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An MX/GI/1/N finite capacity queue with close-down time, vacation time
and exhaustive service discipline is considered under the partial batch
acceptance strategy as well as under the whole batch acceptance strategy.
Applying the supplementary variable technique the queue length distribu-
tion at an arbitrary instant and at a departure epoch is obtained under
both strategies, where no assumption on the batch size distribution is
made. The loss probabilities and the Laplace-Stieltjes transforms of the
waiting time distribution of the first customer and of an arbitrary custom-
er of a batch are also given. Numerical examples give some insight into
the behavior of the system.
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1. Introduction

There has been much interest in batch arriving queueing systems during the last three
and a half decades, both from theoretical and practical points of view. Those systems
are frequently encountered in the real world as can be seen in Chaudhry and

1This work was performed while the first author was a Post-Doctoral Fellow at
the NTT Multimedia Networks Laboratories, Tokyo, Japan
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Templeton [5]. In telecommunications, a batch can correspond to a message while a

customer can correspond to a packet; see Manfield and Tran-Gia [11].
Many techniques have been developed or extended to deal with the additional

analytical complexities that result from the introduction of batch arrivals. For in-
stance, both the embedded Markov chain (EMC) technique and the supplementary
variable (SV) technique can be applied to the Poisson (non-batch) arrival M/GI/1/N
finite capacity queue. As for the batch-Poisson arrival MX/GI/1/N finite capacity
queue, however, the EMC technique cannot be straightforwardly applied under the
whole batch acceptance strategy, WBAS (see Section 2 for WBAS), while the SV tech-
nique can be applied with an artificial condition by Baba [1] (see also Baba [3], and
Takagi [15]). The main purpose of the paper is to present an SV-technique based
analysis for a batch-Poisson arrival MX/GI/1/N finite capacity queue with close-
down time and server vacation, asserting that Baba’s [1] assumption can be omitted.

The batch-eoisson arrival MX/GI/1/N finite capacity queue with server vacation
is now common in telecommunications. For example, a processor (server) has second-
ary jobs (customers) to be performed aside from primary jobs. The processor is sche-
duled to perform secondary jobs only when it finds no primary jobs. The processing
time for a secondary job corresponds to a vacation time in queueing terminology.
Another example is a buffer (queue) under the time division multiple access (TDMA)
environment (see Stuck and Arthurs [14]). An arriving packet (customer) who finds
the system idle cannot be transmitted (served) immediately, and it has to wait until
the slotted boundary comes. A constant slotted time period corresponds to a vaca-
tion time. Performances issues in these examples then necessitate our MX/GI/1/N
queue with vacation time.
A queueing situation with vacation time and close-down time can be recently seen

in the switched virtual channel connection (SVCC) for internet protocol (Ie) over
asynchronous transfer mode (ATM) networks, where the close-down time corresponds
to an inactivity timer in the SVCC operation. See Hassan and Atiquzzaman [9], and
Sakai et al. [13] for SVCC.

Assuming infinite queueing capacity, Baba [2] analyzed the MX/GI/1 queue with
vacation time via the SV technique. Because the queueing capacity is infinite, the
well-known stochastic decomposition formula is known to be valid (see Doshi [6],
Furhmann and Cooper [8], and Miyazawa [12]). Indeed, the results in Baba [2] show
this formula straightforwardly.

Assuming (non-batch) Poisson input and a finite capacity queue M/GIll/N, Lee
[10] provided a numerical algorithm for this system via the EMC technique; see also
Frey and Takahashi [7]. However, as for the ordinary queue (without vacation), it
seems hard to generalize Lee’s EMC technique to our queue with vacation under the
WBAS. Thus, here, we take the SV approach to obtain the queue length distribu-
tion, based on which practical performance measures of interest can be derived.

To the best of our knowledge, there is no literature on finite-capacity server-vaca-
tion models with close-down times, except for one [13]. In [13] Sakai et al. treated a

single-arrival M/GI/1/N queue via the SV approach.
Note that our formulated equations are reduced to Baba’s equations if we make

the close-down time be constantly zero.
This paper is organized as follows. In Section 2 we describe our model together

with the considered strategies, the so-called partial batch acceptance strategy (PBAS)
and the WBAS. In Section 3 we apply the SV technique to obtain the queue length
distribution at an arbitrary instant as well as at a departure epoch under both strate-
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gies. Here, we show that Baba’s [1] assumption can be omitted. The loss probability
of the first customer of a batch and the loss probability of an arbitrary customer are
considered in Section 4. In Section 5 we derive the Laplace-Stieltjes transforms of the
waiting time distribution of the first customer and of an arbitrary customer of an

actual arrived batch. Extensive numerical calculations are performed in Section 6
which give a feeling for the influence of the service time, close-down time and vaca-
tion time distributions. Final conclusions and remarks about possible future research
are made in Section 7.

