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1. Introduction

Analysis of combinatorical properties of discretizations of dynamical systems
constitutes a new challenging and important area. In this area a special spot is
occupied by analysis of discretizations of the logistic mapping

f(x) 4x(1- x), xE[0,1]. (1.1)
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The reason is that although this mapping is the very simplest example of continuous
mapping with quasi-chaotic behavior [9, 11], nevertheless, its discretizations demon-
strate unexpected behavior in many respects [3]. In particular, the methods suggested
in [10] and refined in [8] are not adequate in investigating the mapping (1.1). In this
paper we will show how some properties of discretizations of the logistic mapping can

be explained on the basis of properties of a special family of random mappings. This
paper extends an approach suggested in [6].

Other related studies include research on period lengths of one-dimensional discre-
tized systems carried out in detail by Beck [1, 2], similar questions with different
maps by Percival and Vivaldi [13], and some general questions concerning noisy
orbits by Nusse and Yorke [12].

2. Auxiliary Notations

In this paper [N denotes the N-dimensional coordinate Euclidean space; elements
from Rg will be denoted by x- (xl,...,xg). Let

QN {(xl,...,xN).0
_

xn

_
1,n 1,...,N}

be the unit cube in RN. For each N denote by #N the product measure over QN
with identical absolutely continuous coordinate probability measures #.
We will be interested in limit behavior as N--,cx of measures #N(sN)of some spe-

cial sets SN which are described in this paragraph. Denote r0(x1) 1 and define in-
ductively sequences of functions by

N

rN(xl"’"xN)- H (1- Xi), N- 1,2,... (2.1)
i--1

xN-1 NYN(X ..,xN) rN l(X1 ., )x N 1,2,..., (2.2)

Finally, denote

yN(x)- {Yl(xl),Y2(xl,x2),...,YN(X1 xN,., )} N-l,2,

Now define by ordk(Yl, Y2," Yn) the decreasing sequences of the k largest elements of
the finite (ordered or unordered) set {Yl,Y2,’", Yn} and let

NYk (x) ordk(yN(x)).

Define the functions

Dk(z;#)-#N xe 0<Yk(x)_<z

RN(c; #) #N({x e QN’O <_ rN(x

where inequality is understood to be coordinate-wise.
Lemma 1" There exists the continuous uniform limit

0 <_ c _< 1, (2.4)
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F/c(z;#) - lim DN(z;#) z e QI, (2.5)
and for each N the estimates

N N Qk (2.6Dk(z;)--RN(min {zi};)<Fa(z;)<D(z;) zG
l<i<k

are valid.
Prfi By the definition, the set yN(x) is a subset of yM(x) for N < M, x QM;

therefore

YkN(x) < YkM(x), N < M, x e QM (2.7)
and further

On the other hand, YN(x) depends only on the first N coordinates of x E QM and
the measure #M is a coordinate probability measure, which yields

The last two displayed inequalities imply

DkN(z; #) >_ DM(z; #), z e Qk

for each positive integer M > N (note that the inequality sign has been reversed while
converting (2.7)into (2.8)).

Denote by ^N
Yk (x) the k-th largest element of the set Yg(x), that is the last

coordinate of YV(x). The inequality

ANN(X) < (x)
implies

r(x) Yf(x), x e Q

for all M _> N because all elements of the set yM(x)\yN(x) are not greater than
rN(x). In particular, for each z Qk the following inclusion holds

C{ --l<_i<_kmin {zi}}.
On the other hand, YkN(x) depends only on the first N coordinates of x E QM and
the measure #M is a coordinate probability measure, which yields

0_< <_ 0_< _<

The last two displayed inequalities imply

Dk(z;#)> ), zQk (1.8)
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for each positive integer M > N (note that the inequality sign has been reversed while
converting (1.7)into (1.8)).

