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An algorithm is given for the computation of moments of f E S, where S
is either a principal h-shift invariant space or S is a finitely generated h-
shift invariant space. An error estimate for the rate of convergence of our
scheme is also presented. In so doing, we obtain a result for computing
inner products in these spaces. As corollaries, we derive Marsden-type
identities for principal h-shift invariant spaces and finitely generated h-
shift invariant spaces. Applications to wavelet/multiwavelet spaces are
presented.
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1. Introduction

We consider the computation of the moment m(f) of a function f C L2(R). To this
end, we project f into either an h-principal invariant subspace or a finitely generated
shift invariant subspace. The approximation order and other characteristics of such
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spaces have been studied extensively in the fundamental paper [1] and again in [10,
11, 15].

Our main result deals with the computation of inner products in shift invariant
spaces. The advantage of utilizing these spaces is the fact that we can often construct
stable bases whose elements are integer translates of a compactly supported function
or a finite number of compactly supported functions. Thus the computation of the
inner product is easily implemented on a computer. As corollaries to our main result,
we obtain as a special case the ability to compute moments of functions f0 E V0. We
then show how the process can be refined to obtain moments of the function fh Vh"
The idea is to construct a sequence of shift invariant spaces Vh approximating L2()
in hopes of eventually approximating the moment of f G L2() by the moment of

fh Vh" In the case where the vector that generates the finitely generated shift
invariant space V0 is refinable, we use a result of Cohen, Daubechies, and Plonka [5]
in order to obtain an estimate of the error m(f)-

As a consequence of our main result, we characterize a Marsden’s identity for
finitely generated shift invariant spaces. Recall Marsden’s identity gives the explicit
representation of xn in terms of B-splines [12]. A multivariate analog for box splines
is given in [3].

The outline of this paper is as follows: In Section 2, we give basic definitions and
elementary results necessary to the sequel. An inner product theorem and related
corollaries concerning moment computation and Marsden’s identity are given in Sec-
tion 3. In addition, we give an error estirnate for the difference between the moment
of f L2() and the moment of its orthogonal projection fh in a shift invariant sub-
space of L2(N). The final section contains moment recursion formulas for refinable
functions and vectors as well as examples of illustrating our results.

2. Notation, Definitions, and Basic Results

In this section we introduce notation, definitions, and basic results used throughout
the remainder of the paper. Let us begin by defining various types of shift invariant
spaces.

Suppose Vh is a linear space and h > 0. Then Vh is said to be an h-shift invar-
iant space if

f Uh=vf(" -h) E Vh.

Vh is a principal h-shift invariant space if Vh is an h-shift invariant space generated
by a compactly supported function Vh. That is,

f e Vh=>f(x ck(x-

When h 1, we will suppress the h in the definitions above and refer to the spaces as
shift invariant and principal shift invariant, respectively. As a matter of convention,
we will denote an h-shift invariant space generated by 4) by Vh(). We will also be
interested in shift invariant spaces generated by several functions. That is, we define
a finitely generated shift invariant space Vh by insisting that

f e Vh::f(x (ak)Te(x-
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where now

()- (),

and the ak E r. Such a space generated by b will be denoted by Vh(b).
We readily observe the following properties:
(1) If U is a shift invariant space, then Vh {f(. ): f(h. V} is an h-shift

invariant space.
(2) If V is a shift invariant space generated by b, then Vh is an h-shift invar-

iant space generated by b().
We will say that the h-shift invariant space Vh is of degree n and write

deg(Vh) n if xk Vh, k 0,..., n, but xn + it Vh. Since the degree of a polynom-
ial is invariant under dilation, we observe that deg(Vh) deg(V).

If deg(V())= n, we will call any identity of the form

0,..., n

a Marsden’s identity. The identity is easily generalized to the case where V is
generated by b.

Suppose generates the principal shift invariant space V. In this paper, we

always assume that is integrable. Recall that if is compactly supported and inte-
grable, then is also in L2. Now we say a function * V is the dual of if

(*(. -k),(.-J))-6kj,
where (f, g)- f ffcf(x)g(x)dx is the standard inner product and

1 ifk-j
kj

0 otherwise.

