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This paper discusses viable solutions for differential inclusions in Banach
spaces. Existence will be established in two steps. In step 1, a nonlinear
alternative of Leray-Schauder type [8] for maps with closed graphs will be
used to establish a variety of existence principles for the Cauchy differen-
tial inclusion. Step 2 involves using the results in step 1 together with
some tricks involving the Bouligand cone (and sometimes the Urysohn
function) so that new existence criteria can be established for multivalued
differential equations on proximate retracts.
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1. Introduction

In this paper we study the existence of solutions y: [O, T]--.K C_ E (so called viable

solutions) to the differential inclusion

y’(t) e (t,y(t)) a.e. t e [0, T]
e

K is a proximate retract and b" [0, T] x K--2E; here E is a real Banach space and 2E

denotes the family of all nonempty subsets of E. Using a nonlinear alternative of
Leray-Schauder type, we were able in [7] to establish some general existence principles
and theory for (1.1) (however in [7] we had to assume was a K-Carathfiodory map
[4]). In this paper using some recent results of the author (see [6, 8]) we are able to
discuss a more general .

The technique to establish the existence of viable solutions to (1.1) will be in two
steps. In step one we discuss the differential inclusion
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’ F(t,) .. o, [0,]

x(0)- xo E.
(1.2)

Our goal will be to establish some general existence principles for (1.2) which will
automatically lead to new criteria for the existence of viable solutions to (1.1). We
will discuss (1.2) in the introduction. The proofs of our existence principles will be
elementary since all the analysis was completed in [6-8]. In Section 2 (which is step
2) we will first discuss directly (1.1) when is not necessarily K-Carathfiodory. New
results are presented which extend previously known results in the literature [2, 3, 5,
7. 9]. Then we will examine (1.1) indirectly; the idea in this case is to examine the
differential inclusion

x’E expconv(t,x) a.e. on [0, T]
(1.3)

(0) o K.

Remark 1.1: For a set A, exp(A) is the set of extreme points of A and conv(A) is
the convex hull of A.

Again new results will be obtained for (1.3) which will lead to new existence
criteria for (1.1).

To conclude this section we discuss the differential inclusion (1.2) where
F:[0, T] x EC(E) (here C(E) denotes the family of all nonempty, compact subsets
of E). We look for solutions to (1.2) in WI’I([O,T],E). Recall WI’ I([O, T], E) is the
set of continuous functions u such that there exists v E LI([O, T],E) with u(t)-
u(0) f )v(s)ds for all t E [0, T]. [Notice if u W1’ 1([0, T], E) then u is differenti-
able almost everywhere on [0, T], u’ G LI([0, T], E) and u(t) u(O) f toU’(s)ds for
t G [0, T].] Before we specify conditions on F we first recall some well known
concepts [4]. Let E1 and E2 be two Banach spaces, X a nonempty closed subset of
E1 and S a measurable space (respectively S- I x E, where I is a real interval, and
A C_ S is (R) % measurable if A belongs to the r-algebra generated by all sets of the
form N x D where N is Lebesgue measurable and D is Borel measurable). Let H:
X---E2 and G:S---E2 be two multifunctions with nonempty closed values. The func-
tion G is measurable (respectively (R) % measurable) if the set {t G S: G(t) N B :/: q)}
is measurable for any closed B in E2. The function H is lower semicontinuous (1.s.c.)
(respectively upper semicontinuous (u.s.c.)) if the set {x E X:H(x)n B 7 0} is open
(respectively closed) for any open (respectively closed) set B in E2.
When we examine (1.2) we assume F:[O,T] x EC(E) satisfies some of the follow-

ing conditions (to be specified later)"
(i) tF(t,x)is measurable for every x E

(ii) xF(t,x)is u.s.c, for a.e. t [0, T]
(1.4)

(i) tF(t,x)is measurable for every x E

(ii) x--F( t, x) is continuous for a.e. [0, T]
(1.5)

(i) (t,x)F(t,x)is(R)measurable

(ii) xF(t,x)is 1.s.c. for a.e. E [0, T]
(1.6)
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and

for each r > 0 there exists hr E LI[0, T] such that II F(t,x)II <_ hr(t)
for a.e. E [0, T] and every x E with II II _<

there exists h LI[0, T] such that II F(t,x)II <_ h(t)
for a.e. t [0, T] and all x E

there exists 3’ _> 0 with 27T < 1 and with

c(F([0, t] x f)) _< 7c(f) for any bounded subset a of E;

here c denotes the Kuratowskii measure of noncompactness.

