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In 1989, Reimers gave a nonstandard proof of the existence of a solution to
heat SPDEs, driven by space-time white noise, when the diffusion coeffi-
cient is continuous and satisfies a linear growth condition. Using the mart-
ingale problem approach, we give a non-nonstandard proof of this fact,
and with the aid of Girsanov’s theorem for continuous orthogonal martin-
gale measures (proved in a separate paper by the author), the result is ex-

tended to the case of a measurable drift.
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1. Introduction

We consider the SPDE

OU
Ot

02U + qr1
20x2 JOtOx’

U(O,) h(),
(1.1)

where Y: [0, T] for some 0 < T < ee, W(t,x) is the Brownian sheet corresponding
to the driving space-time white noise 02W/OtOx, with intensity Lebesgue measure

(see [15]). Our main result in this paper is
Theorem 1.1: Suppose that a E C(N;N) (continuous real-valued function on N)

and h is a deterministic function in Cc(; (continuous real-valued function on N
with compact support). Suppose further that there exists a constant K > 0 such that

a2(x) _< K(1 + x2), (1.2)

for all x R. Then, there exists a solution to the heat SPDE (1.1).
Our approach will be as follows:
We approximate the SPDE in (1.1) by a sequence of Stochastic Differential-
Difference Equations (SDDEs) associated with interacting diffusion models and
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solve the SDDEs;
We then derive bounds on moments of spatial and temporal differences of the
solutions obtained in the previous step;
From those bounds, we conclude the tightness of the sequence of solutions;
We then extract a subsequential limit, which solves a martingale problem that is
equivalent to (1.1).

Girsanov’s theorem for space-time white noise may then be used (see [1] or [2]) to
prove existence for

OW. (t ) -r x ,OH 10H + b(H) + a(H)OtOs.Ot 20x2

H(O, ) h(),
(1.3)

where a and h are as above, and the drift b is a Borel measurable real-valued function
on R such that the random field X(t,x)- b(U(t,x))/a(U(t,x))satisfies the Novikov
condition:

where U is a solution to the SPDE with no drive (1.1). For the convenience of the
reader, we restate below Girsanov’s theorem for white noise as well as the existence
theorem relating (1.1) to (1.3). The reader is referred to [1] or [2] for more details.

Theorem 1.2: Let .k be Lebesgue measure on the Borel r-field %() and :
{A E %() ,(A) < oe}. Let W {Wt(A),Yt’O <_ t < cx,A } be a space-time
white noise on a fil2ered probability space (a,, {t}t >0, P) (see [2] or [1]). Define
the process W {Wt(A),tt;O _< < oo, A } by

Wt(A)- i Z(s,x)dsdx, (1.5)ffZt(A)
[0, t]xA

where Z is some predictable random field (see [15]). Suppose ~that Z satisfies (1.4).
Then, for each fixed T [0, c) and A , the process W {Wt(B),t; 0 < t < T,
B e a2 A} is a space-time white noise on the probability space (f,T,Q ha-ving
the intensity Lebesgue measure, where IA {B B A} and is the proba-
bility measure whose Radon-Nikodym derivative is given by

dP exp Z(s, x)W(ds, dx) Z2(s, x)dsdx
[0, T] x A [0, T] x /

Theorem 1.3: Suppose that (1.1) has a solution U and assume that X, as defined
above, satisfies Novikov condition (1.4). Then, there exists a solution to (1.3).

There are two rigorous formulations for (1.1): the test function formulation and
the Green’s function formulation. The test function formulation is given by

o I o
a(U(s, x))T(x)W(ds, dx); (1.6)
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for all t e and 90 E Cc (R; R), where (.,.) denotes the scalar product on L2([R), and
C(N; N) is the space of infinitely differentiable functions with compact support. The
Green’s function formulation is the integral formulation

N N o

for all t E Y, x R, where Gt(x y) is the fundamental solution of the heat equation in
-xN. It is a well-known fact (see a discussion in [15] pp. 312-321), that the
formulations in (1.6) and (1.7) are equivalent, provided the random field a(U)is
locally bounded, which we will assume throughout this article.

Remark 1.4: We will sometimes place a superscript Ri, i-1,2,.., above a
R

mathematical relation; e.g., _<. This makes it easy to refer to the relation in
question and renders our explanations more concise. Also, throughout this article, K
will denote a constant that may change its value from line to line.