Analogously, if vector b generates the space V, then we will define its dual b* V as
the vector of functions that satisfy

We will say is stable if

((. k), em(" J)) 5mbkj"

I( + )1 : > 0 v e n

and vector 4’ is sable if he r r matrix ,I,:- (j())[j
_

is positive definitive
where

() (+1(+2).

Recall that if b is stable, then b* also generates a stable basis for V.
Suppose {(. -k)},k e i,- 1,...,r forms a basis for Y. Then it also forms a

basis for V n L2(). For convenience, we will use V to denote V g L2(R). We say
that Vh provides L2-approximation order m if, for each sufficiently smooth function
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f L2(),
II f- Prjvf II _< chm.

When is a compactly supported vector in L, then V() provides L-approximation
order rn if and only if V() contains IIm_, the set of all polynomials of degree
_< m- 1 [11].

ttemark: If b is refinable, i.e.,
N

(x) E Pk(2x k) (1)
k=0

where Pk are r r matrices, then IIm_ 1 C V() is equivalent to the existence of
solutions to two systems of equations involving the refinement mask of (see [5, 10,
15]).

When is refinable in the sense of (1), we can obtain estimates on the accuracy
of approximating moments of f E L2() using projections of f into Vh().

Proposition 2.1: Suppose qb is a refinable vector and assume {j(.-k):
k 7/, j- 1,...,r} forms a linearly independent basis for the space U() with

a(u(t))-- 1. o tat f () i comactuo a.U .IIi-
ciently smooth. We have:

mz(f)- mb(Projvhf)

_
Cshn (2)

where fl O,...,n- 1 and C] is a constant that depends on the support width of f
Proof: The result of [5] guarantees that V provides approximation order n. If S

denotes the support of f, we have

mz(f)- m(Progvmf) I(xfXs(X), (f- Projvmf))
II xs()II II f- PrJvmf II ch.

3. Main Results

The main goal of this paper is to provide an algorithm for computing moments in
principal (or finitely generated) shift invariant spaces. Once the algorithm is in
place, we will use it to attempt to approximate the moment m(f) of f L2(). In
order to obtain formula for computing moments of f0- Prjyf and subsequent
moments in refined spaces, we establish the following result.

Theorem 3.1: Suppose b is compactly supported, stable and that * is its dual.
Denote by V() the space generated by . Assume f U() satisfies the decay condi-
tion

CIf(x) <1/ [xl"’ >1, (3)
and g V() satisfies the growth condition

Ig(x) < C(1 + Ix f), a-/ > 1 (4)
where C is an absolute constant. Let

f(x) (ak)T(x- k), g(x)

_
(bk)Tb*(x- k). (5)
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Then (f g) E k e 7]( ak)T bk"
Proof: Without loss of generality, assume that supp()- [0, L]. (By the support

of a vector e Nr, we mean supp()- J 0supp(/).) First note that since is
compactly supported, b* is of exponential decay. That is, for k 1,..., r:

(x) <_ C1e - x (6)
for some 7 > 0.

k and kWe shall now estimate the decay rate of a hi, k E 1_, and i- 1,...,r. First
we show that for sufficiently large k and constant C2 > 0, we have

ai <C2lkl (7)
Since is compactly supported and stable, the set {*(. k)}k e 7] forms an uncondi-
tional basis for V(). Therefore,

k f
Then for sufficiently large k, we have

flai f(z+k

< C1 1 / I+1c Cln IklI:1 _<-]n Ikl I:1 >
Using an analogous argument, we have for constant C3 > 0

C3(1 + Ik+LI )b/kl _<
Ca(l+ kl z)

k>0

k<O.

Now for M E 7] and M > 0 define

(8)

fM(x) E (ak)T(x- k) and gM(x) E (b)Tb*(x- )"
k>M >M

In an analogous manner, define f_ M and g_ M" Then
M

f(z) E (ak)Tqb(z k) + f_ M(X) + fM(z)

M
g(x) (be)T*(x--e)+g_M(x)+gM(x).
= -M

Then

f(x)g(x)dx E (ak)T(x k) E (x--g) dx, k= -M ,= -M
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+
[ k= -M

(g- M(x) + gM(X))dx

+ E (b)T(x- ) (f- M(x) -+" fM(x))dx

f
+ / (f- M(x) + fM(x))(g_ M(x) + gM(X))dx

E ak)Tb+ (f- M(x) + fM(x))(g- M(x) + gM(X))dx"
k= -M

Using (7), (8) and the fact that a-/3 > 1 we see that the second term in the
above sum tends to 0 as M-oc so that we obtain the desired result. E!

