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An asymptotic method for stability analysis of quasilinear functional differ-
ential equations, with small perturbations dependent on phase coordinates-
and an ergodic Markov process, is presented. The proposed method is
based on an averaging procedure with respect to: 1) time along critical
solutions of the linear equation; and 2) the invariant measure of the
Markov process. For asymptotic analysis of the initial random equation
with delay, it is proved that one can approximate its solutions (which are

stochastic processes) by corresponding solutions of a specially constructed
averaged, deterministic ordinary differential equation. Moreover, it is
proved that exponential stability of the resulting deterministic equation is
sufficient for exponential p-stability of the initial random system for all
positive numbers p, and for sufficiently small perturbation terms.
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1. Introduction

This paper deals with the n-dimensional functional differential equation in a quasi-
linear form with a small parameter s E [0, 1):

due(t)
dt g(u) + F(t,u,y(t),e), (1)
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where
1)

2)

u is part of the solution defined by the equality ut. {uS(t+ E
h, 0]}, with some positive number h;

g(o) is the linear continuous mapping of the space of the continuous n-dim-
ensional vector-functions Ca: C,([- h, 0]) to Nn, defined by the equality:

0

-h

a)

4)

with matrix G(O) consisting of bounded variation functions;
{y(t),t >_ 0} is a homogeneous ergodic Markov process on the probability
space (, 5, P), with values in the phase space Y, with infinitesimal operator
Q, transition probability P(t,y, dz), and unique invariant measure #(dy)
satisfying the condition of exponential ergodicity (see Blankenship and
Papanicolaou [1]). Thus, there exist positive constants M and 6 such that

II P(t,y,.)- # II - Mexp{-6t} for any t _> 0; and
the perturbing term F(t,,y,e) is a continuous mapping of the product
space R+ x Ca([- h,O]) xYx [0,1 to the space [Rn, satisfying F(t, O, y, e)
0 and the Lipschitz condition

0

F(t, , y, e) F(t, , y, e) <_ / p(s) (s) du(s), (2)
-h

for any y E Y, [0, 1), t R +, and , Ca, with some function u(s) of
unit variation.

Under these conditions, the random Equation (1) with initial problem u(s + O)-
(0), -h

_
0

_
0, has (see Hale and Sjord [4]) a unique solution ue {ue(t), t >_ 0}

for any continuous function ; this solution is a continuous stochastic process with
probability one. We will refer to the linear equation:

0

du(t)_dt / {dG(O)}u(t +O) (3)
-h

as the generative equation corresponding to Equation (1). It is well known (see Hale
and Sjord [4]) that Equation (3) defines, in the space Ca, a strong continuous
semigroup T(t) with infinitesimal operator given for a sufficiently smooth function
by:

dO
, if -h_<O<O,

ifO- O.

The spectrum a(f) of this operator is given by:

a(U)" {z: det{U(z)} 0},

where
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0

U(z): Iz- / eZdG(O).
-h

As in the deterministic case (see Halanay [3]), we will proceed in this paper with the
assumption that the generative equation is on the border of stability, that is:

,,(u) rn {z:z > o} O, ’o: (u) c {z:z o} - O.

We will refer to the spectral subspace of the operator f corresponding to r0 as the
critical subspace, and to the solutions of Equation (3) lying in the critical subspace as

the critical solutions.
Using projection on the critical subspace, we will construct a finite-dimensional

differential equation with Markov parameters and rapid switchings, which has the
same stability properties of the trivial solution as Equation (1) for all sufficiently
small > 0. It will be proven that for stability analysis under some additional
assumptions, one can perform averaging with respect to: 1) the invariant measure of
the Markov process; and 2) time along the critical solutions of the generative equa-
tion, as one can do for the deterministic delay equations (see Halanay [3]). Stability
results can then be obtained applying the Second Lyapunov Method using a specially
constructed (see Blankenship and Papanicolaou [1] and Korolyuk [7]) Lyapunov func-
tional and recursive approximations of the solutions of Equation (1) given by the solu-
tions of the corresponding averaged equation.

2. Result and Discussion

Some preliminary preparation is needed in order to obtain the resulting averaged
equation. First, we rewrite Equation (1) in the operator form (see Hale and Sjord
[4])"

du u + ir(t y(t) ), (4)dt ut

where the matrix-valued function {1(0), -h <_ 0 <_ 0} is defined by the equality:

0, if -h<_0<0,
1(0).:

I, if 0 0,

and I is the n n identity matrix. Next, we define the spectral projective operator
P0 corresponding to r0 C r(f). For this, we will use its integral representation (see
Kato [5])in the form"

1 / ((Jz f)- 1
-f )(O)dz,
d

where %" [.Jn= l{Z: Z_ Zj (} with sufficiently small 5 > 0. It can be easily
seen that both the projective operator P0 and I- P0 are bounded.

