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1. Introduction

Properties of solution sets to stochastic inclusions play a crucial role in stochastic
optimal control theory. The first results dealing with this topic are given in the
author’s paper [4], in which, by rather strong assumptions the weak compactness of
the set of all solutions to stochastic inclusions

8 8 8 wart

has been obtained. In the present paper, we show that for a given random variable A,
the solution set E), to an initial value problem

has quasi-retractive representation. As a result, we obtain lower semicontinuous
dependence of solution set E), on an initial date.

We begin with basic notations dealing with set-valued stochastic integrals. Some
properties of fixed point sets to subtrajectory integral mappings are investigated.
Hence, the main results of this paper readily follow.
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2. Basic Definitions and Notations

Let (f, 3, (3t) >, P) be a complete, filtered probability space. Given T > 0, let I
[0, T] and let-(I) denote the Borel e-algebra on I. We consider set-valued
stochastic processes (ft) e I, (Ot)t e I, and (%t,r)t e I,r e NTM taking on values from

the space Conv(Nn) of all nonempty, compact convex subsets of the n-dimensional
Euclidean space Nn. These processes are assumed to be nonanticipative such that
T T T
f II Ft II 2tit < (x3; f II (t II sdt< oo; and f f ,n [[ %t,z II 2dtq(dz) < oo, a.s., where q
0 0 0
is a measure on a Borel a-algebra %n of a", A Conv(N), and
sup{la I’a A}. The spe Conv(a) is endowed with the Hausdorff metric h
defined in the usual way (i.e., h(A, B) max{h (A, B), h (B, A)}, for A,B
Con(a), where h(A,B)- {dist(a,B)’a A} and h(B,A)- {dist(b,A):b B}).
CI(X) denotes the family of all nonempty closed subsets of a metric space (X, p).

Filtered, complete probability spaces (f, 3, (3t) > 0, P) are assumed to satisfy the
usual hypotheses: (i) 30 contains all the P-null sets fff 3; and (ii) 3 f"l , > t3u, all
t, 0 < t < oe. As usual, we shall consider a set I x f as a measurable space with the
product a-algebra %(1) (R) 3.

(Xt)t I denotes an n-dimensional stochastic process z, understood as a function
z: I x ftNn with 3-measurable sections zt, each t I. This process is measurable if
x is %(1)(R) 3-measurable. The process (xt) e I is 3t-adapted or adapted if x is
measurable for t I. Every measurable and adapted process is called nonanticipa-
live.

The Banach spaces L2(f, 3t, P, N’) and L2(f, 3, P, N’), with the usual norm

I1" II , are denoted by L(t) and L(5) respectively. tt,(St) denotes the family

(i.e., equivalence classes) of all n-dimensional nonanticipative processes (ft)t e such
T

that f ftld < oe, a.s. We shall also consider a subspace Z2 of tt2(3t) defined by
0 T

.2 {(ft)t C 0 2(3t): fl 2 < c}, with fl 22 E fo ftl2dt" Finally,

Mn(3t) we denote the space (i.e., equivalence classes) of all n-dimensional 3t-measur-
able mappings.

(wt)t I defines a one-dimensional 3t-Brownian motion starting at 0. u(t,A)
denotes a 3t-Poisson measure on I x %n. We define a 3t-centered Poisson measure

(t,A), I, A%n by taking(t,A)-u(t,A)-tq(A), I, A%n, where qis
a measure on %" such that Eu(t,B)- tq(B) and q(B) < for B %: {A %:
OgA}.

tt2(3t, q) denotes the family (i.e., equivalence classes) of all %(I)(R) 3 (R) %n-mea-
T

surable and 3t-adapted functions h: I x x [n__,n such that f f ht, r [2dtq(dr)
0[n

c, a.s. Recall, a function h’I n___,n is said to be 3-adapted or adapted if
h(t,. ,r) is 3t-measurable for every r n and I. Elements of .At2(3,q) will be
denoted by h (ht, r)t I,r n. Finally, we let 3q2n {h .22(3t, q): hl 2y2n <

