every measurable and adapted process is called nonanticipa-
tive.

The Banach spaces L2(Q,€Ft,P,R") and L*(Q,¥,P,R"), with the usual norm
-l 2 are denoted by L(%¥,) and L%(%F), respectively. M*(F,) denotes the family
n

(i.e., equivalence classes) of all n-dimensional nonanticipative processes (f,), ¢ 1 such

that [ | f,| 2dt < oo, a.s. We shall also consider a subspace £2 of ./flaZ(?ft) defined by
0 T

L ={(f)reo € M(F): | f] ja<oo}, with |f]7,= E{ | f¢|%dt.  Finally,

M, (F,) we denote the space (i.e., equivalence classes) of all n-dimensional ¥,-measur-

able mappings.

(wy); ¢ 1 defines a one-dimensional ¥,-Brownian motion starting at 0. v(t, A)
denotes a ¥F,-Poisson measure on I x B". We define a ¥F,-centered Poisson measure
v (t,A), t€I, A€ B" by taking U (t,A) = v(t,A) —tq(A), t € I, A € B", where q is
a measure on B" such that Ev(t,B) =tq(B) and ¢(B) < co for B € By: = {4 € B™
0¢ A}

Jﬂ:2(°?t,q) denotes the family (i.e., equivalence classes) of all B(I) ® F @ B"-mea-

T

surable and ¥F,-adapted functions h: I x Qx R"—R™ such that [ [ |k, ,|2dtq(dr) <
OR"™ '
0o, a.s. Recall, a function h:IxQxR"—R" is said to be ¥F,-adapted or adapted if

h(t, -,r) is F,-measurable for every r € R™ and ¢t € I. Elements of M%(%F,,q) will be
— H 2 _ 2 . 2
denoted by h=(h,,), cl.reR™ Finally, we let W, = {h € M*(F,,q): | h| w2 <
T
oo}, where |h| 2 2= Ef f | hy » | 2dt‘1(d7')'
‘Wn ORn ’

t t
Given f,g € ./?1:2(§Ft) and h € ./YLZ(‘ZFt,q), ([ fdr), el ([g,dw, )t €, and
0 0
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(f fhr U (d7,dr)), ¢ 1 denote their stochastic integrals with respect to Lebesgue
measure on R*, the ¥,-Brownian motion (wy); ¢ » and the F,-centered Poisson

measure ¥ (t,4),t € I, A € B", respectively. For fixed ¢t € I and (f,g,h) € £2x L% x
t
W2, we equate (f) = ffrdr, fg,_dwr, and T,(h)= j fh,r LV (dr,dz).

3,3, and I denote linear mappings defined by £2 9f"“’(3t(f))tele D, £%5g—
(4:(9))s e 1 € D, and w?2> h—(Ty(R)); ¢ 1 € D, respectively. Here, D denotes the
family of all n—dlmensmna] F-adapted cadlag (see [7]) processes (z;); ¢y such that
Esup, ¢ < 1 | zt| < oo. The space D is considered a normed space with norm
el g= llsup, e r 1€ 1l % for € = (&) ¢ 1 € D. 1t can be verified that (D, || - || p)
is a Banach space.

Given a measure space (X,B,m), a set-valued function R: X—CI(R") is said to
be B-measurable if {z € X:R(z)NC # 0} € B for every closed set C C R". For such
a multifunction, we define subtrajectory integrals as a set ¥(R)={g€
L?(X,B,m,R"): g(z) € R(z) a.e.}. We shall assume that the B-measurable, set-
valued function R:X—CI(R™) is square integrable bounded (i.e., a real-valued
mapping X 3 z— || R(z) || € R belongs to L*(X,B,m,R)).

Let §=(G,); ¢ 1 be a set-valued stochastic process with values in CIR"), (i.e., a
family of F-measurable set-valued mappings §,:Q—CI(R"), teI). We call §
measurable if it is B(I) @ F-measurable. Similarly, § is said to be ¥F,-adapted or
adapted if G, is F,-measurable for each ¢ € I. A measurable and adapted set-valued
stochastic process is called nonanticipative.