2. The Model

We consider an MX/GI/1/N queue, where N equals the number of waiting places in
the queue, including the space for the customer that may be in service. We assume
that the arrival epochs of the batches form a homogeneous Poisson process with inten-
sity , and that consecutive batch sizes are independent and have the common proba-

o l?urthermore, we assume that the service times form a se-bility function {gi}i 1
quence of i.i.d, random variables with distribution function S(x) and Laplace-Stieltjes
transform S*(O)- fe-xS(dx). Customers accepted by the system are served by
a single server exhaustively, i.e. the server serves the queue continuously until the
queue is empty. Whenever the queue becomes empty a close-down period starts with
distribution function C(x) and Laplace-Stieltjes transform C*(O)- fe-xC(dx).
During the close-down period, if a customer arrives, the server immediately begins ser-
vice for that customer. On the other hand, if no customer arrives until the end of a

close-down period, the server starts a vacation with distribution function V(x) and La-
place-Stieltjes transform V*(O)- fe-XV(dx). If the queue is still empty upon
his return, he takes another independent vacation with the same distribution func-
tion. Otheryise, he starts service. We assume further that the service discipline is
FIFO. By S we denote the steady-state remaining service time for the customer in
service and by C(V) the steady-state remaining close-down time (vacation time).
We will analyze this queueing system under two batch acceptance strategies which

are common in the field of telecommunication. One is the partial batch acceptance
strategy (PBAS) and the other one is the whole batch acceptance strategy (WBAS).
Under the PBAS we understand that when an arrival batch is larger in size than the
number of available free waiting places, the free positions will be filled up and the
remaining customers of the batch will be lost. On the other hand, under the WBAS,
an arriving batch will be lost, when the batch is larger in size than the number of

N
available free waiting places. For the WBAS we also assume that gi > 0, which

i=1
means that there is a positive probability that customers are accepted by the system.

3. The Queue Length Distribution

By gi we will denote the probability that the batch size is at nost j, i.e.

J
gj gi, j 1, 2,...

i=1

and by g we will denote the probability that the batch size is greater or equal to j,
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i-’3
At an arbitrary time in steady state, if we define by L the number of customers
present in the system and if we set - 0 if the server is on vacation, - 1 if the
system is closing down and 2 if the server is busy, we can formulate the
quantities of main interest, i.e. the joint distribution of the queue length and the
remaining service (close-down, vacation) time

7rn(x)dx P(L n,x < S < x + dx, 2), n-1,...,N

cn(x)dx P(L n,x < C <_ + dx, 1), n 0,...,N

Wn(x)dx P(L n,x < V < x + dx, O), n O,...,N

and
(o)- f

0

c(O)- f -c.(,)d,
0

,(o) f -.()a.0

Our main goal will be to calculate rn(0), (0), n- 1,...,N and c)(0), wn(O), w(O),
n 0,..., N for the PBAS as well as for the WBAS.

3.1 Partial Batch Acceptance Strategy (PBAS)

Relating the probabilities at time t + dt to those at time t, we obtain the following
equations:

0 dS()dr()dz rl(Z) + (Try(O) + c(O) + ()) (1)

n-1drn(x) OAn(X + AE . ii(x) (2)dx
i=1

dS()- (71"n h- 1 (0) d- cn(O -[- Wn(O)) dx n 2,..., N 1,

N-1 ,dS(x))E gcN- 7i(x) + (CN(O) + WN(O)) - (3)
i--1

dco(x) ACo(X + rl(O) dC(x---------- (4)dx dx
dwo(X) AWo(X + (c0(0) + wo(O))dV(x) (5)dx dx
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n-1dw,(x) Awn(x) + E gn- iwi(x)’ n 1,..., N 1,dx
i=o

N-1_() (),dx
i=o

from which it follows that

(7)