(1.7)

(1.8)

(1.9)

We now present six existence principles for (1.2) which will be needed in Section 2.
Theorem 1.1: [8] Let E (E, I1" 11) be a separable Banach space with F:[0, T]

E---CK(E) (here CK(E) denotes the family of nonempty, compact, convex subsets of
E). Assume (1.4), (1.7) and (1.9) hold. Also suppose there is a constant Mo, inde-
pendent of A, with Il Y ll o SuPt e [o,T] [[ Y(t) ll C Mo for any solution y G
WI’I([O,T],E) to

y’G AF(t,y(t))

y(O) x0

a.. t [0, T]
(1.10),

for each A G (O, 1). Then (1.2) has a solution uG WI’I([O,T],E) with I]Ul]o_<Mo.

Proof: Define the map zh:C([O,T],E)--2LI([’T]’E) by

5(y) {v G LI([o,T],E)’v(t) G F(t,y(t)) a.e. t G [0, T]}; (1.11)

and the map S: LI([0, T], E)---C([0, T], E) by

Sv(t) o + f v()d.
0

Solving (1.10),x is equivalent to solving the fixed point problem

(1.12)

y AS o 5(y) ANy;

here N: C([0, T], E)2C([’ T], E). Let

u { c([o, ], E). II II o < Mo).

In Theorem 2.1 of [6] we showed

v: c([o, T], E)Cc(C([O, T], E))

has closed graph and N: 5-Cc(C([O, T],E)) is condensing (here Cc(C([O, T],E))
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denotes the family of nonempty, closed convex subsets of C([O, T],E)). Now apply
Theorem 3.1 of [8] to deduce the result. V1

Remark 1.2: Notice (1.9) can be replaced by any condition that guarantees that
N" Cc(C([O, T],E)) is condensing. Other types of conditions may be found in [3];
for example (1.9) may be replaced by

there exists 7 _> 0 with 27T < 1 and with

limb__, + c(F(Jt, h x f)) _< 7a(f) for t E (0, T]
for any bounded subset f of E; here

Jt, h-[t-h,t]fl[O,T].
A similar remark applies to Theorem 1.2, Theorem 1.3, Corollary 1.4, Theorem 1.5

and Corollary 1.6.
Theorem 1.2: [7] Let E- (E, I1" II) b a separable Banach space and let F:

[O,T]E---,C(E) satisfy (1.7), (1.9) and either (1.5) or (1.6). In addition, suppose
there is a constant Mo, independent of A, with II Y [[ o 5 Mo for any solution y
WI’I([o,T],E) to (1.10). for each ,kG(0,1). Then (1.2) has a solution u G
W1’ 1([0, T], E) with I[ t II o Mo"

Proof: The proof follows from Theorem 2.2 of [7] (the only difference is that in
this case gI (defined in [7])is condensing). V1

Theorem 1.3: [6] Let E be a separable Banach space and let F:[0, T] x E--_CK(E)
satisfy (1.4) (1.7) and (1.9). Define the operator N: C([0, T], E)--2C([’T]’ E) by
iV o ’fff and are given in (1.11) and (1.12) respectively). Suppose

there exists a nonempty, closed, convex set X of 6([0,7"], E)
such that X is mapped into itself by the multi N and also (1.13)

N(X) is a subset of a bounded set in C([0, T],E)

holds. Then (1.2) has a solution in WI’I([O,T],E).
Proof: The result follows from Theorem 2.1 in [6]. In [6] we assumed X was

bounded (here we assume N(X) is a subset of a bounded set in C([0, T,E)); however
the proof is the same. [:!

Corollary 1.4: Let E be a separable Banach space and let F:[0, T] x E--CK(E)
satisfy (1.4), (1.8) and (1.9). Then (1.2)has a solution in WI’I([O,T],E).

Proof: The result follows from Theorem 1.3. Notice (1.13) holds with X
C([O, T], E). [1

Theorem 1.5: Let E be a separable Banach space and let F:[O,T]xEC(E)
satisfy (1.7), (1.9) and either (1.5) or (1.6). Define the operator N- S o (z5 and S
are given in (1.11) and (1.12) respectively) and suppose (1.13) holds. Then (1.2) has
a solution in W1’ 1([0, T], E).