We shall also consider B(I) ® F ® B"-measurable set-valued mappings %Ro: I x £ x

R™—CI(R™). These mappings will be denoted by ("J?:t,r)“E IreR™ and called

measurable set-valued stochastic processes depending on a parameter r € R". The
process R = (G‘R’t,")tel r e R™ is said to be F,-adapted or adapted if R, , is Fy-

measurable for each t € I and 2 € R®. We call this process nonanticipative if it is
measurable and adapted

$_U(GJ‘) and Jﬂ: o(F;,q) denote families of all nonanticipative set-valued
processes G =(G;); ¢ 1 Cand R = (G.Rat’ T)t €l.reR™ respectively, such that

T T
S 116,11 %dt <oo and [ [ || B, , || 2dtq(dr) < oo, a.s. From Kuratowski and Ryll-
0 OR"™ ’

Nardzewski measurable selection theorem (see [3]) it immediately follows that for
every F,G€ M2 _ (F,) and B € ME_ (F, o) their subtrajectory integrals $(F): =
{F € NE(F ) (@) € Pyw), dtx Pae); 3(8) = {g € MHF,):g(w) € Gw), dtx P-
a.e.}, and tfq(‘:Ra) ={he€ Jﬂaz(‘ft Q):hy (w) € Ry (w),dtx P xg-a.e.} are nonempty.
Indeed, we let ¥ = {Z € ‘B(I) ® F: Z, €%, each t € I'}, where Z, denotes a section of
Z determined by t€I. ¥ is a o- algebra on Ix%, and a functmn [ IxQ—R" (a
multifunction F:I x Q—CI(R™)) is nonanticipative if and only if it is X-measurable.
Therefore, by Kuratowski and Ryll-Nardzewski measurable selection theorem, every
nonanticipative set-valued function admits a nonanticipative selector. It is clear that
for F € ./11:?_ o(F4), such selectors belong to M2(F,). Similarly, we define on I x Qx
R™ a o-algebra ¥ ={Z € B(I)®FQ@RB™Z} €F,, each t €I and u€R"}, where

=(Z");, and Z" denotes a section of Z determined by u € R". The foregoing
arguments can be repeated to obtain the above result for nonanticipative, set-valued
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processes depending on a parameter r € R™.
It can be verified (see [2, 3]) that for given F =(%,), € M2 (F)s

s§—v

G=(G):iecr € ./11:3_ o(F;), and R = (%t,f)t ctreR"E M2 o(%F4,q), their stochastic

t t
integrals  are  defined as  families ([ F,d7),cp([Gdw,.), ¢, and
0 0
t t t
f [,V (dr,dz)); ¢ 1 of the subsets of M(%F,), of the form JF dr= {[fdr
oR™ ' 0 0
t t ¢
feF)}, ggrdwr = {{grdwrzg € ¥2(§)} and '({R[nhr’z?} (dr,dz):h € ¥ (B)}.
B B 8
Given 0 <a < f<oo, we also define [F ds: = {[ f.ds:f € $P(F)}, J G dw,: =
o (e} a
8 ) B N 8 N
{[g9,dw:g€ 9%(Q)}, and [ [ R, U (ds,dz): = {fr hy, v (ds,dz): h € ffq(‘fko)}.
o aRn aRn

The following selection property of set-valued stochastic integrals has been
obtained in [5]:
Proposition 1. Let F,§ € M2 _ (F,), R € M2 _ (F,,q), and (z,), c1 €D. Then:

§—v

t t t
T, —z, € / F_ dr+ / G dw_ + / /‘?R:T,TT/' (dr,dr)
8 8 s Rn

for 0 < s <t <T if and only if there exists (f,g,h) € $(F) x $(§) x ¥ (R) such that

t t t

T, = / der+/gwaT+/ /hT,,?/' (dr,dr)
0 0

0 R™
fortel.

3. Stochastic Inclusions and Subtrajectory Integrals Depending on
Parameters

Let
F={(Fyz)); ez €R"}, G={(Gy(2)); ¢ 'z €R™},
and H = {(Ht,r($))t clreRMEE R™}.
Assume F,G, and H are such that (Fy(z));c;€ MP_(F)), (Gyz));ecr€
M2 _ (F,), and (thr(:c))t elrcn

denoted by SI(F,G,H), corresponding to the aforementioned F,G, and H is the
relation:

R" € JﬂaZ _o(Fha), x € R™. A stochastic inclusion

i t t
sz, [ Feyart [ G+ [ [0, 00 @),
S S £ Rn
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which is satisfied for every 0 <s<t<T by a stochastic process z =(z;), ;€D
such that Foz € MZ_ (F,),Goze€ M2_ (F,), and Hoz € M2_ (F,q), where