(, 0)’(0) "a’l(0 -}- (’a’2(0) + Cl(0 + 01(0))S*(0), (8)

n-1

( )() (o) + ()
i=1

(9)

+ (Trn + 1(0) + cn(O + Wn(0))S*(0), n 2,...,N 1,

N-1

Tr*N(O) 7rN(O) + E gcN -iTr() + (CN(O) + WN(O))S*(O)’
i=1

(10)

( 0)C(0) C0(0 -}- 7rl(0)C*(0), (11)

( o);(o) o(O) + (co(O) + o(O))V*(O), (12)

n-1

(A O)w(O) wn(O + AE gn iw(O), n 1,..., N 1,
i=0

N-1

o(o) N(O) +

_
;(0).

i=0

During the close-down time, an arriving customer may end the period, thus

c(O)- c;(O), n 1,...,N- 1,

CN(O AgCNc(O).

(13)

(14)

Hence, it suffices to calculate rn(O),n- 1,...,N, cn(O and wn(O), n- 0,...,N.
From (8)-(14) we can obtain the following lemma.
Lemma 3.1: It holds that

Co(0 Aw(0), (15)

;(o)7rl(O)- C*())
71"1(0) (0)71"2(0) S*(,) Wl(0)-el

(16)

(17)

7rn(O)- 7rn- 1(0)
S*()

n-2

,,i= 1
gn_..{_i- 1 iTr(, Wn --1(0) Cn -1(0)’

n 3,...,N,

(18)
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v*() ,o(O)

n-1

wn(O) AE gn-iw(A)’ n-l,...,N-1,
i=0

(19)

(20)

N-1 N-i

E E E 51g52" "g5a,=1 j=l 5eA-N
N

.(0),
a =1 $Af

-N

(21)

where Aft n is the set of all j-tuples 5 (51,’",6j) with 5k E [ {1,2,...}
(k 1,...,j) and lSk n.

Proof: By inserting 0 0 into (12) we obtain (15) and by inserting 0 into (8),
(9), (11)-(13) and by using (15) we obtain (16)-(20). Substituting 0 0 into (13)
and (14), we obtain

n--1

.w(O) wn(O + E gn -iw(O), n 1,..., N 1, (22)
i--0

N-1

(o) v-(o), (3)
--0

from which (21) follows.
* N 2 toThus, we need c(0), w(0) w(A), i-0, .,N-2 and i(A) 1,...,

obtain the desired quantities rk(0), k = 1,...,N and ck(0), Wk(0), k 0,...,N. Differ-
entiating (8), (9), (12), (13) and inserting 0 = A yield

1 (0)-- Wl(0))s*(n + 1)(,), rt 0 N 3, (24)71"l(n)() n + 1 (r2(0) + cl "’"

k-1
,(n -[- 11 gk_iTri )($) (25)r(n)() n+l

i--1

+ (Trk + 1(0) + Ck(O _[_ Zk(0))s.(n--- + 1)()), k 2,...,N 2, n 0,...,N 2 k,
/

1w;(n)()) n + 1 (c0(0) + w(O))V*(n + 1)()’ n 0,..., N 1, (26)

k-1
,(n-l-1 )1 "E gk- iwi )() (27)w(n)(A) n + 1 o

Hence we can express wi(), i-0,...,N-2 and ri(.k), i-1,...,N-2 by w(0)
and c(0). Inserting 0- 0 into (11) and using (16) and (15), we obtain
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C(0) (- CO(0 d- 7r1 (0))

and therefore we can obtain rk(0), k 1,...,N and ck(O), wk(O), k O,...,N by
using w(0).

Remark 3.1: In the sequel, we are expressing 7r(0) and w(0) by rk(0),
k- !,...,N and ck(0), wk(0), k- 0,...,N and hence by w(0). Finally, using the
normalization condition

N

c(0) + w(0) + E (w(0) + r;(0)) 1

we obtain Wo(0 ).
Inserting 0 -0 into (8), (9), (11)-(13), and the derivatives of (10), (14), we get

(28)

,,Tr(0) 7rl(0 + 7r2(0 + Wl(0) + c1(0),
n-1

,Tr(O) 7rn(O + ,E gn-- 17r(0) " 7rn + 1(0) -- wn(O) "- cn(O),
i=1

n 2,...,N- 1,

(29)