T
oe}, where hl 2

W2 Eff ht, r 12dtq(dr).
o ,n

Given f, g .Al2(3t) and h 12(3t, q), f frdr)t I, f grdwr)t I, and
0 0
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(f f hr, rV (dT",dr))t I denote their stochastic integrals with respect to Lebesgue

measure on N +, the t-Brownian motion (wt) E I, and the t-centered Poisson

measure (t, A), t E I, A E %’, respectively. For fixed I and (f, g,h) 2x 2x

ff{72,we equate 3t(f)- f f.dT", t(g)- f y.dw., and t(h)- f f h.,z (dv’,dz).
o o o,n

3, }, and ff denote linear mappings defined by .L2 D f---(3t(f))t I D, .L2 9---+
(Jt(9))t I D, and 5372 h---(t(h)) 1 G D, respectively, ttere, D denotes the
family of all n-dimensional t-adapted cAdlg (see [7]) processes (xt) 1 such that
Esupt 6 i lxtl 2 < cxz. The space D is considered a normed space with norm

II II ]1 suPt I Itl II L for (t)t
is a Banach space.

Given a measure space (X,%,m), a set-valued function :XCI(n) is said to
be %-measurable if {x G X: (x)f3 C : 0} G % for every closed set C C n. For such
a multifunction, we define subtrajectory integrals as a set ()={gG
L2(X,%,rn,,n):g(x)E(x) a.e.}. We shall assume that the %-measurable, set-
valued function :XCI() is square integrable bounded (i.e., a real-valued
mapping X D x--- II () II / belongs to L2(X, %, m,

Let (Ot)t I be a set-valued stochastic process with values in CI’), (i.e., a

family of if-measurable set-valued mappings t:f2---+Cl(n), t G I). We call
measurable if it is %(1)(R) -measurable. Similarly, is said to be t-adapted or
adapted if Ot is fit-measurable for each t G I. A measurable and adapted set-valued
stochastic process is called nonanticipative.

We shall also consider %(1) (R) (R) %n-measurable set-valued mappings %: I f2
n---,Cl(n). These mappings will be denoted by (%t,r)tG I,rn, and called

measurable set-valued stochastic processes depending on a parameter r n. The
process %- (z’t, zr)t i, r En is said to be t-adapted or adapted if %t,.r is 6t-

measurable for each t G I and z E [n. We call this process nonanticipative if it is
measurable and adapted.

N2_v(t) and .ht_o(t,q) denote families of all nonanticipative set-valued
processes (Ot)t I and % (-t,r)t 1, r ,n, respectively, such that

T T

f II Ot II =dt < f f II  t,r II 2dtq(dr) < From Kur towski rtyll-
0 0[n

Nardzewski measurable selection theorem (see [3]) it immediately follows that for
every F, .A2_ v(t) and % l2_ v(t q), their subtrajectory integrals 3’(F):-
{f G d2(cYt): ft(w) G Ft(w), dt P-a.e.},
a.e.}, and bq(%): {h (t,q): ht, r() %t, r(w), dt x P x q-a.e.} are nonempty.
Indeed, we let E {Z %(I)(R) : Z t, each t I}, where Z denotes a section of
Z determined by t I. E is a r-algebra on I x f2, and a function f:I x 2--,n (a
multifunction F:I x 2Cl(n)) is nonanticipative if and only if it is E-measurable.
Therefore, by Kurtowski and Ryll-Nardzewski measurable selection theorem, every
nonanticipative set-valued function admits a nonanticipative selector. It, is clear that
for F 1%

_
v(, such selectors belong to (t)" Similarly, we define on I x f2 x

n a or-algebra E -{Z(I)(R)%n:zEt, each tI and un}, where
Zu Z’Zt --( )t’ and denotes a section of Z determined by u G The foregoing

arguments can be repeated to obtain the above result for nonanticipative, set-valued
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processes depending on a parameter r E Nn.
It can be verified (see [2, 3])that for given F--(t)tEie 2s_v(mjt)
(t)t I 2s- v(Vt), and % (%t, r) e t,r

_
[n J2s v(Vt, q), their stochastic

integrals are defined as families f F’dr)t e I, f -dw.)t e I, and
0 0

(f f -,zV (dT, dz))t I of the subsets of M(t) of the form f .dT- { f.dT:
0n 0 0

f If(F)}, f rdwr { f grdwr: g If2()} and f f hr, z (dr, dz)" h
0 0 o,n

Given 0<c< fl<oc, we also define fFsds: -{ffsds’fIfP(F)}, fsdws:

{ f gsdws’g e If2(O)}, and f f %s, r
y (ds, dz): { f f hs, rV (ds, dz)" h e Ifq(%)}.