Foz=(Fyz))epGox=(Gyzy))ep and Hoz = (Ht,r(xt))t cl,reR™ Every

stochastic process (z;), ¢ ; € D, satisfying conditions mentioned above, is said to be a
global solution to SI(F,G,H). Given X € L%(%,) we shall consider SI(F,G,H)
together with an initial value condition zy = A. This type of initial value problem
will be denoted by SI,(F,G,H).
We shall assume that F',G, and H satisfy the following condition:
(A () F={(P@)ere€R),G={(Go))e o R and Hf =
{(H, ,(2)), clreRVTE R™}, such that mappings RT xQxR">
(t,w,z)—F (z)(w) € Conv(R™), I x A xR" > (t,w,z)—>G(x)(w) €
conv(R™), and IxQxR"xR" > (t,w,r,z)—H, ,(z)(w) € Conv(R") are
Y ® B™ and ¥ ® B™-measurable, respectively;
(1) (Fy)) e p(Gy®))s ¢ 1p and (H, (z)), cI.rcR" T uniformly square

integrable bounded (i.e., functions (t,w)—sup_ cR" || Fy(z)(w) || €RT,
(tw)—sup, _ gnll GH@)(@) | €R*, and (t,,r)—
Sup_ _ gn 12, (z)(w)] €R *) are square integrable on R+ xQ and
Rt x QxR respectively.
We denote Bp={u€ 2% |y,]| < sup_ _gnll Fy(e) || ae on IxQ}, Bg =
{ue 2 |v,| <sup _gn |Gy(z)]| ae. on IxQ}, and By = {z€ W% | z | <
sup_ . pn | H, ()|l ae.on IxQxR"}. Then we define B = Bpx By X By.

Corollary 1. If F,G,H satisfy (A,), then B is a nonempty conver and weakly
compact subset of £2x 22 X W2, Moreover, for every (x,), c1 €D, one has Foz,
Goze ./ﬂ:i__v(‘fft) and Hoz € ./(l:?_v(?}‘g,q).

Let ® be a linear mapping on L%x £%xW? defined by ® =3+ 3+9, (ie.,
<I>&f, 9,h) = (3,f + $,9+ T h), e 1 for (f,9,h) € L2 x L2 xW?). Tor fixed A € L(%,),
@ denotes an affine mapping on £2x £2x W? defined by <I>’\(u,v,r) =X+%(f,9,h)
for (f,9,h) € £L2x L2 xW?. Given F,G, and H and X € L(F,), we set

Jox(z) = PNI(Foz)x (G ox)x $ (Hox))
for z = (z;); ¢ ; € D. Tt can be verified (see [4, 5]) that for every z € D, J6)(z) is a
convex, weakly compact subset of D. I, denotes a set-valued mapping D > z—
¥,(z) C D. From Proposition 1, it immediately follows that for every X € L%(%),
and F,G, and H satisfying condition (A,), ¢ € D is a solution to ST,(F,G,h) if and
only if z is a fixed point to J6,.
Suppose F = {(F,(z)), cl'TE R"},G = {(G,(z)), cI'TE R"}, and
H{(Ht,r(m))t cl.zeRMEE R™} satisfy condition (A;) and the following condition

(A;) There are kpkg€ L3(B(I)) and me L} (B(I)xB") such that
h(F (z5), Fy(z1)) < kp(t) |2y — 21 |, h(Gy(zy),Gy(21)) < kg(t) | 23— 2, |, and
h(H, (z),H, (1)) <m(t,r)|zy—z| as., each t € I and z,z, € R™

Consider for fixed A € L%(%,) a subtrajectory integrals mapping S defined by:
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Sy(wyv,r)=4(Fo M, v, 7)) x $(G 0 B Nu, v, 7)) X S (Ho M, v, 7))

for (u,v,7) € L2x L2 x W2 1t is clear that for ) € Li(ﬂ‘o), (u,v,7) € L2 x L2 x W,
and F,G, and H satisfying condition (A,), one has S,(u,v,r) € C1(£%x £2W?). We
shall show that if condition (A,) is satisfied, then it is possible to renorm a space

22x 22xW? by an equivalent norm || - || such that S A(+) is a contraction from
(22x 2ZxW2Z | - ||) into (CI(2%x2%2xW?),8), where £ is the Hausdorff metric
induced by || -]|. A similar result is also true for S.(u,v,r):L%(%F,) D A—
Sy (u,v,2) € Cl(L2x 22 x W2). Observe that a mnorm ||| is defined by
) I = max(l[ul ya0 [19]] o0 12 gpa), where || - [ o and |l - || 4o are
appropriate norms on £2 and W? equivalent to | - | 22 and | - | w? defined above.