Corollary 1.6: Let E be a separable Banach space and let F:[O,T]xE--C(E)
satisfy (1.8), (1.9) and either (1.5) or (1.6). Then (1.2) has a solution in
WI’ 1([0, T], ’).
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2. Differential Inclusions on Proximate Retracts

In this section we study the existence of viable solutions x" [0, TIcK C_ E to the differ-
ential inclusion

x’(t) (t,x(t)) a.e. [O,T]

x(0) Yo e K.
(2.1)

By a solution (viable) to (2.1) we mean a x E WI’I([O,T],E) with x’ E (t,x) a.e. on

[0, T], x(0) Y0 and x(t) K for t G [0, T]. Throughout this section we assume

K is a proximate retract.

Definition 2.1" [9] A nonempty closed subset K of E is said to be a proximate re-

tract if there exists an open neighborhood U of K in E and a continuous (single-
valued) mapping r: U---,K (called a metric retraction) such that the following two con-

ditions are satisfied"
(i) r(x) x for all x G K;
(ii) II r(x)- x [[ dist(x, K) for all x G U.
Remark 2.1: Now since we can take a sufficiently small U (for example by restrict-

ing V to U fl {y E E: dist(y, K) < 6} for some given 6 > 0) we may assume (and we do
so) that I[r(u)-ull <-6fralluGU"

For most of this section we will assume satisfies either

or

(: [0, T] K-,CK(E) satisfies (1.4) and (1.7)
here F is replaced by and E is replaced by K)

: [0, T] x KC(E)satisfies (1.7) and either (1.5) or (1.6)

(here F is replaced by and E is replaced by K).

(2.3)

(2.4)

Now let U be a fixed neighborhood of K (chosen as in Remark 2.1) and let , be an

Urysohn function for (K,E\U) with (x)- 1 if x e K and ,(x)- 0 if x U. Let r"

U--,K be a metric retraction. Define "[0, T] x EC(E) by

{ A(x)(t,r(x)) if x G U
(t,x)

{0} ifxU.

emark 2.2: If satisfies (2.3) then satisfies (1.4) and (1.7) (with F replaced
by ). A similar remark applies if satisfies (2.4).

Assume also that

where
(t,x) C_ TK(X for all x e K and a.e. E [O,T]

v e U:liminf
dist(x + tv, K)TK(X) t t-+O + -0}
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is the Bouligand tangent cone to K at x.

We now concentrate our study on the differential inclusion

x’(t)(t,x(t))

x(O) Yo K.

.. t [0, T]
(2.6)

Notice any solution of (2.6) is a viable solution of (2.1); to see this notice if x is a

solution of (2.6) then x(t)e K for all e [0, T] by Theorem 3.1 of [7] (note (2.5)
holds) so (t,x(t)) A(x(t))(t,r(x(t)))- (t,x(t)). Conversely if y is a viable solu-
tion of (2.1) then y is a solution of (2.6).

Theorem 2.1" Let E-(E, II" II) be a separable Banach space and let ,U be as

above (in particular U is chosen as in Remark 2.1).
(i) Suo (.2), (2.), (2.) a

there exists 7 >_ 0 with 27T < 1 and with

c( ([0, t] a)) _< 7c(a) for any bounded subset a of E
(2.7)

hold. In addition suppose there is a constant M, independenl of It, with II Y II 0 # M
for any solution y G WI’I([o,T],E) to

x’(t) It (t,x(t))

z(o) Yo K

a.e. t G [0, T]

for each It E (0, 1). Thus (2.1) has a viable solution u with II u[I o <- M.
(ii) Suppose (2.2), (2.4), (2.5) and (2.7) hold. In addition assume there is a

constant M, independent of It, with ]] y ]] o 7 M for any solution y E WI’I([O,T],E)
to (2.8)t for each It G (0, 1). Thus (2.1) has a viable solution u with II u II o <- M.

Proof: From Theorem 1.1 (if we are discussing (i)) or Theorem 1.2 (if we are

discussing (ii)) we have immediately that (2.8)1 has a solution y (note y(t) It" for
all t G [0, T] by Theorem 3.1 of [7]). Thus y is a solution of (2.1).