The following selection property of set-valued stochastic integrals has been
obtained in [5]"

Proposition 1. Let F, e l,2s_ v(Jt), e J2s v(t, q), and (xt) I e D. Then:

for 0 <_ s <_ t <_ T if and only if there exists (f, g, h) If(q) x If() x Ifq() such that

fortI.

Stochastic Inclusions and Subtrajectory Integrals Depending on
Parameters

Let
F {(Ft(x)) I:X C:_ n}, G {(Gt(x)) e I:X e Nn},

and H {(Ht, r(X))
Assume F,G, and H are such that (Ft(x))tele f-.(t),
tt2s_ v(it), and (Ht, r(x)) e I,r C nN’ e t.s2 v(, q), x e Rn. A stochastic inclusion

denoted by SI(F,G,H), corresponding to the aforementioned F,G, and H is the
relation"
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which is satisfied for every 0 < s < t < T by a stochastic process x- (xt) e I E D
such that Fox e .2s v(t), G o x e .;tl%2_ v(fft), and H ox e d2s v(t, q), where
F o x (Ft(xt))t

_
I, G o x (Gt(xt))t I, and H o x (Ht, r(Xt))t e I,r n. Every

stochastic process (xt) I D, satisfying conditions mentioned above, is said to be a

global solution to SI(F,G,H). Given @ L(0) we shM1 consider SI(F,G,H)
together with an initiM value condition x0 -A. This type of initiM value problem
will be denoted-by SI(F, G, H).

We shall assume that F, G, and H satisfy the following condition"

(1)" (i) F {(Ft(x)) i:x },G {(at(x)) i:x n, and H
{(Ht, r(X))ti,rRn:xn}, such that mappings +xxn9
(t, w, x)Ft(x)(w
conv(n), and I x x n x n (t, w, r, x)Ht, r(X)(W) Conv(n) are
E @ n and E @ n-measurable, respectively;

(ii) (Ft(x)) I, (Gt(x))t I, and (Hx, r(X))t e I,r e n are uniformly square

integrable bounded (i.e., functions (t,w)supx
(t, w)supz e n II Gt()() II e +, and (t, w, r)

sup ,, !1 Ht,()()II +) r squ integrable on + x Q and

+ x Q x n, respectively.

We denote BF { 2. It su% , II Ft()II .e. on I x }, B
{u 2: vtl su% n II
sup , II Ht, ()II .e. on I x x }. Then we dene B B xB x Bn.

Corollary 1. If F,G,H satisfy (A1), then B is a nonempty convex and weakly
compact subset of L x L2 x. Moreover, for every (xt) I D, one has F o x,
Gox 2s_v(t) and Hox e s v(,q)"

Let be a linear mapping n L’xL2x2 defined by -]+J+ff, (i.e.,
(f,g,h)=(tf+Jtg+ffgh)teI for (f,g,h) eL2xLx2). For fixed AeL(%),

ff denotes an affine mapping on L2x L2x2 defined by OA(u,v,r)- A + (f,g,h)
for (f,g,h) L2x L2x 2. Given F,G, and H and A 6 L(o), we set

X(x) OA((F o x) x (G o x) x q(H o x))
mr (), e e D. It n b vid (s [4, ]) tt mr wy
convex, weakly compact subset of D. A denotes a set-valued mapping D x

() c D. rom ,roosition 1, it immaity mnows tt mr wry e (0),
and F,G, and H satisfying condition (A), e D is a solution to S(F,G,h) if and
only if x is a fixed point to

Suos F {(F,()), e ’ e "}, {(,()), e : }, nd

H{(H,, ()), e ,z e ": e "} stisy condition (1) nd t m.owin condition

(:) T .,a e (m(.)) na e (m() m) s. tt
h(r(), F(I)) (t) 1 , h(G(:), O,(1)) (t) : 1 , nd
h(H,,(:), Ht,(l)) (t,):- .s., h t nd 1, : e .