We obtain the following moment formulas as immediate corollaries of Theorem
3.1.

Corollary 3.2: Let V() be generated by a compactly supported and stable and
let ek* be the dual of . Further assume that deg(V(qb))- n,

:
and that f E V(b) satisfies the decay condition

fl O,...,n, (9)

f(:c) _< c
1+ Ix[

(10)

where c-/3 > l. Then

mz(f)

_
(ak)T ck’/. (11)

Corollary 3.2 illustrates how we may compute the moments of order / or less of

f E U(b). Note that in order to implement (11), we must have the coefficient vector
ck’ for xf. We will discuss a procedure for obtaining ck’ f later in this section.

The following corollary describes how we can refine our procedure and obtain
moments m(f) where f Vh(ek).

Corollary 3.3: Let f Vh(Ck) aug have the representation

f(x) (ak)T(

with h > O. Further assume that deg(Vh() -n and that f satisfies the growth con-
dition (1) from Corollary 3.2. Let xp be as in (9). Then

m(f) h + 1 E (ak)T ck’" (12)

We continue by deriving explicit representations for ck’z.
deg(V())=n. Then for fl=0,...,n, j= 1,...,r, and kGlwehave:

Assume that
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+

kZ lmf(j). (13)

Thus to compute the ck’f, we need only the moments of order less than/3 of the
components of 0. We shall see in the final section of the paper that in the case of the
paper that in the case where is refinable then this task can be performed recursive-
ly. Once we have these moments, we can see Corollary 3.2 or Corollary 3.3 to com-

pute moments of functions in (finitely generated) principal shift invariant subspaces
of L2(N). In addition Proposition 2.1 provides a means to estimate moments from
these spaces should we intend to use them to approximate moments of functions in

We conclude this section by noting that in light of (9) and (13) we have the
means for establishing a Marsden’s identity in any finitely generated shift invariant
space of degree n. Of course for computational purposes, we must also obtain explicit
formula for the moments mf(j), /3-0,...,n and j-1,...,r. Proposition 4.1
illustrates how we can obtain these values in the case where r 1 and the function
solves (14). We give examples of particular vector functions in the next section.

4. Refinable Functions and Vectors

In the final section of the paper, we discuss various methods for computing the initial
moments mf(j) as given in (13). One of the most popular ways to obtain classes of
(finitely generated) principal shift invariant spaces is to use ideas from wavelet or

multiwavelet theory (see [2, 6] for wavelets, [8, 9] for multiwavelets). The idea is to
construct a nested ladder of 2principal shift invariant subspaces of L (N). This ladder
is constructed by finding a function (or a vector ) who along with its integer tran-
slates forms a Reisz basis for a space V0. For k E , the space Vk is formed using the
translates (2kx- n), n E l), of (2kx). Other requirements are made of the nested
ladder to ensure existence of a wavelet. The property we are particularly interested
in is the refinement property (1).

Our first results of this section shows that if the generator is refinable, then we

need only compute f (x)dx and then this value to recursively generate all moments
needed in (13).

Proposition 4.1: Assume that/3 >_ 1, t3 -, and that f (x)dx 7 O. Furthermore
suppose that there exists real numbers PO,"’,PN so that

N
(x) 1/2 E Pk(2x k). (14)

k=o

Then
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1 Z
m/3() 2(2/3- 1) e. k=o

Proof: Multiply both sides of (14) by x and integrate over . Upon simplifica-
tion, we obtain

1

Nk- 0 E Pkk/3m/3() ( + 1 oPk) k 0

Take Fourier transforms of both sides of (14) and evaluate at 0. Since f (x)dx # O,
we have N

1- EPk--1
k=O

From which the result follows.
It is possible to generalize this result to the vector case. To this end, we

introduce some new notation. Let m/3() E r r be the vector whose components are

given by mf(b)/- m/3(), I- 1,...,r. In addition, we define the r r matrix P by
N

k=O

where the P/, satisfy the refinement condition (1).
Proposition 4.2: Assume fl > 1, fl e l and that b satisfies (1). Then m/3(qb) can

be obtained via recursion with too(O) as an initial starting point.
Proof: Multiply both sides of (1) by x/3 and integrate over . Upon simplifica-

tion we have:

=0 J k=O

Further simplification yields

Z
j =0 J k =0

It is shown in [13] that rp, the spectral radius of P satisfies rp-1. Thus
(I 2 fP)- 1 exists.