(30)

)(0)- o(0), (31)

n-1

Aw(O) wn(O + E gn iw(O), n 1,..., N 1,
i--0

v(o a v- (o + (x(0l + ov(0lS*(/(0l
i=1

N-1
,(1Tv(o) gv- )(o).

i--O

Further differentiating (8), (9), (12), (13) and inserting 0- 0 yield

Tr(0) (71"2(0) + el(0 + Wl(0))S*(1)(0) -- 7r(0),

(32)

(33)

(34)

(35)

n-1
* *(1 ("Trn(1)(0) )E gn -iTri )(0) + 7rn + 1(0) -- Cn(Oi=1

wn(0))S*(1)(0)\ + r,(0), n 2,...,N 1,

*(1 ,
0 )(0) (C0(0)

(36)

(37)

n--1
*(1 W(0AW:(1)(0) E gn-iwi )(0)-[-

i--O

n 1,...,N- 1, (38)
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from which we can evaluate the right-hand sides of (33) and (34), and hence, obtain

w(0). Using (28) we can now obtain w(0) and rn(0), n- 1,...,N and cn(0),
n-- 0,...,N.

3.2 Whole Batch Acceptance Strategy (WBAS)

We are now considering the whole batch acceptance strategy (WBAS), i.e., a batch is
either accepted as a whole or lost as a whole. Similarly as to the PBAS, we obtain
the following equations by relating the probabilities at time t / dt to those at time t:

x 0 dS(x)drl(X)dx Agv-17rl( - (r2(0) "- el(0) -- Wl()) - (39)

s()+(rn+l(0)+cn(0)+wn(0)J dx n 2,...,N -1,

N-1 dS(x)
: "E gN iTri(x) + (CN(O) -}- WN(O)) (41)

dco(x) 0.dC()--’gVCo(x)+l( ) -dx (42)

do(X) o dV()vo() + (Co(0) + o())dx (43)

d.(.) -I

d= $gv- nwr,(x) + E gr,- iwi(x), n 1,..., N- 1,
i=0

N-1(___) (1

from which it follows that

(44)

(45)

(46)

(47)

N-1

07r*N(O) 7rN(O) -J" ’E gN -iTr(O) -j" (CN(O) -j- WN(O))S*(O),
i=1

(48)

()g/v 0)C(0) C0(0 -J- 7rl(0)C*(0),

( 0).4(o) o(O) + (co(O) + o(O))V*(e),

(49)

(5o)
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n-1

(AgN r 0)w(0) wn(O + E gn iw(O), n 1,..., N 1,
i=0

N-1

ev(e) (o) +
_

().
$--0

During the close-down time, an arriving customer may end the period, thus

(51)

(52)

cn(O)-- Agnc(O), n- l,...,N.

Hence it suffices to calculate the quantities rn(0), n- 1,...,N and cn(O), wn(O), n-
0,..., N. Equivalent to Lemma 3.1 we obtain the following lemma.
Lemma 3.2: It holds that

co(O)- (o), ()

;(o)
7rl(0)- C*(,,g)’ (54)

71"1(0) Cl(0 o1(0), (55)71"2(0) *()g 1)
n-2

7rn_l(0)-,E gn l Tr (,’gN n + 1)
n(O i= l --Cn_l(O)--n_l(O), (56)

n 3,...,N,

o(O) N’*();(0), ()
1 V*(g)

n--1

Wr(O AE gr iw(AgEN ), n 1,..., N 1, (58)
i=0

N-1

(o1- v;(o)- (o). ()
i--1

Proof: This can be easily seen by inserting 0- 0 into (50) and 0- ,g_ 1 into
(46), 0 "9-n into (47), 0- )9 into (49)and (150), 0 "9-n into (151)and
combining 0- 0 into (52) with ,- 0 into (51).

Thus we need c(O), w(O w()gEN_n), O,. ., n --1, n--1,...,N-1 and
ri(gv_n+l) i--1,...,n-2, n--3,...,N to obtain the desired quantities rk(0),
k- 1,...,N and ck(O), wk(0), k- 0,...,N.