Conidcr for fixed A e L(e0) subtrjtory integrals mpping defined by:
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SA(u, v, r) I(F o O)(u, v, r)) x I(G o A(u, v, r)) x lq(H o O)’u, v, r))

for (u,v,r) EZ2xZ2x4r2. It is clear that for
and F,G, and H satisfying condition (A1) one has S;(u,v,r) C1(2 x 2qr2). We
shall show that if condition (.A2) is satisfied, then it is possible to renorm a space
2 x 2 x2 by an equivalent norm [[. [[ such that Sx(.) is a contraction from

( x 2 x 2, ] [[) into (Cl(2 x 2 x 2),), where is the nausdorff metric
induced by [] "2[5

x
A similar result is also true for S.(u,v,r)’L(o)

S(u,v,z) e Cl( 2x2). Observe that a norm [[ [[ is defined by
]] (u,v,r)] max( ]] u [[ 2, [[ v [[ 2, [[ z [[ 2)’ where [ [[ 2 and [[ [[ 2 are

appropriate norms on 2 and 2 equivalent to 2 and W2 defined above.

Finally, observe that for every A, ,B, C1(2) and C, CI(W2) one has:

(AxBxC, A xB xC)5max{2(A,A),2(B,B),w2(C,C)}
where 2 and 2 are Hausdorff metrics on Cl(2) and Cl(2) induced by the

norms [[-[[ 2 and [[. [[ 2, respectively.

Proition 2. Suppose F,G, and H satisfy (A1) and (A2). For every L > O,
there are norms [. [2 and [[. [12 on 2 and 2 equivalent to [- [2 and

2, respectively, such that:

,(S(F o(,v,)),S(Fo( , , ))

((o(,, )),( o(, ,z ))

L ma( II u- II 2, II v- II 2, II z-
and

2(Sq(H o O(u, v,r)),Sq(H o( , , ))

a( II II , I v II , II z Z I W),
fo (, v, ), ( , ,7 x x.

Proof. Let L>0 be give. and fix (u,v,z)L( ,)e2x2x2. For every
f e S(F o O(u, v, z)), there is f e S(F o O(,v , ) such that"

ft- ft) < h(Ft(OAt(u, v,z)),Ft(t( ,"ff , )) < kF(t) laPt(u, v,z)- Pt (u ,
<_kF(t

0

+ [z, ,]v (d, d)
0 [m

a.s., each t e I. Similarly, for every g e S(G o O)(u, v,z and h e Sq(H o (I)’X(u, v,z)),
there are S(G o .x( , , )) and Sq(H o (I)’(, v , )) such that:
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lea(t) u-. Ida + [v.- .]d,. + [z,-,] (dr, dr)
0 0 0 m

and

o o

and N()--f k(r)dr for e I. Let us renorm and with equivalent norms
0

ll" II and I" 1 dnd by-

(/II II 2 E -?(t) u 12dr
o

and 1/2

II z II E -%(t) zt, r 12q(dr)dt
o m

for u 2 and z 2. We obtain:

1/2

II f-7 II 2 E =(t)-(’) I,- dr dt

0 0

+ E ()-(t) [v.-.]d. dt

0 0

+ (t)- (<) [Z,r--,,] (d, d) dt

0 0 m
We have:

E J ]2(t) "l,(t) u d

0 0

dt



234 MICHAL KISIELEWICZ

I/t0
and

<,(t,)
0

a.s., each t E I. Let:

f [v ]d
0

+ [z, 7, ]’ (d, d)
0 m

+ [z, 7,] (d-, d)
o ,m

7 max{(3/L)2T,(3/L)2},k2(t) max{k2F(t),k2G(t),/" m2(t,r)q(dr)},

and %(t)- fk2(r)dr for t E I. Let us renorm 2 and 2 with equivalent norms

I1" II . and I1" II defined by:

