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In 1989, Reimers gave a nonstandard proof of the existence of a solution to
heat SPDEs, driven by space-time white noise, when the diffusion coeffi-
cient is continuous and satisfies a linear growth condition. Using the mart-
ingale problem approach, we give a non-nonstandard proof of this fact,
and with the aid of Girsanov’s theorem for continuous orthogonal martin-
gale measures (proved in a separate paper by the author), the result is ex-
tended to the case of a measurable drift.

Key words: Stochastic PDEs, Stochastic Heat Equation, Space-time
White Noise, Martingale Problem.

AMS subject classifications: 60H15, 60G48, 60G46.

1. Introduction
We consider the SPDE

2 2
OU 4 o2 W, (1,2) € T xR,
‘ (1.1)

where T: = [0,T] for some 0 < T < oo, W(t,z) is the Brownian sheet corresponding
to the driving space-time white noise §*W /9t0z, with intensity Lebesgue measure
(see [15]). Our main result in this paper is

Theorem 1.1:  Suppose that a € C(R;R) (continuous real-valued function on R)
and h is a deterministic function in C (R;R) (continuous real-valued function on R
with compact support). Suppose further that there exists a constant K > 0 such that

a¥(z) < K(1 +z?), (1.2)

for allz € R. Then, there exists a solution to the heat SPDE (1.1).
Our approach will ke as follows:

e We approximate the SPDE in (1.1) by a sequence of Stochastic Differential-
Difference Equations (SDDEs) associated with interacting diffusion models and
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solve the SDDEs;
e We then derive bounds on moments of spatial and temporal differences of the
solutions obtained in the previous step;
From those bounds, we conclude the tightness of the sequence of solutions;
e We then extract a subsequential limit, which solves a martingale problem that is
equivalent to (1.1).
Girsanov’s theorem for space-time white noise may then be used (see [1] or [2]) to
prove existence for

OH _10°H |
9t =7 5,2 b(H)+a(H)8t6 (t,z) e TxR,
H(0,z) = h(z),
where a and h are as above, and the drift b is a Borel measurable real-valued function

on R such that the random field X(t,z) = b(U(t,z))/a(U(t,z)) satisfies the Novikov
condition:

(1.3)

E (exp —%—/ XZ(S,.’L')deCB) <oo; teT, (1.4)

[0,t]xR

where U is a solution to the SPDE with no drive (1.1). For the convenience of the
reader, we restate below Girsanov’s theorem for white noise as well as the existence
theorem relating (1.1) to (1.3). The reader is referred to [1] or [2] for more details.

Theorem 1.2: Let XA be Lebesgue measure on the Borel o-field B(R) and R: =
{A€BR)|AMA) <o} Let W={W,(A),F:0<t<o00,A€R} be a space-time
white noise on a filtered probability space (2, ‘?F A% > o P) (see [2] or [1]). Define
the process W = {W (A),F;0<t<o0,AE R} by

W ,(A): =W ,(A) - / Z(s,z)dsdz, (1.5)
[0,t]x A

where Z is some predictable random field (see [15]). Suppose that Z satisfies (1.4).

Then, for each fized T € [0,00) and A € R, the process W = {Wt(B) Fp 0 <t<T,

Be ‘.RalA} is a space-time white noise on the probability space (%, G.FT,QT) having
the intensity Lebesgue measure, where %l ={B€R|BC A} and QT is the proba-
bility measure whose Radon-Nikodym derwatwe s given by

A
% = &Xp / Z(S) I)W(ds, d:L') —%‘/ Z2(8, :c)dsdz .
[0,T]x A [0,T]x A

Theorem 1.3: Suppose that (1.1) has a solution U and assume that X, as defined
above, satisfies Novikov condition (1.4). Then, there ezists a solution to (1.3).

There are two rigorous formulations for (1.1): the test function formulation and
the Green’s function formulation. The test function formulation is given by

t

i
W) -to) =5 [ Weeis+ [ [ aWsene@Wds s (10)
0 R ©
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for all t € T and ¢ € CP(R;R), where (-, -) denotes the scalar product on L?(R), and
CP(R;R) is the space of infinitely differentiable functions with compact support. The
Green’s function formulation is the integral formulation

t
vo)= [Geh@iv+ [ [ Go_ e aUsnWsd)  (17)
R R ©

for all t € T, z € R, where G,(z,y) is the fundamental solution of the heat equation in
TxR. It is a well-known fact (see a discussion in [15] pp. 312-321), that the
formulations in (1.6) and (1.7) are equivalent, provided the random field a(U) is
locally bounded, which we will assume throughout this article.