This yields two different cases:
Case l" gi > O, Vi {1,...,N-1}"
In this case, from (47), (50) and (51) we can obtain

17ri(’g-n + l) "(g-i-- g-n + l)

i-1

7ri(O) + "E gi- jTr(,,g_ n +1)
--1
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-[- (Tri + 1(0) - ci(O) + wi(O))S*("gEN n + 1)}’ rt 3,...,N, (60)

E 1

n- 1,...,N- 1. (62)

Inserting 0- 0 into (49) and using (53) and (54), we obtain

C0(0 -- 7r1(0

1 -C*(Ag)

Hence, ri(0),i 1,...,N and ci(O), wi(O), i= 0,...,N can be expressed in terms of

Remark 3.2: In order to obtain w(0) we will express r(0) and w(0), i- 1,...,N,
by w(0) (via rk(0), ck(0 and wk(O)) and then make use of the normalizing condi-
tion N

c(0) + w(0)+ E (w(0)+ r(0)) 1. (63)
i--1

Inserting 0 = 0 into (46), (47) and (51) yields

)g]EV 17r(0) 71-1(0 + 7r2(0 + C1(0 -- tZl(0), (64)

n-1

"g nTry(O) 7rn(O) + "E gn -i7(O) " 7rn -- 1(0) -- Cn(O) + Wn(O),
i--1

n 2,...,N- 1,
n--1

gEN nw(0) wn(0) + E gn -iw(0), n 1,..., N 1.
i=0

(65)

(66)

Inserting 0 0 into the derivatives of (48) and (52) yields

(N-1 ,(1) )7r*N(O AE gN -iTri (0) + (CN(O) --[- WN(O))S (1)(0)
i=1

N-1
.(1W*N(O)- AE gN-iWi )(0).

i-0

The right-hand sides can be expressed as follows by inserting 0- 0 into the deriva-
tives of (46), (47), (50) and (51),



An MX/GI/1/N Queue with Close-Down and Vacation Times 73

,gEN_ 17F(1)(0) (7F2(0) + C1(0 / UPl(0))S*(1)(0) + 7r(0), (67)

n-1
,(1) (7r 1(0) / Ca(0"gEN nTrn 1)(0) E gn- i7ri (0) / n--

i=1

/ w(0))S*(1)(0) / r(0), n 2,...,N 1,

(68)

,gvup(1)(0) (Co(0) / ZO(0))V*(1)(0) /
(1) ,(1 ,Agc_ nw, (O) A gn_ iWi )(0) / w(0), n-l,...,N-1,

i=0

(69)

(70)

from which we obtain w)(0) and hence we are done by Remark 3.2.
Case2: 3kE{1,...,N-2}: gN_k--O and gN_jTOVjE{1,...,N--1}, jTk.

Remark 3.3: This assumption implies that g_-g_ ( + ) 0 and therefore,

71"(gEN- (k + 1)) and * 2wk(gN-(k, + 1)) cannot be obtained in the above-mentioned
manner.

Differentiating (46)and (47) and inserting 0-

_
( + 1)yield

k 1

,(1)(gEN (71)7r(’g/c-(k+l))-- "Egk-iri -(k+l)
i=1

/ (Trk -t- 1 (0) / Ck(O) / Wk(O))S*(1)(’gEN -(k -t- 1))),
7F(1)(’gEN (k -t- 1)) 1 {gV (k + 1)TF()gEN (k + 1))--(+11)

(72)

/ (7r2(0) / C (0)/ UP (0)S*(1)()g]EV (k +1))}’
*(1)(’gV (k +1 "(]-11) gv (k + 1L’) ’gv- (k -t-1)TF(’gv- (k -t" 1))

i--1

*(1)(’gv + + }/ "E gi- jTrj -(k 1)) / (Tri 1(0) / ci(O) / zi(0))S*(’gV (k -- 1)
j=l

2<i<k--1.

(73)

EAnalogously, Wk(gN_(k + 1)) can be obtained by differentiating (50) and (51) and

inserting 0 g_ (k + .1)"
Remark 3.4: This calculation can be easily extended to the case gk- gk- 1 --0 by

considering the second derivatives of (46) and (47), (50) and (51) respectively. The
case gl 0 can be handled by observing a different set of equations (46)-(47). We do
not need any assumptions on the values gi, 1,..., in contrast to Baba [1, 3], where
he assumed that gi =/= 0 (i 1,...,N).
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4. The Loss Probability

In this section we will consider two different probabilities: First, the probability that
the first customer of a batch is being lost and second, the probability that an arbitra-
ry customer is being lost.