One can apply the projective operator P0 not only on any continuous vector-
function (0), but also on any vector- or matrix-valued measurable function.
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Inserting the above matrix-valued function 1 into the integral representation from
Equation (5), one can define the n n-matrix-function:

F(0)" -1/((Jz-[)-
m

l l)(O)dz-

_
res{U- l(z)e} z

j=l 3

Let us denote the critical subspace as X0: PoCn, the n x m-matrix of a basis in this
subspace as V(O), the restriction of the operator / on X0 as /0, and let A0 be the
matrix of this restriction, as defined by the equation IoV(O V(O)Ao.^Furthermore
one can define the m x m-matrix , writing the identity F(0)- V(O). Let us use
the above notations, along with the notation V:- {Y(0),- h _< 0 _< 0}, and assume
the existence of the m-dimensional vector function /(x) of argument x E m defined
by"

T

0 Y

where #(dy) is the invariant measure of the Markov process y(t), t>_ O.
define the averaged differential equation (which is not random)"

Thus, we

(7)dr-

We say that the trivial solution of Equation (7) is exponentially stable in the large if
there exist positive constants 51 and 2 such that"

52tI2(t + s,s,x) < ae I (s)

for any s, t _> 0, x E Nm. We say that the trivial solution of the random Equation (1)
is exponentially p-stable in the large for all sufficiently small positive s if there exist
positive constants s0, al, and for any s (0, s0), there exists a positive number a2(s
such that"

%()tE(S) " + < ale IIy,oL

for any s, t _> 0, y Y, and Cn. In this definition and throughout this paper, the
above upper and lower indices of expectation (or probability) denote the conditions
y(s)- y, us- 9. All subsequent relations involving random variables and processes
are understood as such.

The selection of the linear mapping g() in the right part of Equation (1) can be
accomplished somewhat arbitrarily by adding any arbitrary linear continuous mapp-
ing sgl() to the linear part of Equation (1) and subtracting it from the second term.
Because the set e0 consists of a finite number of points (see Hale and Sjord [4]) r0
{zj, j- 1, 2, m}, it may be assumed that the selection of terms in the right part of
Equation (1) has been done in such a manner so that (detU(zj))’T!: O, j 1,2,...,m.
Lemma 1" Under the above assumptions, one can find a constant c such that the

solution of Equation (1) with initial condition"

satisfies the inequality:
u(s + O) (0), h <_ 0 <_ O, (9)
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sup lug(t + , , )l cT II [I (lO)
O_t_T/
_>o,Y

for any T > 0, E (0, 1), where is the Lipschitz constant from Equation (2).
Proof: Let H(t) denote the matrix-solution of the generative Equation (3)

satisfying the initial condition:

H(O) I(O), -h_<O_<O.

Using this matrix-valued function, one can (see Hale and Sjord [4]) rewrite Equation
(1) in the integral form"

ue(t + s, s, ) u(t, O, ) + / H(t ’)F(s + r, us + r, y(s + v), e)d7,
0

where u(t, 0, ) is the solution of the generative equation with the same initial condi-
tion. Due to our assumptions regarding the spectrum part 0, there exists (see Hale
and Sjord [4]) c: sup II T(t)II, whence:

t>0

II H(t)II _< csup II 1(0)II _< c, (t,O,)l (T(t))(O) < c I1 II,
-h<O<O

for any t >_ 0 and E Cn. Therefore, the proof follows from the integral inequality

sup ue(tl + s, s, 9) <_ c II II + gc j sup ue(tl + s, s, ) dr
t <t

13 1-

after applying the Gronwall’s lemma on the segment 0 <_ t <_ T/.
Using the matrix I’(0) from Equation (6) and the decomposition:

u(O) (Pou)(O) + ((I- Po)u)(O),

one can rewrite Equation (4) as a system of two equations for the vector-functions
ro(t,O )" (Pou)(O) and rl(t,O )" ((I- Po)u)(O):

Oo(t,o)
Ot (lr)(t’O) + er(O)F(t’r(t) + rl(t)’y(t)’e)’ (11)