Denote by ^N
9k (x) the k-th largest element of the set yN(x), that is the last

coordinate of YkN(x). The inequality

implies

^N

YN(x)- YkM(x), x e QM (1.9)

for all M >_ N because all elements of the set yM(x)\yN(x) are not greater than
rN(X). In particular, for each z E Qk the following inclusion hold

{xQM’O<rN(x)< min {zi})and, further, k

DkM(z; #) >_ DN(z; #) RN(

Combining (1.8) and (1.10) yields

min {z/t;#), z e Qk. (1.10)
l<i<k

N N( k{zi}; N QkDk (z; it)- R min #) < Dkm(z; #)< D (z; #) z
1_<i<

for all M > N.
Because of continuity of the measure # for each positive e

(1.11)

Nlim sup RN(ct; #) 0 e>0 andlim sup Dk(z;#)-O.N--cx) c _> e e-,0 min{z(i) } <_ e

Thus (1.10) implies both assertions of the lemma.
Let Z be the set of all finite sequences with the sum 1. Let g(z) be the

nonnegative scalar function on Z with the following properties:
(a) g is symmetric, that is, the value g(z) does not change under permutations

of coordinates of z Z;
(b) the value g(z) does not change if we add to z some zero coordinates;
(c) if z1 is longer than z2 and they coincide for all coordinates but one then

a( l) -<
Examples are given by the maximal coordinate, the second maximal coordinate, the
sum of squares of coordinates

g,(z) E (zi)2
and many others.

Introduce the functions

(1.12)

(1.13)

(1.14)
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where
y,N(x)- {Yl(xl),Y2(xl, x2),...,YN(xl,...,xN),rn(X)}.

Lemma 2: There exist the continuous uniform limit

and for each N the estimates

Fg(a; it) A_ lim DaN(a; #), (1.15)

_DaN(a;#) _< Fg(a; #)_ DgN(a; #) (1.16)

are valid.
Proof: This follows the same arguments as the proof of the previous lemma and so

is omitted.
This lemma is effective as a tool for numerical computation of the corresponding

limit functions. Consider the case when the measure # is given by the distribution
function

#([0, x]) 1 V/1 x (1.17)

which will be important in the next section. Here usually the gap between upper and
lower estimates is of the magnitude 10-3 for N- 3 and decreases very fast in N.
Figure 1 graphs the limit functions Fl(a;# and Fg,(a;#) against the distribution
(1.17).

1+

O. 8+

O. 6+

O. 4+

..:.

Figure 1. The limit functions FI(Z;#), Fg,(Z;)and the distribution #([0,z])
1 V/1 z (bold).
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2. Random Mappings with a Single Absorbing Center

Let A, K > 0 be positive integers and let

X(A,K)- {-A + 1,...,- 1,0, 1,...,K}.

Define the set (A,K) of all mappings : X(A,K)--,X(A,K) satisfying (i)- 0 for_
0. This collection is called a random mapping, with an absorbing center. The set

{ e X(A,K)’x

_
0} is the absorbing center; once a trajectory of enters this set it

cannot leave. If S is a subset of (A,K), associated with some given property A,
then the proportion of elements of which belong to S will be called the probability
of the event A and is denoted by P(A; (A, g)).
Random mappings with an absorbing center are similar to mappings with a single

attracting center [4, 5, 15].

2.1 Distributions of Basins of Attractions

For each E (A,K) the set X(A,K) is partitioned naturally into a disjoint union
of basins of attractions of different cycles of the mapping . Denote by %() the set
of cardinalities of basins of attractions and

(here the i-th element of Ordk(%()) is defined as zero if is greater than the total
number of different basin of attractions). Recall that the distribution function of the
finite set S C Qk is defined as

(; s) ({ s: < })
R(S) (2.1)

for z E Qk (here and below IR(S) denotes the cardinality of the set S). Denote

DN, k(z;A’K)- *;L+" e

and
c)- e 0 ord ( , ,}.