II u II E -%(t) ut 2dt
0

II z II w E -’r%(t) zt, r 12q(dr)dt
o m

for u2andz2. We obtain:

II f- II . _
E (t)-

0 0

-4-

1/2

IE k2(t)e -’r%(t)

0

[%-]d

0

2 /
1/2

dt

E k2(t)e -l%(t)
0

2 i1/2dt

We have:

E / k2(t)e-"/%(t) ur --’ dr dt

0 0
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Therefore,

Similarly,

Finally,

3(s( o +(, v,z)),s( o +( , , )),

< L max( II u- II 2, II v- II 2, II z- II W2.

:(S(G o (, v,z)),S(G o( , , )),

2

/
1/2

q(dr)dt

/E e -’%(t) m2(t,r)
o rn

E e -’%(t) m2(t,r)
o m

-r,r](dv, dr)

Similarly, as above,
T

E / e "%(t) ./ m2(t, r)
0 [m

q(dr)dt

T

_< Tz f - (*)f ,- -t _< (/3): II - II :,
0 0

T

El e-’(t) / m2(t,r)
0 m

q(dr)dt

and

T

_< f -%()f Iv,. -’,. :e-,t _< (/3): II v- II :.:,
0 0

T

E / e-’(t) / m2(t,r)
0 [m

q(dr)dt
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T

<_ E e .%(t) z-,- zr, r 12q(dr)dvdt <- (L/3)2 II z- II
0 0 m

Therefore,

W2(Sq(H o ’(u, v,r)),Sq(H o ’(’ , , ))

< L max( II u II z2, II v II z2, II z II w2,
Now we can prove the following basic lemma.

Lemma 1. Suppose F,G, and H satisfy (A1) and (A2)" There is a norm
on .2 .2 X t2 equivalen to the norm defined on 2 x 2 x qr2 by 2
I.Iw= uch that )( and q (u, v,z) are contractions from (2.L2 q r2,
and (L2n(aSo), ]] I] L2n), respectively, into (Cl(.2 .L2 r2),), where is the Haus-

doff mc ducd by h orm I1" II,
Proof. Let L e [0,1) and [[-II 2 and I1" II qr2 be such as in Proposition 2,

corresponding to the given L. Set ]](u,v,z) ll -max(]]ull2, llv]]2, [Iz
and let e be the Hausdorff metric on C1(2 x2 2)induced by the norm

By Proposition 2, we obtain

for E L2n(o) and (u, v,z), ( ,’ , e 2 x 2 x W2. Quite similarly,

2 z) 2 2 2for ,$ Ln(O) and (u, v, x x

4. Quasi-Retractive Representation of Solution Set

We shall show that if conditions (’J[1) and (.A2) are satisfied, then the solution set
mapping ,--,C,x where C,x denotes a set of all solutions to an initial value problem
SI,x(F, G, H), has quasi-retractive representation. In particular, it will follow that
this mapping is lower semicontinuous. Moreover, it will follow that in some special
cases the solution set e is weakly compact in (D, I1" II )- These results are

consequences of Lemma 1 and a general retractive representation theorem presented
in [1].

Let A be a topological space and (X, I" l) be a Banach space. Denote N(X)=
{A c X: A #- 0}. Given S: A(X) andCCX, let S-(C)={A
We say that S: A-+N(X) is lower semicontinuous (1.s.c.) [upper semicontinuous

(u.s.c.)] if S-(C)is open [closed] for every open [closed] set C C X. A set-valued
mapping S: AN is said to be W-upper semicontinuous (W-u.s.c.) if for every x E X
the function Adist(x,S(,X))is lower semicontinuous in the usual sense. Finally, S is
said to be W-continuous if it is 1.s.c. and W-u.s.c.
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We say that S:A-+.N’(X) has a retractive representation if there exists a set
B E aV(X) and a continuous mapping p: A B-+B such that p(A,x) S(A) for every
(A, x) A B and p(A, x) x if and only if x S(A).