2. The Interacting Diffusion Models

Consider the sequence of sets (Xn)= 1 defined by

where 5n > 0 for all n and 5n n__+-+0. Then the SPDE in (1.1) may be approximated
by the following sequence of stochastic differential-difference equations (SDDEs)"

1/2 ~x -dWXn(t)dUXn(t) AnUn(t)dt + a((t)) nn (2.1)

where t Y and x Xn, and Anf(x is the nth approximate Laplacian given by

f(x + 5n) 2f(x) + f(x
Anf(x): 2

We think of W(t) as a sequence of standard Brownian motions indexed by x
and we assume that, for each n- 1,2,...,U(0)- h(x) for all x e Xn. It follows from
the boundedness of h that

sup ]Ur(0) _< K. (2.2)
xEXn

By a straightforward adaptation of Reimers’ observations ([11], pp. 325-326) we get
Lemma 2.1: There is a solution V(t) to (2.1) satisfying

uT (t)
nYEXn 0
u(t-s)a(U5()dWYn(S) + E Q-Y(t)Yn(O),

yEn
n

(2.3)

where Q (t) is the density of a random walk on the lattice Xn, in which the times
n

between transitions are exponentially distributed with mean 2p52n, where p is the pro-
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bability of a transition to the right (or to the left) and 1- 2p is the probability of no
transition at a transition epoch. The subscript 5n in Q (t) is to remind us that the

size of each step is 5n. The second term on the r.h.s, of (2.3) is deterministic and will
henceforth be denoted by U(t). From (2.2), it follows that

u(t) K. (2.4)

Remark 2.2: Equation (2.3) may be thought of as the discrete-space-continuous
time "Green’s function formulation" of the SDDE in (2.1).

3. Some Bounds

Here, we glove bounds on the moments of spatial and temporal differences of the
sequence {Un(t))n=ixx) that are used to conclude tightness for our approximating
sequence, along with some inequalities related to Q (t) and some bounds on the

moments of U(t) that are useful in proving these spatial and temporal bounds.
Since all the results in this section hold for all n, we will suppress the dependence on
n to simplify the notation. This section is a simple adaptation of Reimers’ corres-

ponding results to our setting, and most of the proofs will be omitted.

3.1 Bounds related to Q(t)

Lemma 3.1: There is a constant K such that

(Q(t)): <_ si5lv .

Lemma 3.2: There is a constant K such that

/ (Q(s)):ds <_ KSV/.
O XE)

Lemma 3.3: There is a constant K such that

] (Q(s)-Q
oxX

+ (s))2ds _< Klz I.

Lcmma 3.4: There is a constant K such that

J E (Q(t- s)- Q(r- s))2ds <_ KSv/t- r,
ozN

for r > t, and with the convention that Q(t) 0 if < O.
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3.2 Bounds on moments of UX(t)

Lemma 3.5: There exists a constant K depending only on p,q, maxx UZ(O) I, and T
such that

where Fq(t) supE (t) 2q.
Proof: Fix q > 1, we then have:

E i Q-Y(t- s)a(UYS))dWY(s)-4- x(t)
eo

2q

<KE

2q

+K.15x(t) .
(3.1)

(3.2)

Now, as in [11] p. 327, applying Burkholder inequality to

we get

(U()!dW(VX(t) E Y(t-- s)
a

s),
uX

E V(t) <_ KE

so that (3.2) reduces to

E (t) a < KE
a2 Uy(Q- (t- 1) ())d

yE 0

+KlSX(t) . (3.3)

Now, for a fixed point (t,x)E G[ X, let # be the measure on [0, t] X defined by
d#(s, y) ((Q- u(t s))215)ds, and let I# #([0, t] X). Then, (3.3) can be
rewritten as

E sX(t) q

_
KE

[0,t]xX
/ q + K S(t) q (3.4)

X XObserving that #t/ltl is a probability measure, we apply Jensen’s inequality to
(3.4) to obtain

E[Ufx(t)[2q<KEi[a(UfY(s))[2qdtz(s’Y)[-I#l [tttx [q+K[ fx(t)[ 2q

L- _1[0,t]
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=K

K E la(())ld,(,) I1 - + K I()I
[o,t]x

6
yE 0

x 1Now, by Lemma 3.2, I#t q is uniformly bounded for t _< T. This, together with
(2.4) give us

E lf=(t)[ 2q < K 1 + E Ela(fy(s))12q(Q-Y(t-
5

_< K 1 + El1 + (())=
ue 0

Y( 8))2
.ds

< K 1 + E l(U(s))l 2q (Q-(t-s))2ds
5

yeX o

( /t )K 1 + E (’(s)) e (Q -(t- s))

0 yeX
5 ds

Here R follows from the linear growth condition on a and R2 is a consequence of
Lemma 3.2. Now, letting Fq(s) supzElJX(s) 2q, we get

E =(t) uq <_ K 1 + Fq(s)
(Q -"(t-

0 eX
5

R3 ft, F,q(8)ds).l+Jo v/t-s

Here, R3 follows from Lemma 3.1. this implies that

Fq(t) <_ K 1+ ,,V/t sds
We easily obtain:
Corollary 3.6: There exists a constant K such that
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Fq(t)<K 1+ Fq(s)ds
0

for all t E -.
Proof: Iterating the bound in Lemma 3.5 once, and changing the order of integra-

tion, we obtain

1 1 ds dr1 ds + Fq(r) V/t s v/S r
Fq(t) <_ K 1 + It"

v/t- s
0

I+K 1 1 ds dr+
0

< K 1 + Fq(r)dr
o

By Gronwall’s Lemma we have"
Lemma 3.7: There exists a constant It" depending only on p,q, maxxlU(O) l,

and T such that
E Tx(t) 2q <_ Kexp (Kt),

for all t -[[ and all x X.