Remark 1.4: We will s%metimes place a superscript R, i=1,2,... above a

1
mathematical relation; e.g., <. This makes it easy to refer to the relation in
question and renders our explanations more concise. Also, throughout this article, K
will denote a constant that may change its value from line to line.

2. The Interacting Diffusion Models

Consider the sequence of sets (X, )o— ¢

defined by

X,:={.,—26,-6,0,6,26,..},

YU n?

where é,, > 0 for all n and 6,, .~ 0. Then the SPDE in (1.1) may be approximated
by the following sequence of stochastic differential-difference equations (SDDEs):
dWi(t)
V 611
where t € T and z € X, and A, f(z) is the nth approximate Laplacian given by
flz+6 2f(z)+ f(z =6
oy - Lo 11 ty)
We think of W7 (¢) as a sequence of standard Brownian motions indexed by z € X,

and we assume that, for each n = 1,2,. UI(O) = h(z) for all z € X,,. It follows from
the boundedness of h that

dUz(t) = 1A, 02 (1)dt + o(U2(1)) (2.1)

sup |UZ(0)| < K. (2.2)
T €
By a straightforward adaptation of Relmers observations ([11], pp. 325-326) we get
Lemma 2.1: There is a solution U””(t) to (2.1) satisfying

> - a0 ( ) ~y(\FF
Ui(t) = Qx Y(t — ) —=—dW¥(s) + QF ~Y()UY(0), (2.3)
veX, / V9 yez;<n n

where QF (t) is the density of a random walk on the lattice X, in which the times
n

between transitions are exponentially distributed with mean 2p6i, where p is the pro-
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bability of a transition to the right (or to the left) and 1 —2p is the probability of no
transition at a transition epoch. The subscript §,, in QF (t) is to remind us that the
n

size of each step is §,. The second term on the r.h.s. of (2.3) is deterministic and will
henceforth be denoted by U%(t). From (2.2), it follows that

1T5(0)| < K. (24)

Remark 2.2: Equation (2.3) may be thought of as the discrete-space-continuous
time “Green’s function formulation” of the SDDE in (2.1).

3. Some Bounds

Here, we give bounds on the moments of spatial and temporal differences of the

sequence {U7(t))7°_, that are used to conclude tightness for our approximating

sequence, along with some inequalities related to Qf (¢) and some bounds on the
n

moments of ﬁfl(t) that are useful in proving these spatial and temporal bounds.
Since all the results in this section hold for all n, we will suppress the dependence on
n to simplify the notation. This section is a simple adaptation of Reimers’ corres-
ponding results to our setting, and most of the proofs will be omitted.

3.1 Bounds related to QF(%)

Lemma 3.1: There is a constant K such that

Y Q5 < Ké/ /1.
x € X

Lemma 3.2: There is a constant K such that
t
| 3 @tptas < xavi
0 TE X

Lemma 3.3: There is a constant K such that

t

| X @)@ s <k,
(S X

Lemma 3.4: There is a constant K such that
t
/ 3 (QE(t—s5) — QE(r —s))%ds < K6 /T,
0 ZE X

for r > t, and with the convention that Qf(t) =0 if t <0.
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3.2 Bounds on moments of If (1)

Lemma 3.5: There ezists a constant K depending only on p,q, max, | ﬁz(()) |, and T

such that
t

Fq(t)gK(H/j;'_(_%ds) VieT,
0

where F (t) = sup,F | ﬁx(t) |29,
Proof: Fix ¢ > 1, we then have:

2q
Tz z— a(U ( )) FrT
E|\U%t)| % = QF T Y(t — s)——22dWY(s) + U*(2) (3.1)
U;XZ \/—
t ~ 2q
x — a(Uy(s)) 7T 2
<KE QF Yt —s)——=dWY(s)| +K|U(t)|“9 (3.2)
y;XZ ’ \/5