Theorem 4.1: The probability that the first customer of a batch is being lost is
given for the PBAS by

pPBAS
loss rv(0) + N(0), (74)

and is given for the WBAS by
N

WBAS (c(0) + w(0))gv + 1 + (Try(0) -[- w(0))gw + 1"lOSS (75)

Proof: Because of the Poisson Arrivals See Time Averages (PASTA) property (see
Wolff [16]), note that the first customer sees time averages (e.g. r(0), w(0)). Under
the PBAS, the first customer is lost if there is no waiting place, i.e. if there are al-
ready N customers in the system. Hence (74) follows. Under the WBAS, the first
customer is lost if the whole batch is lost, i.e., if the batch size is greater than the
number of empty waiting places. Hence (75) follows. [:]

The loss probability of an arbitrary customer is given by the following theorem.
Theorem 4.2: The probability that an arbitrary customer is lost is given by

N
(o)

()Ploss- 1
E(X)E(S)’

h E(X) dno h pcaio of h batch iz and E(S) h caio of h
service time.

Proof: We restrict ourselves to only the service facility (excluding the waiting
room). The rate AE(X)(1- Ploss) is the arrival rate of customers accepted by the
system, and it is also the throughput of the service facility. On the other hand, the

N
mean number of customers in the service facility is given by r(0). Applying

n--1
Little’s law, we then obtain (76).

Remark 4.1: Because of the generality of Little’s law, Theorem 4.2 is independent
of the acceptance strategy. Nevertheless, the loss probability will depend on the
strategy by virtue of the different sets of state probabilities.

Remark 4.2: If we restrict Theorem 4.2 to the non-vacation and non-close-down
case, we obtain a formula for the loss probability of an arbitrary customer which is
much simpler than the analysis given in Baba [1].

5. Waiting Time Analysis

In this section we will derive the Laplace-Stieltjes transform of the waiting time distri-
bution of the first customer as well as of an arbitrary customer of an actual arrived
batch. Furthermore, by using Little’s law, we will obtain the mean waiting time for
all customers that enter the system.

Following Burke [4] (see also Manfield and Tran-Gia [11]) we can derive the
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following lemma.
Lemma 5.1: We will focus on an arbitrary arriving customer. By BS we will

denote the size of the batch in which he arrives and by PC his position in the batch.
Then the following holds

()P(BS k) E(X)’

and hence

1 l<i<kP(PC BS k) --, (78)

P(PC -i)-
g

(79)E(X)’
gk

1 < < k. (80)P(PC -i and BS k) E(X)’
Pmark 5.1" From this lemma we can easily obtain the loss probabilities, i.e., for

the partial batch acceptance strategy, the loss probability is given by

Ploss E(lx,.),. r(O) E (j- N + i)gj + c;(O) E (J- N)gj (81)
i=1 j=N-i+l j=N+I

)+ :(0 (- +
=0 j=N-i+l

and for the whole batch acceptance strategy, the loss probability is given by

Ploss E(()Er(0) E jgj+c;(O) E Jgj
i=1 j=N-i+l j=N+I

(82)

N )+ ;(0)
i=0 j=N-i+l

Under PBAS, when the batch is too large for the available space, the test customer
occupies a position in the rejected portion of the batch with probability (j- N + i)/j
and hence (81) follows. Equation (82) follows from the fact that when the batch con-

taining the test customer is larger than the available waiting space, all the customers
of this batch are lost.
We are now in a position to derive the following theorem.
Theorem 5.1: The Laplace-Stieltjes transform of the waiting time distribution of

the first customer in a batch under the PBAS is given by
N-1 N-1

7r(O)[S,(o)]i- 1 + w(O)[S,(o)]i + c;(O)
W,F(O) i=1 o

1 rv(0) wv(0) (83)

and is given by
N-1 N-1

E 7r(O)g_i[S*(O)]i-lq- E w(O)gEN-i[S*(O)]i’+’c;(O)gq
W*F(O) l O

N-1 N-1
E ;(0) + c;(0) + 2 ;(0)v_
i=1 i=0

(84)

under the WBAS.
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Proof: The denominator of (83) is the probability that a batch is not totally
rejected under the PBAS and hence the first customer is accepted. The numerator
just adds the remaining service (vacation) time and the service times of the customers
already in the system. Under the WBAS the first customer is accepted if and only if
the whole batch is accepted, hence (83) follows.