The propositions above illustrate that we can use functions from wavelet theory
and multiwavelet theory to approximate moments of functions in L2(N). Daubechies
([6]) has created a family of functions that can posses arbitrary regularity. Chui and
Wang ([4]) have derived wavelets from cardinal B-splines. In term of multiwavelets,
one could use Proposition 4.2 with the spline multiwavelets of Goodman and Lee ([9])
or the fractal multiwavelets given in ([7]).

We conclude the paper with two examples from the scaling functions listed in the
previous paragraph. In both cases, we shall attempt to estimate moments of the
Dirichlet density

xa(1 x)b/B(a,b), x e [0,1]
f(x;a,b) (15)

0 otherwise,
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where B(a, b) is the beta function and a, b E with a, b > 0.
Example 4.3: We consider the family of Daubechies scaling functions 2,...,5

[6] (see Figure 1 below). V0 is the closed linear span of the integer translates of ,
and that deg(V-2,...,5. Note thatVjCVj+l j)- -2"

The functions 2 (left) and 3

-!

The functions 4 (left) and 5
Figure 1. Scaling functions for Example 4.3
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We will estimate the fl- 1,2,3,4 moments of f(. ;1/2,1/2) using each of 2,’",5"
In order to do so, we must calculate the 0 order moment for each scaling function.
We can then use the recursion formula in Proposition 4.1 to compute the higher order
moments that are used to form the ck’. The next step is to obtain the ak’s in
Corollary 3.3. We provide our results for h- 2- J, where j- 6,8, 10.

We have provided three different methods for obtaining the ak. In the first case,
we simply sample f. In the second case, we approximate f by a piecewise quadratic
polynomial and then use the precomputed ck’4 to form a Newton-Cotes type integra-
tion scheme. The third method for computing the ak uses the numerical integration
from the prior method but uses a more sensitive approximation to f at the
breakpoints x- 0 and x- 1.

Our results are given in the tables below. The numbers in parentheses represent
the error between the approximation and the exact value. Note that we have used
2, 3, and 4 even in cases where Corollary 3.2 does not apply (that is, the order of
the moment is larger than the degree of the space). The error in these cases is larger
since x is not a member of the spaces generated by the corresponding scaling func-
tions. In addition, since we must approximate the {ak} in some fashion, the errors
are dependent on the function f. Since f is only C, it is nature that the Co function

2 does an adequate job approximating the moments. Since the support of 2 is less
than that of any other scaling function we use, the expansions for fh consist of fewer
terms. Thus, the computational cost of using 2 is less than that incurred by the
other scaling functions.

The actual moments of f for this example are rex(f)-.5, m2(f)-.3125,
m3(/)- .21875, and m4(f)- .1640625.

Daubechies’ 2 function

h_2-6 h_2-s h_2-1o
0.50230275(+4.6 le-03) 0.50055824(+ 1.12e-03) 0.50013547(+2.71e-04)
0.30729056(- 1.67e-02) 0.31112133(-4.41e-03)

0.21684828(-8.69e-03)0.21142351(-3.35e-O2)
0.31214812(-1.13e-03)
0.21826775(-2.20e-03)

O. 15614446(-4.83e-02) O. 16200804(- 1.25e-02) O. 16354169(-3.17e-03)

Daubechies 3 function

h 2-6 h 2-s h 2-lo
0.48950970(-2. lOe-02) 0.49736740(-5.27e-03) 0.49933799(- 1.32e-03)
0.29483178(-5.65e-02) 0.30795063(- 1.46e-02) 0.31135186(-3.67e-03)
0.20000283(-8.57e-02) 0.21389255(-2.22e-02) 0.21752234(-5.6 le-03)
O. 14570952(- 1.12e-O1) O. 15926406(-2.92e-02) O. 16284690(-7.41e-03)
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Daubechies 4 function

h 2 -6 h 2 -s h 2-10
0.47679350(-4.64e-02) 0.49419456(- 1.16e-02) 0.49854499(-2.9 le-03)
0.28276572(-9.5 le-02) 0.30481785(-2.46e-02) 0.31056136(-6.20e-03)
0.18911003(-1.35e-01) 0.21098329(-3.55e-02) 0.21678298(-8.99e-03)
O. 13589634(- 1.72e-01) O. 15657257(-4.57e-02) O. 16215836(- 1.16e-02)