Orl(t,O)
Ot (1rl)(t, O) + g(l(O) r(O))F(t, u, y(t), e), (12)

where ri(t {rj(t,O),O e [-h,0]}, j 0,1, and the linear closed operator 1"--
(J- P0)/ is acting on the same subspace (a)C Cn as the operator N, and has the
spectrum r1" r(U)\r0 C {%z _< p < 0}.
Lemma 2: Under the above conditions there exists constant cI such that the solu-

tion of Equation (12) satisfies the inequality:

sup
s>_O, yEY
-h<O<O
O<_t<_T/e

rl(t,O)- (T(t)(I Po))(O) _< C1 II II eleT
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for any T > 0, E (0, 1) with constant c from Equation (10).
Proof: The operator/1 can be considered (see Kato [5]) as the infinitesimal opera-

tor of the contractive semigroup (Tl(t), t > 0}, which satisfies the inequality:

[[ Tl(t)II - 7e-

with the above defined positive p and some positive constant 7 for any t _> 0. Using
this semigroup, one can rewrite Equation (12) in the integral form

s+t

r(s+t,O)-(T(t)(I-Po))(O)+ / T(-r)(l(O)-r(O))F(r,u,y(v),e)dr.
8

Due to Lemma 1, Equation (10), the Lipschitz condition and the exponential decay of
the semigroup Tl(t the above integral equality allows us to complete the proof using
the inequality:

sup
O<t<T/e
s>0, yEY

II rl(t + )- T(t)(I- PO) II e(1 + II P0 II )p-elcT II II

or tp
sup II rl(T/

s>0, yEY

for any T > 0, E (0, 1), Cn, and with 71 being a positive constant.
Theorem 1- Let, in addition to the previous assumptions, the function

F(t, Vx, y,) be uniformly continuous at zero as a function of , that is, adsume that
the quantity

a(): sup
F(t, Vx, y, ) F(t, Vx, y, 0)

t>0.yY I1 (14)

xn

is infinitesimal as 0, and the limit function F(t, Vx, y, 0):
1) has uniformly bounded continuous x-derivative DF(t, Vx, y,O);
)

4)

belongs to the domain (Q) of the operator Q;
has continuous bounded 0t-derivative -57F(t, Vx, y, 0);
has the above defined average F(x) along the solutions of the generative
equation, and there exists constant b such that:

s+T

sup /yfiY, T>O
s>0 s

e tAqtF(t, vetAx, y, O)#(dy)dt (x) <-- x l,T b

Y
(5)

for any x Rm.
If the trivial solution of the averaged Equation (7) is exponentially stable in the

large, then the trivial solution of the random Equation (1) is exponentially p-stable in
the large for all sufficiently small positive e.

Proof: According to the definition of the basis V(0), the n-dimensional vector-
function ro(t,O in Equation (11) can be decomposed as follows:
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o(t, 0) v(0)(t), v0 , 0].

After substitution of this decomposition in Equation (11), one can conclude that the
m-dimensional vector-function e(t) satisfies the ordinary random differential equa-
tion in m

dd(t)
dt Age(t) + eF(t’Vg(t) + rl(t)’y(t)’g)" (16)

One can consider the decomposition of Equation (1) in the forms of Equations (11)
and (12) with the decomposed initial condition in Equation (9)"

ro(s,O Po(O)" V(O)g, rl(S,O) (I- Po)qa(O), (17)

which uniquely defines the vector g E m for given basis V. Consequently, Equation
(16) should be considered with initial condition:

g(s) g. (18)
Let e(t) be the solution of the random differential equation in m

d’e(t)
dt Ae(t) + eF(t’V(t)’y(t)’)’ (19)

with the above initial condition to Equation (18). Using the substitutions

te(t) etAo,e(t), "e(t) etAoze(t),
one can derive from Equation (16), for the vector-valued functions U(t) and z (t),
the equations

dt e tAF(t, vetAe(t) + tl(t), y(t), ), (20)

de(t)
dt e tAF(t, yetAze(t),y(t),). (21)

Due to the Lipschitz condition in Equation (2) and the assumptions regarding the
spectrum r0 of the matrix A0, the difference of the solutions satisfies the integral
inequality

0

I(t + )-(t + )1 _< zcl II II II v(o)II rl(7" nt- 8, O) ldu(ODdr
0 -h

0

+ cg II II II v(o)II d(O) I( + )-7(T +
-h 0

Using the inequality in Equation (13), one can derive the inequality

II rl(’r -[- S)II "- Pr( 1 + II P0 II)11 ’ II + ClIcT II II,

for any T > 0, 7- E [0, T/e). Therefore, there exist a constant 11 and a function/2(T)
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such that the difference between the solutions of Equations (20) and (21) satisfies the
inequality

0

Applying Gronwall’s inequality, one can find a function c3(T such that:

sup I(t + s)- e(t -+- s) < c3(T II II, (22)
O<_t<_T/,
s _O,y

_
Y

for any T > 0, E [0, 1), o E Cn.
To simplify the notations, we denote

"e(t)" e(t/), f(t, x, y, e): e tAoF(t, vetAox, y, ).