Remark 2.3: Suppose E is a Hilbert space and K is a closed, convex subset of E.
In addition, suppose satisfies (1.9) (with F replaced by and E replaced by K).
Then (2.7) is satisfied. To see this notice r in this case is nonexpansive. Now if is
a bounded subset of E then since

we have
([0, t] ) c_ (([0, t] x ()) u {0})

,( ([o, t] e)) <_ ,(([o, t] ,.())) < .,(,.()) < .,().

It is also possible to use Corollary 1.4 or Corollary 1.6 to establish an existence
principle for (2.1). Suppose there is a constant M with II Y II 0 < M for any possible
viable solution to (2.1). Let c > 0 be given and let -:E--[0, 1] be the Urysohn func-
tion for

(B (0, M), E\B(0, M + c))
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~such that r(x)=l if Ilxll _<M and re(x)=0 if

Ce(t,x) re(x) (t,x) and we look at the differential inclusion
Ilxll >-M+e" Let

x’(t) E(t,x(t))
x(O) o"

a.e. t E [0, T]

Theorem 2.2: Let E (E, I1" II) b a separable Banach space and assume (2.2)
and (2.5) hold. In addition, suppose :[O,T]K--C(E) satisfies either (2.3) or

(2.4). Assume there is a constant M with I] Y l]o < M for any,,])ossible viable
solution y E WI’I([o,T],E) to (2.1). Let >0 be given and let 7, be as above.
Suppose

there exists I/>_ 0 with 27T < 1 and with
(2.10)

(([0, t] x a))<_ 7(a) fo a boee a of

holds, and in addition, assume Ilwll0<M fo any possible solution wE
WI’I([o,T],E) to (2.9). Then (2.1) has a viable solution u with II u II 0 < M.

Proof: From Corollary 1.4 or Corollary 1.6 (note (1.8) is satisfied with F replaced
by Ca) we have immediately that_(2.9) has a solution y. By assumption I1Y II 0 < M
and so by definition Ca(t, y(t))= (t, y(t)). Thus y is a solution of (2.6). Now Theo-
rem 3.1 of [7] implies y(t) E g for every t E [0, T] and so y is a solution of (2.1). El

Finally, in this section we examine the differential inclusion

x’E expconv(t,x) a.e. on [0, T]
(2.11)

x(0) Y0 E K.

New results will be obtained for (2.11) (these extend and complement results in the
literature [1-3] and these automatically lead to new existence criterion for (2.1).

For the remainder of this section we will let

G(t,x) expconv(t, x).

As before, K will be a proximate retract (i.e. (2.2) holds). We also assume the follow-
ing conditions hold:

: [0, T] x KC(E) (2.12)

xHconv(t,x) is continuous for a.e. t E [0, T] (2.13)

(t, x)-,G(t, x) expconv(t,x)is (R) % measurable (2.14)

for each r > 0 there exists hr E LI[0, T] such that

for a.e. E [0, T] and every x E K with II II _<
(2.15)

a(t,x) c_ TK(X for all x E K and a.e. t E [0, T] (2.16)
and

(t, K) is compact for a.e. t E [0, T]. (2.17)
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Recall the following results [3, pp. 71-72].
Theorem 2.3: (Krein-Milman) Let X be a Banach space and 5 M C X be com-

pact. Then exp convM is the smallest closed subset of M such that

conv exp conyM cony M.

Theorem 2.4: Let X be a Banach space, D C_ X be closed and suppose F’D2X

have closed values with F(D) compact and conv F continuous. Then expconvF is
l.S.C.

Pemark 2.4: Notice (2.12) implies G: [0, T] x KC(E).
lemark 2.5" By Theorem 2.3 for a.e. t C [0, T] we have

expconv(t,x) C_ (t,x).

Thus if we assume (1.7) (with F replaced by ) then (2.15) is automatically satisfied.
In addition if we assume (2.5) then (2.16) holds.

Let U,A and r be as in the beginning of Section 2 and define G" [0, T] x E+C(E)
by

(t,x) A(x)G(t,r(x)) if x C U

{0} ifxV.