We say that the solution set mapping L2n(0) --C,X C D has quasi-retractive re-
presentation if there is a set-valued mapping S:/2n(0)--Jg(2 2x o/r2) having a
retractive representation p: A B--,B such that C--();(p(A,B)), each L2n(VO).

We present the following general results (see [1, 8]) dealing with retractive
representation of set-valued mappings.

Theorem 2. ([8], Th. 1) Let A be a paracompact and perfectly normal topological
a, (x, I" I) a Bana a, a B C(X). o V" h B- C(X)a
on convex values and is such that"

(i) fo B -vau,a (.,) W-ono,
(i) U [0,) c a (V(,),V(,7)) <_.LI-7 fo fid

A and x,7 B, where h is Hausdorff metric on Cl(X) induced by the

Let Sp(): (x B:x P(,x)}, each , A. A set-valued mapping S2:A
A---+SV() e N(B) has a retractive representation p:A x B--B.

We now apply Theorem 2 and Lemma 1 to the subtrajectory integrals mapping
S. defined above. Recall that for given F,G, and H satisfying condition (tl) we
can define a convex, weakly compact set B (see Corollary 1), where B is a subset of a
Banach space (2x2x’2, I1" ]1) with a norm []. II defined in Lemma 1
corresponding to any L E [0,1), containing the set C(X) of all fixed points to
subtrajectory integrals mapping S,x(. ). From Theorem 2 and Lemma 1 we
immediately obtain the following result.

Lemma 3. Suppose F,G, and H satisfy conditions (al.1) and (A2). A set-valued
mapping C:L2n(O) A-+C(A) aV(B) has a reiractive representation p:L2n(o) X

B--+B.
Corollary 2. Let F,G, and tI satisfy conditions (A1) and (t2) and p:L2n(O)x

2B--+B be a refractive representation for S. Then C(A)- p(A,B), each A Ln(O).
Corollary 3. The set-valued mapping A-+C(A) is continuous as a mapping from

L2(ZJo) into a metric space (C1(2 x 2 x 2.2, ).
Given E,G, and .H satisfying conditions (tl) and (t2) g,x denotes a set of all

solutions to the initial value problem SI;(F,G,H). As an immediate consequence of
Proposition 1, we obtain g), (I)(C()), where C(A) is defined as above, g denotes a
set-valued mapping L2n(O) A-,X C D. From the above definitions, Lemma 3, and
properties of (I)", we immediately obtain the following main result of this paper.

Theorem 4. If F, G, and H satisfy conditions (A1) and (t2) then has a quasi-
refractive representation and is 1.s.c. on L2(o).

Proof. Let p:L2n(O)xB-+B be a retractive representation for the set-valued
mapping C defined in Lemma 3. We have ,x- (I))’(C(A)) and C(A)- p(,B), each, L2n(ZSo). Therefore, has a quasi-retractive representation. Moreover, a function
L2n(VO) A-+(P(p(k,x)) n is continuous for fixed x E B. Therefore, a set-vMued
mapping (see [3], Proposition II 2.5)is 1.s.c. on L2(0). El

Corollary 4. /f F,G, and H ,satisfy conditions (.At) and (t2) and are such that
a set-valued mapping C has a refractive representation p:L2n(Jo) XB--+B that is
weakly-weakly continuous, then is a weakly compact subset of D for every, e L2n(o) and a set-valued mapping C is weak-weak continuous on L2n(Jo).

Proof. Indeed, if p has properties mentioned above, then (see [3], Th. II 2.6)
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p(,,B) is a weakly compact subset of B for each A e L2n(5). C.X is also a weakly
compact subset of B for each , e Ln(0) because C,X (b(p(,,B)). Finally, by
weak-weak continuity of the linear mapping L2n(o) xB(,,x)(b(x), weak

compactness of B, and an equality C.x- ’X(p(),B)), each e L2n(0), it follows (see
again [3], Proposition II 2.5), that is weak-weak continuous on L2n(O).
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