Let ze(t) be the solution of the random equation

dxe

dt f(t/, xe, y(t/), 0). (23)

It is easy to verify that e(t) satisfies the random differential equation:

d ~dt = f(t/, x y(t/), ). (24)

Consider this equation with initial conditions e(s)= xe(s)= g, with vector from
Equation (17). Due to the existence of the uniformly bounded x-derivative

DF(t, Vx, y,O), the right-hand sides of Equations (23) and (24) satisfy the ’Lipschitz
condition with some constant L. Furthermore, it follows from Equation (14) that the
function f(t,x,y,) is uniformly continuous at point zero as a function of , that is,
the quantity

f(t,x,y,)- f(t,x,y,O)
(): sup

>o,Y I
xn

is infinitesimal as 0. Using the latter property and the Lipschitz constant L, one
can write the inequalities

I(t + s, s, ) x(t + s, s, )1

s+t

8

s+t

8

f(rl,(r, s, ), y(rl), ) f(rl, x(r, s, C), y(rl), o) dr

_< L S I( + s,s,)- (r + 8,8,) dr

0

f(rle, xe(r, s, t), (’1), ) f(r/e, x(,, s, ), (1), O) d
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0 s

IX(T,,)IdT, (25)

It can be easily shown that the Lipschitz condition for the right-hand side of
Equation (23) guarantees the existence of a constant B, such that:

x(t + s, s, ) <_ BeLt C,

for any g E RTM, 8

__
0, t _> 0, e E [0, 1). Thus, substituting this bound in the last term

of Equation (25) and applying Gronwall’s inequality, one can obtain the relation

sup (t + s, s, z) xe(t + s, s, t) < ()BTeLT t
O(t(T
s_O, yEY

for any T >_ 0, g m and sufficiently small e > 0. For further analysis, it is conven-
ient to rewrite this inequality for the time te and use the norm of the initial condition
in Equation (9)"

sup (t + s, s, g) xe(t + s, s, t) <_ ()BTeLT [[ 7 [[, (26)
O<_t<_T/e
s>0, yGY

for anyT_>0, aGCn.
It is known (see Blankenship and Papanicolaou [1] and Skorokhod [9]) that under

the above assumptions, the solutions of Equation (24) tend to the corresponding solu-
tions of Equation (7), and that the stability of the trivial solution of Equation (7)
guarantees (see Korolyuk [7]) the stability with probability one of the trivial solutions
of Equation (24). However, in order to prove our theorem, we need stronger
evaluation of the rate of convergence to zero of the p-moments of the solutions of
Equation (24) as tc. For this purpose, we will apply the second Lyapunov method
to a specially constructed functional v(t,x, y,e). Since for any random variable , the
quantity (_([[p))l/p is monotonically nondecreasing function of p > 0, we can

assume in our proof without loss of generality that p >_ 2.
One can consider the pair {x,y(t/)} as a Markov process in the phase space

Rmx Y (see Blankenship and Papanicolaou [1], Mohammed [8], and Skorokhod [9])
with weak infinitesimal operator defined on sufficiently smooth continuous function
v(x, y) by the equality:

(Ov)(x, y): (Vv)(x, y) + (Qv)(x, y),

where (., and V are the scalar product and the gradient-operator in [m, respective-
ly. Since the right-hand side of Equation (23) depends on the time coordinate t, one

needs to extend the phase space by adding a new phase coordinate t +, and con-
sider the above nonhomogeneous Markov process with infinitesimal operator:

1 0 x)+(Qv)(t, y))
+ ((Vv)(t, x, y), f(t/e, x, y, 0)). (27)

For a given function w(t,y), let (t) denote the function obtained by averaging
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w(t,y) with respect to the invariant measure #(dy), that is,

(t). i (t, )(d),
Y

and let (y) denote the function obtained by averaging w(t,y) with respect to the
time t, that is,