Finally, observe that for every A,Z,B,E € C1(£?) and C,E‘ € CI(W?) one has:
UAxBxC,AxBxC)< max{2L2(A,Z ),ELZ,(B,LN?),ZW:,(C,E’)}

where € o and {_,, are Hausdorff metrics on CI(2%) and CI(W?) induced by the

L w
norms || - || 92 and || - || W respectively.

Proposition 2. Suppose F,G, and H satisfy (A;) and (A;). For every L >0,
there are norms || - || 22 and || - || w? " 22 and W? equivalent to | - |£2 and
| - I‘WZ’ respectively, such that:

Ly (S(Fo ®MNu,v,7)), S(F o @ (% ,7,%))
SImaz(||u=3 || o o= || j2s [[2=7 || 025
L L w
€,2(S(Go ®*(u,v,7)),8(G 0 ®*(¥,7 ,%))
< Lmaa([|u=% || a0 10— Il o 112 =% I] 0)
and

€y o(Sy(H o My, v,7)), S (H 0o &*(%, 7,7 ))
< Lmas([lu=7 || 30 [19=7 1] a0 2= [| o)
for (u,v,7), (,7,7) € L2x L2 x W2
Proof. Let L >0 be given and fix (u,v,2), (¥,7v,Z) € 22x 22 x W2 For every
f € S(F o ®Nu,v,z)), there is f € S(F o ®(¥,v,% )) such that:

| Fo—To) S R(F(@Nu,v,2)), F(@NE, 7,7 )) < kp(t) | 9N, v,2) — )T ,7,7) |

t t
/ [vr - ?;r]dw‘r + / / [ZT, r Zr, r]?)‘ (dT’ dr)
0 0 g™

a.s., each t € I. Similarly, for every g € 5(G o <I>’\(u,v,z)) and h € S (H o <I>’\(u, v,2)),
there are § € S(Go®*(%,V,%))and h € Sy(Ho ®*(%,v,%)) such that:

t
< kp(t) / |u, -4, |dr +
0
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| 9¢ —?jt |
t t t
<kg(t) / u, =%, |dr+ /[UT — U Jdw, |+ / /[z,r,r -7, JV (dr,dr)
0 0 0 R™
and o
lht,r_h't,rl

t

4 / / 2., —%, IV (dr,dr)

t
<mit,r)] [ Ju, -, dr+
0 0 Rm

t
/ [vr - ’b‘r]dw‘r
0

a.s., each t € I. Let:

y = max{(3/L)*T, (3/L)*},k*(t) = max{k}%(t), k&(t), j m?(t,r)q(dr)},
Rm

t
and %(t) = [k(r)dr for t € I. Let us renorm £% and W? with equivalent norms
0

gand || - o defined by:

T 1/2
nuan=(E] e'”%<‘>|ut|2dt)

I, ey

d 0
an
T 1/2
lellga=| B [ [e77®01z, , Paaryat
0 R™
for u€ 22 and z € W2. We obtain:
1/2
T t 2 /
17T 0 pa<| B [ #@e= ™ [ -5, jar | at
0 0
1/2
T t 2 /
+ E/ k2(t)e“7%(t) /[vr—'f)’r]dwf dt
0 0
T ¢ 2 1/2
+| E / k2(t)e = 7%(0) / / [, , — %, ¥ (dr,dr)]| dt
0 0 R™

We have: )
T

t
E / K2 ()e ~ 7% / lu, — %, |dr | dt
0

0
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l9: =7, |
t t t
< kG’(t) / l U, _%r l dr + /[’U,’. _’Er]dw‘r + / / [Z‘r,r _’z‘r,r]?; (dT’ dr)
0 0 0 R™
and N
| ht,r - ht,r |

t

n / / (2, , %, T (dr,dr)

t
< m(t,r) / |u, -, |dr +
0 0 R™

t
/ [v, =7, ]dw,
0

a.s., each t € I. Let:

y = max{(3/L)’T, (3/L)*}, k*(t) = max{kF(1), k&(1), /m2(t,r)Q(d7‘)},
Rm

t
and %(t) = [k*(r)dr for t € I. Let us renorm £? and W? with equivalent norms
0

gand || - o defined by:

T 1/2
||u||L2=(E/ e”%‘”lutl?dt)