Now, as in [11] p. 327, applying Burkholder inequality to

t ~
. z— a(U¥(s))
VHY) = Q5 ~ Yt — s)=—7==dW?¥(s),
ygxl ? \/5
we get

t ~
v <re| Y [ @ o,

UEXO

so that (3.2) reduces to

q

t ~
> [ @ et G| Ly @)

yeX

E|U%(t)|2 < KE

Now, for a fixed point (¢,z) € TxX, let uf be the measure on [0,1] x X defined by
duy (s y) = ((QF ~¥(t —s))%/6)ds, and let |.“t | = pf([0,]x X). Then, (3.3) can be
rewritten as

e

E|U*t) |2 < KE
[U(t)| % < 127

AR SAGNE (3-4)

[0,t]x X

Observing that puf/|puf| is a probability measure, we apply Jensen’s inequality to
(3.4) to obtain

p10s1 ks | [ 1a@e) PR ek (07
[0,¢]1x X
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=K | [ Bla@) M0 | 6] 4K (T
[0,t]x X

. / B |a(f¥(e) | 2485,

|uf 1971+ K| T%(2) | .
yeX 0

Now, by Lemma 3.2, |p¥|971!
(2.4) give us

t o
E|l7’”(t)|2‘1§K(1+ > /E|a((7y(s))|2‘1M_((s_t.l))2ds)
yeX 1

is uniformly bounded for ¢ < T'. This, together with

yeX 0

d K(1+ > / El1+ Uy(s))2|4-————(Q§"”§t‘s))2ds)

' - 2
SK(HZ [ (i 1By oy =2 ds)

yeX 7

t o
2x ( 2 [ 1@z @G yfst_swds)

yeX 9

( / E|(Uy N 2q (Q_g:f_%i___ﬁ)jds).

Here R, follows from the linear growth condition on a and R, is a consequence of
Lemma 3.2. Now, letting F' (s) = sup,F | U%(s)| 29, we get

0 yeX

R tF
331( 1+ "(S)ds )
A Vi—s

Here, K5 follows from Lemma 3.1. this implies that

Fo(s )
F (<K |1+ |
q( )< ( \/TS
We easily obtain:

Corollary 3.6: There ezists a constant K such that

Elﬁf(t)lz"sK( /F()Z—(Qa'y(t ), )
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t
F ) <K (1 + / Fq(s)ds),
forallteT. °

Proof: Iterating the bound in Lemma 3.5 once, and changing the order of integra-
tion, we obtain

t t t
F(t)<K{1+K /\/tl__sds+/Fq(r)( /\/%—\/—:_—jds)dr
0 0 T

t

T
<K{1+K 2\/T+/ F (r) /
0

\/_—\/)

t
<K 1+/Fq(r)dr . O
0

By Gronwall’s Lemma we have:
Lemma 3.7: There exists a constant K depending only on p,q,max, |UI(0) [,
and T such that N
B 0(1) |2 < K exp (K1),

forallt €T and all z € X.
3.3 Bounds on moments of spatial and temporal differences

Let (7””(71) = V*(t)+ U*(t), where V denotes the first term on the r.h.s. of (2.3) (the
random term). Using the inequalities of the previous two subsections, we obtain:

Lemma 3.8: (Spatial Differences) There exists a constant K depending only on
P,q,max, |U (0)|, and T such that

EIVEHt)=VU(t)|* <K |z~y]|1,

for all z,y € X and fort € T.
Lemma 3.9: (Temporal Differences) There exists a constant K depending only
on p,q,max, |U*(0)|, and T such that

E|VH(t) - V() [P < K |t-r |9,
for allz € X and for all t,» CT.

4. The Sequence of SDDEs Solutions is Tight

Let i} o(t,z) be the extension of Uz(t) to T xR obtained by linear interpolation of the
U x(t)’s between the lattice points of X,,. The following is Kolmogorov’s continuity
criterion for random fields. (See [9] pp. 53 55 and p. 118; see also Corollary 1.2 in
[15).

Lemma 4.1:  Suppose {X(t);te[O,T]d}, d>2, is a real-valued random field
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satisfying
E|X(t)—X(s)|*<Clt—s] @7

for some positive constants o, _and C, for some norm || - || on RY. Then there
exists a continuous modification X = {X (¢t);t € [O,T]d} of X.

We also have the following tightness criterion:

Lemma 4.2: For each n=1,2,..., let {X (t);t € TxR} be a real-valued contin-
uous random field. The sequence {X, }, regarded as a sequence of random variables
taking values in C(T xR), is tight in C(T xR) f:

() {X,(0)) is tight,

() E|X,(t)=X(s)|*<C|t=s||2FP, for some positive constants

o,f,C.