3.3 Bounds on moments of spatial and temporal differences

Let UZ(t)- VX(t)+ UZ(t), where V denotes the first term on the r.h.s, of (2.3) (the
random term). Using the inequalities of the previous two subsections, we obtain"

Lemma 3.8: (Spatial Differences) There exists a constant K depending only on

p,q, maxx UX(O) I, and T such that

E lVX(t)- VU(t) 2q <_ I(Ix- y q,
for all x,y and for

Lemma 3.9: (Temporal Differences) There exists a constant K depending only
on p,q, maxx gx(o) and T such that

vx(t)- vx( ) <_ t-

for all x G and for all t; r
_

-[.

4. The Sequence of SDDEs Solutions is Tight

Let U n(t,x) be the extension of U(t) to 3]-x N obtained by linear interpolation of the
U(t)’s between the lattice points of Nn. The following is Kolmogorov’s continuity
criterion for random fields. (See [9] pp. 53-55 and p. 118; see also Corollary 1.2 in
[].)

Lcmma 4.1: Suppose {X(t);t [0,T]d}, d > 2, is a real-valued random field
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satisfying

for some positive constants c,and C for some norm II II on d. Then there
exists a continuous modification X {X (t); t G [0, T]d} of X.

We also have the following tightness criterion:
Lemma 4.2: For each n--1,2,..., let {Xn(t);t E-[ } be a real-valued contin-
o ando itd. h u. {X.}, add a a of ado vaia
taking values in C(V x ), is tight in C( x ) if:

(i) {Xn(0)} is light,
(ii) E Xn(t)- Xn(s) a C [[ t- s [[ 2 + , for some positive constants

,Z,C.
The proof of Lemma 4.2 follows very closely the proof of Theorem 12.3 in [3] and

will not be repeated.
Remark 4.3: Since all norms on d are equivalent, the norm [[. ] in Lemma

4.1 and Lemma 4.2 may be chosen to be any norm on d.
Lemma 4.4: For each

conlinuous modificalion, which we will also deoe bg U n, aed the sequence

n n
Proofi This follows from Lemma .8, Lemma a.9, Lemma 4.1, and Lemma 4.2

(see also the discussion on p. 97 in [a]). This is a routine argument, so we omit the
details.

5. The Martingale Problem

)nSince the sequence U n(,X) 1 is tight, it follows that there exists a subsequence

U
nk

which induces measures P
nk

on (C, C) that converge weakly to a limit P, where

C: C(YxN;N) and C: %(C), where %(C)is the Borel r-field over C. Now,
we can construct processes Yk

d nk on some probabilityfollowing Skorokhod [13],
space (fS, S, pS) such that with probability 1, as k-,o, Yk(t,x) converges to a ran-
dom field Y(t,x) uniformly on compact subsets of 3]-xN for any T < oc. We will
show that Y(t,x) is a solution to the heat SPDE (1.1) by solving an equivalent
martingale problem ([8]).

For every e Cc(;), let

S’(Y, )
x E nk 0 x

and let 0t be the filtration on (fs,JS, PS) generated by the process S’(Yk, t) for all
T and all k; i.e., t-r[S(Yk, s);O<_s<_t,,eC(N;N), k-l,2,...]. We prove
Theorem 1.1 by proving"

Tho..m a. (5s, {g,}, > 0, pS) of fit*   d
probability space (fs,s,{t}t>o,PS) and white noise W-defined on it such that
the pair (Y, W) solves SPDE (1.-1_) on (5S, S,{Ot}t>o,P )
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The proof of Theorem 5.1 follows from Theorem 3.3 in [8] in conjunction with
Theorem 5.2 and Theorem 5.3 below.