-, ey

q 0
an
- 1/2
-+%
lellga=| B [ [em™01z,, 1%
0 Rm
for u € £% and z € W2 We obtain:
1/2
T t 2 /
I f=F 2% E/ k2(t)e ~ 7%(®) / |u, —%, |dr| dt
0 0
1/2
T t 2 /
—v¥(t ~
+ E'/ k2(t)e =7 (®) /[vr—v,r]dw,r dt
0 0
T . 5 \1/2
+| E / k2(t)e = YR / / [z, ~ %, ¥ (dr,dr)| dt
0 0 R™

We have:
T

2
t
E/ kz(t)e—'y%(t)l: / |u,. =7, | dT:l dt
0

0
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Therefore,
€ o(S(Fo N (u,v,2)), S(F o ®N% ,7V,% ),
< Lmax(|u= Iy 107 || 20 12=% || g0
Similarly,
2L2(S(G ° (I)A(u, v,2)),S(G o <I>)‘(?Z v,7)),
< Emax(llu= || o 0= 1] 1o 2= || g0
Finally, N
1 =F 1|42
T ; 2 1/2
< E/ 6_7%(t)/m2(t,r) / [u, —%u_]dr| q(dr)dt
0 R™ 0
- . 9 1/2
+ E/ e—’y%(t)/m2(t,r) / [v, =7 Jdw, | q(dT)dt
0 R™ 0
T . 2 1/2
+| E / e~ 7% / m2(1,r) / / [z, , — %, Jv(dr,dr)| q(dr)dt
0 R™ 0 R™
Similarly, as above,
T t 2
E/ 6_7%(t)/m2(t,r) / [u, —%_]dr| q(dT)dt
0 R™ 0

<TE/ -79@(“/ lu, — %, | %drdt < (L/3)? || u—"% |2

L
T ¢ 2
s / o= 1%(1) / m(,r) / [0, — %, Jdw| q(dr)dt
0 R™ 0
SE/ —7%(0/ |v, =% _|%drdt < (L/3)* [|v—-"7 IILz,

and
2

E [re—%%(‘) R/m m(t,r) / / (2, —%, P (dr,dr)| q(dr)dt
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T t
<p [ O [ [ s oz fandrae< @325 1
0 0 R™

Therefore,

Lep2(Sq(H 08X (u,v,7)), S (H 0 9A(%,¥,7))
< Lmax(|lu—7 Il 52 lv=7 1l j2 | 2=% [l g2- O

Now we can prove the following basic lemma.

Lemma 1. Suppose F,G, and H satisfy (A;) and (A;). There is a norm || - ||
on 22x22xW? equivalent to the norm defined on L2xL2xW? by | - ILZ and

| - |‘W2 such that Sy(+) and S . (u,v,z) are contractions from (22x 22x W2, || - ||)
and (LZ(Fo), || - |l L2), respectively, into (Cl(L2 x L2 x W?),8), where £ is the Haus-

dorff metric inducednby the norm || - || .
Proof. Let L€[0,1) and || - || 92 and || - || w2 be such as in Proposition 2,

corresponding to the given L. Set || (u,v,2)]| =max(|| u|| 22 vl 22 || 2 || ‘Wz)

and let ¢ be the Hausdorff metric on Cl(£2 x £2 x W?) induced by the norm || - ||.
By Proposition 2, we obtain

(S \(uv,2), S5(U,V,7)) < L|| (uyv,2) — (U U,7) ||
for A € L2(F,) and (u,v,2), (¥,7,7) € £2x L2 x W2. Quite similarly,
(S5 (uyv,2), Swv (w0, 2)) S L[ A=X ||
Y L2

for )\,:\J € L%(G.FO) and (u,v,2) € L2x L2 x W2, O

4. Quasi-Retractive Representation of Solution Set

We shall show that if conditions (A;) and (A,) are satisfied, then the solution set
mapping A—C,, where C, denotes a set of all solutions to an initial value problem
SI,(F,G,H), has quasi-retractive representation. In particular, it will follow that
this mapping is lower semicontinuous. Moreover, it will follow that in some special
cases the solution set C, is weakly compact in (D, || - || ;). These results are
consequences of Lemma 1 and a general retractive representation theorem presented
in [1].

Let A be a topological space and (X, | - | ) be a Banach space. Denote N(X) =
{AC X:A#0}. Given S:A—-N(X)and CC X, let ST (C)={r € A:S(A)NC # 0}.
We say that S:A—N(X) is lower semicontinuous (l.s.c.) [upper semicontinuous
(u.s.c.)] if §7(C) is open [closed] for every open [closed] set C' C X. A set-valued
mapping S: A—N is said to be W-upper semicontinuous (W-u.s.c.) if for every z € X
the function A—dist(z, S(X)) is lower semicontinuous in the usual sense. Finally, S is
said to be W-continuous if it is l.s.c. and W-u.s.c.
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We say that S:A—N(X) has a retractive representation if there exists a set
B € N(X) and a continuous mapping p: A x B—B such that p(\,z) € S()) for every
(Ayz) € Ax B and p(A,z) = z if and only if z € S(X).