The proof of Lemma 4.2 follows very closely the proof of Theorem 12.3 in [3] and
will not be repeated.

Remark 4.3: Since all norms on R? are equivalent, the norm || - || in Lemma
4.1 and Lemma 4.2 may be chosen to be any norm on R¢.

Lemma 4.4: For each n, the random field (z/n ::{ ﬁn(t,x);t eT,ze IR} has a

continuous modification, which we will also denote by [7”, and the sequence
[e ]

( U n)n _ is tight in C(T xR).

Proof: This follows from Lemma 3.8, Lemma 3.9, Lemma 4.1, and Lemma 4.2
(see also the discussion on p. 97 in [3]). This is a routine argument, so we omit the
details. O

5. The Martingale Problem

~ o0
Since the sequence( U n(t,:c))n — 1 is tight, it follows that there exists a subsequence

~

U ny which induces measures ﬁ"k on (C,C) that converge weakly to a limit ?3, where
C: =C(TxR;R) and C: = B(C), where B(C) is the Borel o-field over C. Now,
following Skorokhod [13], we can construct processes Y 4 (z] n, O some probability

space (QS, F°, PS) such that with probability 1, as k—oo, Y (¢,z) converges to a ran-
dom field Y(¢,&) uniformly on compact subsets of TxR for any T < co. We will
show that Y(¢,z) is a solution to the heat SPDE (1.1) by solving an equivalent
martingale problem ([8]).

For every ¢ € C(R;R), let
¢

St = 3 Vitole@bo, -5 [ 3 Vil oa, p@b, ds  (51)
T € Xn 0 TE Xn
k k
and let §, be the filtration on (QS,‘EFS,PS) generated by the process S¥(Y,t) for all
¢ and all k; ie., G, =0o[SP(Y},5);0<s<tpecCPR;R), k=1,2,...]. We prove
Theorem 1.1 by proving: — o
Theorem 5.1: There exists an extension (Qs,gs,{gt}t>0,PS) of the filtered
probability space (QS, “.FS,{Qt}t > 01 PS)Nanglv a white noise W “defined on it such that
the pair (Y, W) solves SPDE (111) on (QS,‘EFS,{(jt}t N 0,PS).
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The proof of Theorem 5.1 follows from Theorem 3.3 in [8] in conjunction with
Theorem 5.2 and Theorem 5.3 below.

Theorem 5.2: For ¢ € C°(R;R), we have

(?) {8%(t),8,} is a martingale, for every ¢ € CP(R;R), where

Se(t): = (Y(t)9)— / (¥ (5), 9")ds,
0

where (-, -) denotes the scalar product on LA(R),
t
() (= [ [V e)izds

Proof: (i) Assume that the sequence of Brownian motions W (t) in (2.1) is
defined on some probability space (Q2,%, P) and adapted to a filtration {¥,}, >0 We

first observe that for any k,
t

T 1 T
Us 0o, -5 [ 8,75, 0p(@)s,, ds
0

is an F,-martingale for each z € X,, . This is obvious from (2.1). Now since ¢ has a
compact support, it follows that

ZEEX: U (De(@)s,, ~ [ Z Ank n (5)e(2)8,, ds
"k

t

=3 Un @b, -5 [ % Uneb,e@s,ds 62)
€ Xn 0oz (S Xn
k k

8

2= 89U, 1)

is a finite sum, and hence an ¥F,-martingale. Replacing the l~]2 (t)’s in (5.2) by the
Y, (t,z)’s and letting k—oo we get that SP(Y,t)—S¥(1) as. Ifmiformly on T. In
addition, the S¥(Y,t) are uniformly integrable for each t and each ¢ (for each ¢ and
each ¢ € CP(R;R), E|S®(Y,t)|P < M, < oo Vk, for some constant M, for any
p>2). So,ifs<t,

E[(5%(t) = 5%(s)) | G,] = lim B[(S¥(Y, 1) = S¥(Y,5)) [ G,] = 0

This proves (z).
(4¢) From (2.1) it follows that

T _1 TrT
d E Unk(t)go(.r)énk =3 E AnkUnk(t)go(m)énkdt
x € Xnk x € X"k

" (0) pl@)8,, AW, (1)
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2 6"k

. (o)