Daubechies 5 function

h 2-6 h 2-s h 2- 10

0.46408879(-7.18e-02) 0.49102384(- 1.80e-02) 0.49775250(-4.49e-03)
0.27102926(-1.33e-01) 0.30170717(-3.45e-02) 0.30977261 (-8.73e-03)
O. 17867438(-1.83e-01) 0.20810555(-4.87e-02) 0.21604598(- 1.24e-02)
O. 12662787(-2.28e-01) O. 15391947(-6.18e-02) O. 16147259(-1.58e-02)

Table 1: a/ sampled from f

Daubechies’ 2 function

h 2 -6 h 2 -s h 2-10
0.51540693(+3.08e-02) 0.50388603(+7.77e-03) 0.50097426(+1.95e-03)
0.32038575(+2.52e-02) 0.31444970(+6.24e-03) 0.3 i298696(+ 1.56e-03)
0.22358158(+2.2 le-02) 0.21995940(+5.53e-03) 0.21905338(- 1.39e-03)
O. 16737420(+2.02e-02) O. 16490249(+5.12e-03) O. 16427415(+1.29e-03)

Daubechies 3 function

h 2-6 h 2-s h 2- 10

0.51796103(+3.59e-02) 0.50386543(+7.73e-03) 0.50097173(+ 1.94e-03)
0.32299014(+3.36e:02) 0.31442920(+6.17e-03) 0.31298446(+ 1.55e-03)
0.22602114(+3.32e-02) 0.21993897(+544e-03) 0.21905087(+ 1.38e-03)
O. 16964373(+3.40e-02) O. 16488212(+5.00e-03) O. 16427162(+ 1.27e-03)
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Daubechies 4 function

h 2-6 h 2-s h 2- 10

0.51797521(+3.60e-02) 0.50385567(+7.71e-03) 0.50097056(+ 1.94e-03)
0.32301051(+3.36e-02) 0.31441960(+6.14e-03) 0.31298329(+ 1.55e-03)
0.22606401(+3.34e-02) 0.21992972(+5.39e-03) 0.21904971(+ 1.37e-03)
O. 16970560(+3.44e-02) O. 16487322(+4.94e-03) 0.16427047(+ 1.27e-03)

Daubechies 5 function

1
2
3
4

h 2 -6 h 2 -s h 2-lo
0.51794667(+3.59e-02) 0.50384989(+7.70e-03) 0.50096988(+ 1.94e-03)
0.32298667(+3.36e-02) 0.31441390(+6.12e-03) 0.31298263(+ 1.54e-03)
0.22608993(+3.36e-02) 0.21992478(+5.37e-03) 0.21904904(+ 1.37e-03)
O. 16977257(+3.48e-02) O. 16486901(+4.92e-03) O. 16426981(+ 1.26e-03)

Table 2: ak obtained by numerical integration

Daubechies 2 function

h_-2-6
0.50992095(+1.98e-02
0.31482643(/7.44e-03
0.21857369(-8.06e-04)

h=2 -s h__ 2-1o
0.50388040(+7.76e-03) 0.50097352(+ 1.95e-03)
0.31444359(/6,22e-03)
0.21995342(/5.50e-03)

0.31298622(/ 1.56e-03)
0.21905261(+ 1.29e-03)