For the waiting time of an arbitrary customer the following theorem holds.
Theorem 5.2: The Laplace-Stieltjes transform of the waiting time distribution of

an arbitrary customer in a batch under the PBAS is given by

51
N-i N N 1

C * C * Cw:4() (0) + Co(0)
i--1 j--1 i.=O j--1

(NI Ni k ]-(0) [s*(0)]+- + Co(0) [s*(0)
i--1 3-’1 3=1

(85)

(86)

)j----l 3k--0 * ,+k-1 *(0) g IS*(0)]k,(o . IS (o)] + Co
(i=1 j=l k=O

N-1 N-i j-1

)
under the WBAS.

Proof: These results can be obtained by using Lemma 5.1. El
From these equations the mean waiting time can be obtained, but it is easier to ob-

tain it directly from Little’s law using effective arrival rates.
Theorem 5.3: The mean waiting time for all customers that enter the system is

given by

(N N )E(S) E (k- 1)r(O)+ E *(o)
k=2 k=lE(W) N (87)

E ,(o)

independent of the acceptance strategy.
Proofi We will restrict our attention to the waiting places (excluding the service

facility) only. Following Theorem 4.2 the effective arrival rate of customers A’ is
given by N

E
/V= n=l

E(S)
Noting that the waiting room consists of N- 1 places if the server is serving and N
places if the server is closing down or on vacation, we obtain the mean queue length
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E(L) as
N N

E(L) E (k- 1)r(0)+ E k(c(O)+
k=l k=0

N N

(It--1)r(0)+ kwh(0).
k=2 k=l

Using Little’s law yields the assertion.

6. Numerical Results

In this section we will apply the above-derived results to the following setting:
the batch size is deterministic and equals 5, i.e., g5 1;
the number of waiting places, including the customer that may be in
service, equals 11, i.e., N- 11;
the service time, close-down time and vacation time distribution is either
deterministics (Det), Erlang of order 2 (Erl), exponential (Exp)or hyperex-
ponential of order 2 (Hyp);
by Det(x), Erl(x), Exp(1/x), Hyp(x), we denote the corresponding distribu-
tion with mean x.

We will calculate the loss of probabilities and the expected waiting time of an arbi-
trary customer for this setting under the partial batch acceptance strategy (PBAS)
and the whole batch acceptance strategy (WBAS).

ttemark 6.1: Note that under the whole batch acceptance strategy this setting can-
not be analyzed by Baba’s [1, 3] result.

Example 6.1: The expected waiting time of an arbitrary customer under the
partial batch acceptance strategy w.r.t, the close-down time distribution for different
values of the traffic load p is given in Figure 1. In this example the service time and
vacation time are exponentially distributed with mean 1. It can be seen that the
waiting time is decreasing if the close-down time is increasing.

0 2 4

............................................ p-0.5
p-0.1

C Det(x)
6 8 10

Figure 1. Expected waiting time of an arbitrary customer under the PBAS w.r.t.
the close-down time distribution (S Exp(1), Y Exp(1)).
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Example 6.2: The loss probability of the first customer and of an arbitrary cus-
tomer under the partial batch acceptance strategy w.r.t, the close-down time
distribution for different values of the traffic load p are given in Figure 2 and in
Figure 3. In this example, the service time and vacation time are exponentially
distributed with mean 1. It can be seen that the close-down distribution has almost
no influence on the loss probabilities. This comes from the fact that the main part of
the loss probability comes from a loss during a service period. The joint probability
of being on vacation and losing a customer is very small, so either the traffic load is
small and hence the probability of being lost is high or the the traffic load is high and
hence the probability of being on vacation is small.

0.20

0.15

0.10

0.05

0.00
0

,0--1.5

p--1

p-0.5
C Det(x)2 4 6 8 10

Figure 2. Loss probability of the first customer under the PBAS w.r.t, the close-
down time distribution (S Exp(1), V Exp(1)).

0.0

............................... p--1.5

........................................................................................... p-0.5
2 4 6 8 10

Figure 3. Loss probability of an arbitrary customer under the PBAS w.r.t, the close-
down time distribution (S Exp(1), Y-, Exp(1)).