T

0

The projection operator Pu on the subspace

c.: { e c(Y): y- 0)

can be defined by the equality Pg(y)"- g(y)- ".
nential ergodicity, we can use the inequality:

Due to our assumption of expo-

sup Eu(P,g)(y(I)I <_ Me-ptsup g(Y) I,
yEY

(28)

for any t _> 0 and g E C(Y) and, therefore, the potential YI of the Markov process
{y(t)} can be defined as the improper integral:

g)(Y)" 7 Eug(y(t))dt,(l-I
0

which satisfies,
sup I(1-Ia)() < gsup a() I, (9)

for any g E Cp.
Dynkin [2]), one can write the equality:

According to the definition of the weak infinitesimal operator (see

-tEuh(s, y(s- t)) Eu(Qh)(s, y(s- t)),

for any s >t_> 0 and continuous bounded function h(s,y). If in addition, h(s)- O,
then the inequality:

Euh(s, y(s t)) <_ Me (s t)sup h(s, y)
yY

follows from Equation (28). Therefore, there exists the improper integral"

i Eyh(s, y(s t))ds: G(h)(t, y),

for any y Y, and
sup I(Gh)(t Y) < M--sup Ih(s,y) l. (30)
yEY
s>O s>O
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In view of Equation (29), one can easily verify that the function r(t,y)" -G(h)(t,y)
satisfies the ordinary differential equation:

tr(t, y) + Qr(t, y) h(t, y). (31)

Using this result and the representation h(t, y) (h(t, y)- h(t)) + h(t), one can find a
solution of Equation (31) for arbitrary bounded function h(t,y)in the form:

+
0

and from inequality in Equation (30) obtain the inequality:

R(h)

_
2 sup h(t,y) +sup h(s)ds [.

t>O,yE
0

(32)

(33)

To prove the exponential p-stability of the trivial solution of Equation (24), we will
use the Lyapunov functional:

where
w(t,x,y,g)" v(x) + gvl(t/g,x,y),

vl(t,x,y (Vv(x),R(f )(t,x,y,O)),

(34)

and the operator n acts on the function f(t, x, y, O) (x) according to arguments t
and y as defined in Equation (32). The inequalities in Equations (15) and (33) allow
us to estimate the second term in the latter scalar product as follows:

R(f )(t,x,y,O) _2 sup ] (s)ds +2- sup
t>0 yE

0 t>0

It is obvious that under the assumption of exponential stability conditions in the
large of Equation (7), the pth power of the absolute value of any solution of Equation
(7) decreases also exponentially when t---,cx for any p > 0. Therefore, one can con-
sider the function:

s

v(x) / x(t,O,x) Pdt
0

with sufficiently large positive S as the Lyapunov function for the averaged system.
Using the smoothness with respect to 2 of the right-hand side of Equation (7), one
can prove that v(x) has continuous derivative Vv(x), and that the following inequali-
ties are satisfied:

sup
t>_O,yY

vl(t,x,Y) <- v4 x p, sup
t>_O,yY

VVl(t,x,y) <_ v4 x -1
(35)
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for any x E Rm with some positive numbers Vl,V2, v3, V4, V5. Therefore, for sufficiently
small positive Q, one can write the inequalities:

W1 IX p

_
w(t,x, y, e)

_
W2lX ]P, (36)

with some positive number wl for all e E [0, ea) and arbitrary values of the remaining
variables involved in Equation (36). Furthermore, using the definitions in Equations
(27) and (32) of the operators and R, respectively, one can obtain for the quantity
w the following inequality:

+ (Qv1)(t/e, x, y)) + e(Vv1)(t/e, x, y), f(t/e, x, y, o))

((Vv)(x),(x))+ e(Vv)(t/e,x,y),f(t/e,x,y,O))

< -w31x p, (37)

for sufficiently small values of e. Let us assume that eI has been chosen small
enough so that both of the inequalities in Equations (36) and (37) are fulfilled simult-
aneously. Then, using the well known Dynkin formula (see Dynkin [2]), and the
inequalities in Equations (36) and (37), one can obtain the inequality:

E{ ’(t) P ’(s) a, y(/) y)}

<_ w-E{w(t,x(t),y(t/e),e) x(s) g,y(s/e) y)}

Therefore, the conditional p-moment of the solution of Equation (23) satisfies the
inequality:

E{ .(t)I " .() a, (/) )}

whence one can conclude that:

E{ (t) P () a, U(/) U)} _< fll a *’-/31(t- s),
for any t > s > 0, g Rrn and e (0, el) with some positive constant /1" Using this
inequality, one can evaluate the rate of decay of the second moment of the supremum
of the solution of Equation (23) in the time-interval[-he, 0] from:
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<-- t P-i- hg / t1 t pe- lvdT" -< /2 ’ p,
he

for any t >_ he, x E [m, y E y, and (0, g’l). It can be easily seen that using this
formula, the previous inequality can be rewritten in the form:

sup Es sup
s>O Y’ (t-he<_v<_t
yY

Xe(T-t- s) P xe(8) t,y(8/g) y)}_< 2 t pe 31t.