O. 16291963(-6.97e-03) O. 16489665(+5.08e-03) O. 16427338(+ 1.29e-03)

Daubechies 3 function

1
2
3
4

h-2-6
0.51390530(/2.78e-02
0.31910721 (+2.13e-02)
0.22229573(+ 1.62e-02)
0.16602164(+ 1.19e-02)

h=2 -8

0.50356705(+7.13e-03)
0.31413720(+5.24e-03
0.21964928(/4.11e-03)
0.16459481 +3.24e-03)

h__ 2-1o
0.50093456(+1.87e-03
0.31294749(+1.43e-03
0.21901395(+1.21e-03)
O. 16423478(+ 1.05e-03)
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Daubechies 4 function

h 2-6 h 2-s h 2- lO

0.50995077(+ 1.99e-02) 0.50312468(+6.25e-03) 0.50087968(+ 1.76e-03)
0.31583967(+1.07e-02) 0.31371336(+3.88e-03) 0.31289319(+ 1.26e-03)
0.21913903(+1.78e-03) 0.21923114(+2.20e-03) 0.21895985(+9.59e-04)
O. 16305911 (-6.12e-03) O. 16418253(+7.32e-04) O. 16418086(+7.2 le-04)

Daubechies 5 function

1
2
3
4

h 2 -6 h 2-s h 2- 10

0.50516894(+ 1.03e-02) 0.50357991(+5.16e-03) 0.50081227(+ 1.62e-03)
0.31214977(- 1.12e-03) 0.31320175(+2.25e-03) 0.31282678(+1.05e-03)
0.21570730(- 1.39e-02) 0.21872938(-9.43e-05) 0.21889378(+6.57e-04)
O. 15993477(-2.5 le-02) O. 16369097(-2.26e-03) O. 16411512(+3.21e-04)

Table 3: ak obtained by adaptive numerical integration

We now consider an example illustrating our methods with finitely generated
shift invariant spaces. To this end, we employ the scaling vector comprised of fractal
interpolation functions given in [7]. We also note that in the case of these functions,
a recursion formula for the moments exists (see [14]) and could be used in place of
Proposition 4.2.

Example 4.4: We consider the closed linear space V0 spanned by the fractal inter-
polation functions 1 and 2 as derived in [7]. We choose 1, 2 so that deg(Uo) 3.
We obtain the Vj spaces by taking the closed linear span of the set

{2-u/2(2Jx-k), - 1,2}k E " As in Example 4.3, we approximate moments of
the beta distribution.

1.5

0.5

-0,5

Figure 2" The fractal interpolation functions 1 and 2
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Note that the accuracy is about the same as that of the Daubechies 2 function.
In the first table, the ak were function samples; in the second table, the ak were ob-
tained using numerical integration; in the third table, the ak were obtained using
adaptive numerical integration. The adaptive integration is not as effective here
since one of the scaling functions has the same support as does f. The actual values
for rn(f), j3- 1,2, 3, 4 are given in the previous example.

ak from function samples

2
3
4

h 2 -6 h 2 -s h 2- lO

0.51082092(+2.16e-02) 0.50306346(+6.13e-03) 0.50107940(+2.16e-03)
0.31564133(+1.01e-02) 0.31347012(+3. lOe-03) 0.31293711 (+ 1.40e-03)
0.21909522(+ 1.58e-03) 0.21898027(+ 1.05e-03) 0.21894533(+8.93e-04)
O. 16317880(-5.39e-03) O. 16395625(-6.48e-04) O. 16414017(+4.73e-04)

ak obtained via numerical integration

h-2-6
0.51494589(/2.99e-02
O.a 199 + 9 o

h-2-8
0.50382728(+7.65e-03)
0.31439355(+6.06e-03)

0.22319232(+2.03e-02) 0.21990482(+5.28e-03)
O. 16700720(+ 1.79e-02) O. 16484914(+4.79e-03)

h_2-1o
0.50096687 +1.93e-O3
0.31297975(+ 1.55e-03)
0.21904625(+1.35e-03)
O. 16426708(+ 1.25e-03)

2
3
4

ak obtained via adaptive numerical integration

h=2 -6 h=2 -s

0.51444314(+2.89e-02) 0.50376013(+7.52e-03)
0.31946792(+2.23e-02) 0.31432651(+5.84e-03)
0.22269420(+ 1.80e-02) 0.21983768(+4.97e-03)
O. 16651210(+ 1.49e-02) O. 16478230(+4.39e-03)

h_2-1o
0.50095837 +1.92e-03
0.31297124(+ 1.51e-03)
0.21903774(+ 1.32e-03)
0.16425857(/ 1.20e-03)

Table 4: Moment computation from Example 4.4
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