Theorem 5.2: For E C(N; N), we have
(i) {SP(t), 0t} is a martingale, for every CT(N;N), where

S’(t): (Y(t), 9) 1/2 / (Y(s), p")ds,
0

(ii)

where (.,.) denotes the scalar product on L2(),
((Y, )}t f f a2(y(s, x))992(x)dx ds.

oR
Proof: (i) Assume that the sequence of Brownian motions W(t)in (2.1)is

defined on some probability space (f, 5, P) and adapted to a filtration {t}t > 0" We
first observe that for any k,

1/2 ]"
0

is an t-martingale for each x
compact support, it follows that

nk"
This is obvious from (2.1). Now since has a

X E Xnk 0 x E )nk

X Xnk 0 X Xnk
’3’(U, t)

is a finite sum, and hence an fit-martingale. Replacing the Vr (t)’s in (5.2) by the
Yk(t,x)’s and letting kee we get that S’(Yk, t)S’(t) a.s. uniformly on 31-. In
addition, the S’(Yk, t) are uniformly integrable for each t and each (for each t and
each G C(N;N), EIS’(Y,t) v <_ Mp < oe Vk, for some constant Mp, for any
p>2). So, ifs<t,

E[(S’(t)- S’(s)) Os] lim E[(S’(Yk, t) S’(Yk, s)) s] O.
k cx3

This proves (i).
(ii) From (2.1)it follows that

d[ (t)()51x nk x Xnk
AkUk(t)(x)Snkdt

u(t))
P(X)6nkdWk(t)
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a (k(t))
()ew:().

Observing that the first term on the right-hand side of the above equation is of

Wk is a sequence of independent Brown-bounded variation, and that the (t))x
ian motions, we obtain nk

v())()
x nk x nk

U ’sAgain, replacing the (t) in (5.3) by the Yk(t,x)’s, we get, for 0

E[(X (’)()
X
(’)())

(.4)

E a2(Yk(s,x))2(X)hnkds r
x nk

We now observe that

and for each (again, for e and for each e C(N;N), El x Xn Yk(t,x)
k

X (x)Snk ]P Kp < Vk, for some constant Kp, for any p > 2). Consequently,

lime
x nk x nk

E Y(t, x)p(x)dx Y(r, x)p(x)dx r

Also, a is continuous, and hence locally bounded. We see by the Dominated Conver-
gence theorem that

lim E

ex (5.6)

=E i /tj a2(Y(s,x))2(x)dxd

Now, equations (5.4), (5.5)and (5.6) yield
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((Y, (f ))t / J a2(Y(s, x))(f2(x)dx ds, (5.7)
o

and (ii) is proved. V!
Let : {f:C(N;N)ZN[f(X f ((X, (fl),. (X, (fn)) for some n >_ 1,

(fl,’",(fn E C(N;N) and f E C(Rn;R)}, and define the operator L with domain
as follows:

i,j=l { !’a2(X(x))(fi(x)gaj(x)dx} DijT ((X, 91),. (X, (fn))

nt- 1/2 E (X, (f’)Di7 ((X, (fl),’’ (X, (fin))"

We now prove our key martingale theorem.
Theorem 5.3: If f , then

f(Y(t,. ))- / Lf(Y(s,. ))ds is a t-rnartingale.
o

Proof: Since f , we have that

f(Y(t, .))-f(Y(O, .))

R_=I ((Y(t),(fl),...,(Y(t),(fn)) ((Y(O),(fl),...,(Y(O),(fn))

i=1 0

Dijf
i,j=l 0

where /1 follows for some n >_ 1, (fl’" (fn C(;) and f C(n,), by the
definition of ; and R2 follows from Itb"s rule for n-continuous semimartingales.

However,

((Y, (fi), (Y, (fj))s {((Y, (f + (fj)} ((Y, (f (fj))s}

R1/_-- ]" a2(y(u, x))(fi(x)(fj(x)dx du

J (a(Y(u))’(fi(fJ)du’
o

where /i1 follows from part (ii) of Theorem 5.2. Also, by part (i) of Theorem 5.2, we
have d(Y(s),(f)- dS(s)+1/2(Y(s),(f")ds, so that we can rewrite the expression for
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f(Y(t,.))- f(Y(O,. )) above as:

f(Y(t, .))-f(Y(O, .))

-F1/2 f Dij ((Y(s),1),...,(Y(sO,99n)){(a2(y(s)),i99j)}ds
i,j=l 0

(5.10)

+-il /o Dff ((Y(s), 1)"’" (Y(s), 99n))dSi(s).

The third term on the right-hand side of (5.10) is a finite sum of 0t-martingales, by
part (i) of Theorem 5.2 and the boundedness of Dif and hence is a t-martingale.
NOW,

/ Lf(Y(s,. ))ds i11 / Di ((Y(s)’9l)"’"(Y(s)’9n))(Y(s)’P)’)ds
0 0

q-1/2 / Dij((Y(8)’991)"’"(Y(’)’99")){(a2(y(8))’i99J)}dS"
i,j=l 0

Consequently,

f(Y(t, ))- f(Y(O, ))- / Lf(Y(s, ))ds
0

is a 0t-martingale. This completes the proof.
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