Since the initial condition of Equation (23) is the projection of the initial condition
in Equation (9), it follows from the above inequality that:

s { sup IXe(7"nt-8)] p }sup Ey,
s>_O,
yY

sup E f sup
s>O, . t-he<_r<_t
yY

(38)

for any 99 G Cn.
By construction the solution of Equations (1) and (9) satisfies the inequalities:

sup II u + s(S, 99)II < sup II O(t + )II + sup II rl(t + s)II
s>O, s>0 s>O
yEY yEY yY

_< sup II V(O)II II Ao II sup II (t + )II + sup II rl(t + s)II
-h<0<O s>0 s>0

yEY yEY

_< h1 sup (I (t + s) e(t -4- )1 + I(t + )1) + sup II rl(t + s)II
s>O, s>O
yY yY

sup (t + ) (t + )1 + sup (te + s) + sup II rl(t A- s) II,
s>O, s>0 s>O
yY yEY yY

with some positive constant h1. Taking into account the definition of the initial
condition g given by Equation (17) and the formulas in Equations (13), (26) and
(38), one can find sufficiently large A(T) as Tx and infinitesimal c() as ---0,
such that:

sup E II u II p _< (a()A(T) +/3e IT] II II p
>8 O,
yY

for any 99 G Cn with some positive constant /. Choosing the numbers
e0 such that
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this inequality can be rewritten in the form:

Next, we apply the Markov property for conditional expectation in the form

(39)

E(S) f [I P}

{ ( )z{llE,)u E, ur + t2 } r l + s, d2 us + tl,z ys + 1

This allows us to use the inequality in Equation (39) and to evaluate the second
moment of the norm of the solution of Equations (1)-(9) in the recursive form:

sup (s) E(r)z II u. II PlE, y , + T/eSk+l

< 1/2 sup E(s) J" II ue
y 6_ Y ’ Y’. Sk

}sk, usk, Ysk

for any given s > 0, k E N and p E Cn. Therefore, for t [sk, sk + 1)’ k N, the
reiteration of the above inequality allows us to write the following inequalities for the
second moment of the solution of Equations (1)-(9):

E(s) l" ue(s + t/5) p} < sup E(s) , ue(s + t/e) p}y, opt Y,
sk

_
< sk + 1’

or
8E,){ u(s + t) p} ale

with some positive constants al, a2. This completes the proof of our theorem.

Acknowledgements

This paper is based upon work partly supported by the Hong Kong Research Grant
Council under grant no. HKUST 639/95E and by the Latvian Scientific Council un-
der grant no. 96.0540. The authors would like to express their sincere appreciation to
the reviewers for their thorough review and their constructive comments and suggest-
ions.

References

[1] Blankenship, G. and Papanicolaou, G.C., Stability and control of stochastic sys-
tems with wide-band noise disturbances I, SIAM J. Appl. Math. 34:3 (1978),



Averaging and Stability of Markov FDE 15

437-476.
Dynkin, E.B., Markov Processes, Vols. 1 and 2, Springer-Verlag, Berlin 1965.
Halanay, A., On the method of averaging for differential equations with re-

tarded argument, J. Math. Anal. Appl. 14:2 (1966), 70-76.
Hale, J. and Sjord, M., Introduction to Functional Differential Equations,
Springer-Verlag, New York-Hong Kong 1993.
Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-
Heidelberg 1966.
Khas’minskii, R.Z., Stochastic Stability of Differential Equations, Sijthoff and
Noordhoff, Alphen aan den Rijn, The Netherlands 1980.
Korolyuk, V.S., Averaging and stability of dynamical systems with rapid
Markov switchings, Preprint S-90187, Umea University, Umea, Sweden,
February 1991.
Mohammed, S.-E., Stochastic Functional Differential Equations, Pitman,
London 1984.
Skorokhod, A.V., Asymptotic Methods of the Theory of Stochastic Differential
Equations, AMS, Providence, RI 1989.