Example 6.3: The expected waiting time of an arbitrary customer under the
PBAS w.r.t, the vacation distribution for different values of the close-down time dis-
tribution is given in Figure 4. In this example the service time is exponentially distri-
buted with mean 1 and the traffic load p- 0.5. It can be seen that the influence of
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the close-down time distribution is high if the mean vacation time is also high.

0.0 0.2 0.4 0.6 0.8 1.0
v Exp(x)

Figure 4. Expected waiting time of an arbitrary customer under the PBAS
( 0., S xp()).

Example 6.4: The loss probability of the first customer under the partial batch
acceptance strategy w.r.t, the traffic load p for different values of the vacation time
distribution is given in Figure 5. In this example, the service time and close-down
time are exponentially distributed with mean 1. It can be seen that the vacation
time distribution is not as important as the service time distribution illustrated in the
next example.

0.20

0.15

0.10

0.05

0.00
0.0

V Hyp(1)
V Exp(1)

0.4 0.8 1.2 1.6

Figure 5. Loss probability of the first customer under the PBAS
(S Exp(1), C Exp(1)).

Example 6.5: The loss probability of the first customer under the partial batch
acceptance strategy w.r.t, the traffic load p for different values of the service time
distribution is given in Figure 6. In this example, the vacation time and close-down
time are exponentially distributed with mean 1. It can be seen that the service time
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distribution plays an important role and that the different curves are strictly ordered
by their service time distributions.

0.20

0.15

0.10

0.05

0.00
0.0

S Exp(1) ,,,,,/,,;;.,,,,"""

0.4 0.8 1.2 1.6

Figure 6. Loss probability of the first customer under the PBAS
(V Exp(1), (7 Exp(1)).

Example 6.6: The loss probability under the whole batch acceptance strategy
w.r.t, the traffic load p is given in Figure 7. In this example, the service time, vaca-
tion time, and close-down time are exponentially distribution with mean 1.

Example 6.7: The expected waiting time of an arbitrary customer under the whole
batch acceptance strategy w.r.t, the traffic load p for different values of the service
time (close-down time, vacation time) distribution is given in Figure 8 (Figure 9,
Figure 10, respectively). It can be seen from these figures, that the service time distri-
bution is dominant for heavy traffic, the vacation time distribution is important
under light traffic and the close-down time distribution has almost no influence
(under the same mean).

0.2-

0.1-

0.0
0.0 0.4 0.8 1.2

Figure 7. Loss probability under the WBAS (S Exp(1), C Exp(1), V Exp(1)).
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3
0.1

S Hyp(1)

S Exp(1)

S Erl(1)

0.5 0.9 1.3 1.7

Figure 8. Expected waiting time of an arbitrary customer under the WBAS
(V Exp(1), C Exp(1)).

C Hyp(1)

C Exp(1)

C Erl(1)
C Det(1)

0.5
3
0.1 0.9 1.3 1.7

Figure 9. Expected waiting time of an arbitrary customer under the WBAS
(S Exp(1), V Exp(1)).
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3
0

V Hyp(1)

Figure 10. Expected waiting time of an arbitrary customer under the WBAS
(S Exp(1), C-. Exp(1)).

7. Conclusions

We consider an MX/GI/1/N finite capacity queue with close-down, server vacation
and exhaustive service discipline. Introducing the remaining service time (close-down
time, vacation time resp.) as a supplementary variable enabled us to obtain a set of
differential equations under both the partial batch acceptance strategy (PBAS) and
the whole batch acceptance strategy (WBAS). It should be noted that the embedded
Markov chain technique could not be applied to the WBAS system. We showed how
to solve these sets of equations to obtain the queue length at an arbitrary time as
well as at a departure epoch. Furthermore, we obtained the loss probabilities and the
Laplace-Stieltjes transforms of the waiting time distributions for the first customer
and for an arbitrary customer of a batch. Numerical calculations showed the in-
fluence of the close-down time, vacation time and the service time distribution to the
loss probability and the mean waiting time. Hereby it turned out that the vacation
time distribution is dominant over the service time distribution in light traffic where-
as the opposite holds under heavy traffic. For moderate traffic the service time distri-
bution has more influence than the vacation time distribution.

For further research we are thinking about a single-server finite capacity queue
with vacation time and batch-Markov arrival input, where we have to consider the
arrival phases.
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