=5 >, Un (A, 9@, dt+ Y ———"p(x)6, AW, (2).
eX, zeX

k

Observing that the first term on the right-hand side of the above equation is of

bounded variation, and that the (W, (t))z c X is a sequence of independent Brown-
ian motions, we obtaln

04 (x)5n> = a2(U% (s)}p?(2)s,, |ds. (5.3)
(.5, Partorn) {[gnk( ]

Again, replacing the (NJz (t)’s in (5.3) by the Y (t,z)’s, we get, for 0 <r <t < o0,

( Z Y, (t,z) (x)é Z Y (r, x)e(z)s,, )
"k

zGX xe

(5.4)
t

=E / > az(Yk(s,m))go2(:c)6nkds g, |-

r TE X"k
We now observe that Y, (t,z)p(x)6  are uniformly integrable for t € T
T€E X"k k PO,

and for each ¢ (again, for t € T and for each ¢ € C°(R;R), F | erX Y (t,x)
n
X <p(x)6nk [P < K, < oo Vk, for some constant K, for any p > 2). Consequently,

lim E( E Yk(t,:c)go(a:)énk— Z Y, (r, x)<p(x)6nk>2

k—oo
z€ X"k z€ X"k

G,

(5.5)

R R

2
=F (/Y(t,:c)go(:c)d;c— /Y(r,:c)go(m)d:c) G, |

Also, a is continuous, and hence locally bounded. We see by the Dominated Conver-

gence theorem that
t

. 2 2
kl:rr;oE erzxjn a*(Y(s,x))p (m)énkds G,
k (5.6)

- / t / (Y (5,2))¢%(x)dzds| G, |
TR

Now, equations (5.4), (5.5) and (5.6) yield
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t

(o= [ [@reaieeds, (5.7)

0 R
and (77) is proved. O

Let ‘.D::{f:C(IR;IR):RH(X):?((X,gol),...,(X,gon)), for some n>1,

01y 0P, € CR(R;R) and f € CER(R™;R)}, and define the operator L with domain 9D
as follows:

LFxy: =4 3 { / a2(X(x)>so,-(x)so,~<w>dw} DT (X,81)re . (Xo,)
hi= R

| & N (5.8)
+§ Z(X’¢:/)D1f ((X,()ol)’---a(X)()on))'
1
We now prove our key martingale theorem.
Theorem 5.3: If f €D, then
t
fY(t, -)) - / Lf(Y(s, -))ds is a G,-martingale. (5.9)

0

Proof: Since f € 9, we have that
fxY(, ) - fx,-))
FY @010 (Y (0,0,0) = F (Y (0),00)s- (Y (0),0,,))

R~

||,§°

> ] DF (YD, (YD, )Y (5). )

13 [ D O YO DY 5, Fr
0

where R, follows for some n>1, ¢y,...,¢, € CZ(R;R) and f € C%(R™R), by the
definition of U; and R, follows from Ito’s rule for n-continuous semimartingales.
However,

(V200 (Y, 07), = H((V 0+ 00, = (V0 — 2)),)

R S
- Z 4 @ (Y (u,2))pi(2)y (x)dz du

= [ @) e
0

where R, follows from part (u) of Theorem 5.2. Also, by part (z) of Theorem 5.2, we
have d(Y(s),¢) = dS‘p(s)+ (Y (s),¢")ds, so that we can rewrite the expression for
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f(Y(t, )= f(Y(0,-)) above as:

¥, - )= f(¥(,))

t
= %Z / D,'? (Y (8)y1)s- - (Y(8),0,))(Y (5), 9% )ds
i=1 0
n t
RS 1/ Dy (Y () @1)se- (Y (0,0, ){(@(Y ()00 )}ds (5.10)
Li=1%

+

DO

)

t
[ DT @G (V6o )5,
by

The third term on the right-hand side of (5.10) is a finite sum of §,-martingales, by
part (i) of Theorem 5.2 and the boundedness of D;f, and hence is a §,-martingale.
Now,

t
[ ereres, s =1
p 1

0 =

/ DF (Y(5),01)s- - (Y (5), 0)) (¥ (5), 0 )ds
0

P L (GOSN ORMICCONTRIES
0

11]=

Consequently,
t

SOV )= S0, = [ LAY (s, )ds
0
is a §;-martingale. This completes the proof. O
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