Theorem 2.5: Let E-(E, [[. [[) be a separable Banach space and let G, G, U,
A, r be as above. Assume (2.2), (2.12), (2.13), (2.14), (2.15), (2.16), (2.17) and

there exists 7 >_ 0 with 27T < 1 and with

a(G ([0, t] x f2)) _< 7a(f2) for any bounded subset f of E
(2.18)

hold. In addition, suppose there is a constant M, independent of I.t, with [1 y [[ 0 - Mfor any solution y G W1’ 1([0, T], E) to

x’(t)#G(t,x(t))

x(O) Yo K

a.e. t e [0, T]

for each #C(0,1). Thus (2.11) (and also (2.1)) has a viable solution u with

Proof: We will apply Theorem 2.1 (ii). Let N be a null set and suppose

and
xHconv (t,x)is continuous for G [0, T]\N

(t, K) is compact for [0, T]\N.
Fix e [0, T]\N. Now (t,.):KC(E) with conv(t,.) continuous and (t,K)
compact. Theorem 2.4 implies that expconv (t,. is 1.s.c. for [0, T]\N. Conseq-
uently

xHG(t,x) is 1.s.c. for a.e. e [0, T].
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Now (2.14), (2.15), (2.16), (2.18), (2.20) and Theorem 2.1 (ii)imply that (2.11) has a
viable solution u with I] u ]] 0 -< M (in addition for fixed 6 [0, T]\N we have from
Theorem 2.3 that expconv (t, u(t))C_ (t, u(t)) (note (t, u(t))is nonempty and com-

pact valued) and so u is a solution of (2.1)). V1

Remark 2.6: Notice (2.13) and (2.17) could be removed if we assume (2.20).
Suppose there is a constant M with II II 0 < M for any possible viable solution to

(2.11 Let e>0 be given and let re:E[0,1 be as before. Let Ge(t,x)-
re(x)G (t,x) and we now look at the differential inclusion

x’(t) eG(t,x(t))
(0)-

t e [0, r]
(2.21)

Now Theorem 2.2 (together with the ideas in Theorem 2.5) immediately yields the
following result.

Theorem 2.6: Let E- (E, II" II) b a separable Banach space and assume (2.2),
(2.12)-(2.17) hold. Assume there is a constant M with II Y II o < M for day.possible
viable solution y e WI’I([o,T],E) to (2.11). Let e > 0 be given and let 7", G be as

above. Suppose

there exists 7 >_ 0 with 27T < 1 and with

a(Ge([0 t]x a)) < 7a(a) for any bounded subset a of E
(2.22)

holds, and in addition assume Ilwll0<M any possible solution w@
WI’I([O,T],E) to (2.21). Then (2.11) (and also (2.1)) has a viable solution u with

Finally it is worth noting that it is possible to obtain an existence principle of the
type in Theorem 1.2 for the differential inclusion

x’ expconvF(t,x) a.e. on [0, T]
(2.23)

(0) 6 E.

Let
H(t,) xp onv r(t, )

and assume the following conditions are satisfied:

F" [0, T] x E---,C(E) (2.24)

xHconv F(t,x)is continuous for a.e. G [0, T] (2.25)

(t,x)H(t,x)- expconv r(t,x)is (R) % measurable

fofOr each r > 0 there exists hr LI[0, T] such that II H(t,x)II <_ hr(t)
ra.e. t6[0, T]andevery x6Ewith ]]x[[ _<r

(2.26)

(2.27)

and

there exists 7 >_ 0 with 27T < 1 and with

a(H([0, t] x f))_< 7c(a) for any bounded subset f of E
(2.28)
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F(t, E) is compact for a.e. t e [0, T]. (2.29)

Theorem 2.7: Let E (E, I1" II) b a separable Banach space and assume (2.24)-
(2.29) hold. In addition, suppose there is a constant Mo, independent of ., with

II Y II o # Mo for any solution y e WI’I([0,T],E) to

x’ G e---p conv F(t, x) a.e. t E [0, T]
(2.3o) 

for each (0,1). Thus (2.23) (and so (1.2)) has a solution u WI’I([O,T],E) with

II II o < M.
Proof: As in Theorem 2.5 it is easy to see that

xH(t,x) is 1.s.c. for a.e. t G [0, T]. (2.31)

Now apply Theorem 1.2 to H. [:l

Remark 2.7: We could also obtain an analog of Theorem 1.5 and Corollary 1.6 for
the differential inclusion (2.23).

R.emark 2.8: Notice (2.25) and (2.29) could be removed if we assume (2.31).
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