We say that the solution set mapping Li(“)‘o) 3 A—=C, C D has quasi-retractive re-
presentation if there is a set-valued mapping S: Li(‘?o)—-—»N (£2x L2 x W?) having a
retractive representation p: A x B—B such that C, = ®(p(), B)), each X € L(F,).

We present the following general results (see [1, 8]) dealing with retractive
representation of set-valued mappings.

Theorem 2. ([8], Th. 1) Let A be a paracompact and perfectly normal topological
space, (X, | - |) be a Banach space, and B € CI(X). Suppose P: A x B— CI(X) takes
on conver values and is such that:

(1)  for every x € B the set-valued mapping P(-,z) is W-continuous,
(%)  there is L€[0,1) such that h(P(A\z),P(\T))<L|z—-T | for fized
A€ A and 2,7 € B, where h is Hausdorff metric on Cl(X) induced by the

norm | - |.

Let Sep(A): ={z € B:x € P(\,z)}, each A€ A. A set-valued mapping SepA D
A—»S@?)A) € N(B) has a retractive representation p: A x B—B.

We now apply Theorem 2 and Lemma 1 to the subtrajectory integrals mapping
S . defined above. Recall that for given F,G, and H satisfying condition (A4,), we
can define a convex, weakly compact set B (see Corollary 1), where B is a subset of a
Banach space (£2x£2xW?2, || -||) with a norm || - || defined in Lemma 1
corresponding to any L €[0,1), containing the set C(A) of all fixed points to
subtrajectory integrals mapping S,(-). From Theorem 2 and Lemma 1 we
immediately obtain the following result.

Lemma 3. Suppose F,G, and H satisfy conditions (A) and (Ay). A set-valued
mapping C:L%(%F;) 2 A=C(X) € N(B) has a retractive representation p: LE(%F,) x
B—B.

Corollary 2. Let F,G, and H satisfy conditions (A;) and (A,), and p:Li(‘iFo)x
B—B be a retractive representation for S. Then C(X) = p(A, B), each A € Li(“fo).

Corollary 3. The set-valued mapping A—C(X) is continuous as a mapping from
L% (%) into a metric space (CI(£%x £%x £2,0).

Given F,G, and H satisfying conditions (A,) and (A,), €y denotes a set of all
solutions to the initial value problem SI,(F,G,H). As an immediate consequence of
Proposition 1, we obtain €y = <I>’\(C(A)), where C(A) is defined as above. C denotes a
set-valued mapping Li("}o) 3 A—=C, C D. From the above definitions, Lemma 3, and
properties of @, we immediately obtain the following main result of this paper.

Theorem 4. If F,G, and H satisfy conditions (A;) and (A,), then C has a quasi-
retractive representation and is l.s.c. on L2(‘EF0).

Proof. Let p:LEI(G.FO)xB—-»B be a retractive representation for the set-valued
mapping C defined in Lemma 3. We have C, = dNC(X)) and C(A) = p(), B), each
A€ L%(“.FO). Therefore, C has a quasi-retractive representation. Moreover, a function
LA(%F,) 2 A—®*(p(\,z)) € D is continuous for fixed z € B. Therefore, a set-valued
mapping C (see [3], Proposition II 2.5) is Ls.c. on L%(F). 0

Corollary 4. If F,G, and H satisfy conditions (A;) and (Ay) and are such that
a set-valued mapping C has a reiractive representation p: Li(‘fo) X B—B that is
weakly-weakly continuous, then C, is a weakly compact subset of D for every
X € LA(%,) and a set-valued mapping C is weak-weak continuous on LA (%)

Proof. Indeed, if p has properties mentioned above, then (see [3], Th. II 2.6)
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p(A, B) is a weakly compact subset of B for each A€ L? (‘}g) C, is also a weakly
compact subset of B for each A € L2(%F,) because C)‘ = 9"(p(A, B)). Fmally, by
weak-weak continuity of the linear mapping L2(%,)x B3 (), z)—®Nx), weak

compactness of B, and an equality Cy = ®*(p(), B)), each X € L%(%,), it follows (see
again [3], Proposition II 2.5), that C is weak-weak continuous on L2(%). O
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