Proposition 1" The limit equality

lkmD, (z; [an], [b V/-])
1

Fk(Y(1 Z s); #)dTc(s)

holds, where c- a/V/,[ ]is the floor function 7c(X>- ERFC(cv/J)and

ec(t) -* e,

is the complimenlary error function.
The proof is relegated to the next section. By this proposition, only the value

c a/v/- influences the limit behavior of distributions D%,k(z;[an],[bx]) as n--+oo.
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This value c is called the absorbing coefficient.
In particular, consider the case k 1, that is the limit behavior of the largest basin

of attraction. Introduce functions
x

F(x, y; c) F1 1 s; #
o

for 0_<x,y_<l and

Fff3,1(x; c) { r(,x;c),

F(1 x, x; c) + .c(X) 7c(1 x),

if0<x< 1/2,

if 1/2_<x< 1.

Corollary 1"

nlirnD, l(a; [av/], [bn]) F%, l(a; a/V/).

It is instructional that even rather small values of the absorbing coefficient
c- a/v/ influence significantly and in nonevident manner the behavior of the
corresponding limit distributions. Figure 2 graphs the case c 0, that is the function
from the previous section against the cases c- 0.25, c--1 and c- 2. Clearly the
weak absorbing center c--0.25 increases significantly the corresponding distribution
function whereas the strong absorbing center c 2 decreases it.

O. 8+

O. 64-

O. 4+

O. 2-t"

0:2

Figure 2. Limit distributions F%, 1(; a/x/) of maximal basin distributions for

a/v/-- 0 (bold)and for a/V- 0.25, 1.0, 2.0 (from above).
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Consider for each the sum of squares

This characteristic is especially important because this estimates the probability that
two random points from X(A,K) generate the same cycle. Analogous to the
previous corollary the following can be established.

Corollary 2:

lkrnD,(c; [ax//-], [bn]) Fg.(Ct; a/
where g,(.) is the above sum of squares and

f )
0

(1 s)2, . d%(s).

Figure 3 is analogous to Figure 2 but deals with the limit distribution of sum of
squared basins of attraction.

0.6+

O. 2+

Figure 3. Limit distributions Fg.(c;a/v/) of squared basin distributions for

a/V/-- 0 (bold) and for a/v/- 0.25, 1.0, 2.0 (from above).

Let us mention on simple explicit formula in this direction. Denote by %(i, ) the
cardinality of the basin of attraction which contains a particular element E X(A,K)
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and introduce the function

D%(c;)-) c; A+
We emphasize that this characteristic is a scalar function on [0, 1]. Denote finally

1 E D%(c; ).M%(a;A,K)- R(#(A+ K)) e

That is the mean value of funct’ions D%(a; ) over E (A,K).
Proposition 2: There exists the uniform limit

nlirnM%(a; [av/], [bn]) F(a; a/V/)

with 1

r(; c) () + f 7(o)do

1

f (1 0/40 e+ ev’0 .
Figure 4 is analogous to Figures 2 and 3; this figure graphs mean distributions for

the given parameter values.

1+

Oo

Figure 4. Limit distributions F%(c; a/V/-) of averaged basin distributions for

a/v/-- 0 (bold) and for a/V/-- 0.25, 1.0, 2.0 (from above).
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2.2 Distribution of the Cycle Lengths

Denote by () the set to cycle lengths of the mapping and denote

Ok(C) Ordk(C()).
Introduce the distribution function

De, k(z; A, K) z;
V/A + K

where the operation is defined as in (2.1) with the difference that . belongs to the
set of k-dimensional vectors with nonnegative components. In line with Proposition
1, it can be proved.

Proposition 3: There exist the uniform limits

FC, k(Z; a, b) lim D k(Z; [a, V/], [bn]),
n--}oo k,

where the equality

with
F(2, k(z;a b)- F*

1

/ (;0’ 1)dTc(s)F,k(Z;c) Fe, k v/l s
0

holds.
In particular, consider the case k- 1. By the Stepanov formula

1+ioo
1 f E(ap) + p2Fe, 1(6; 0, 1 &- S(a) e /2dp

1 -ioo

with

E(x) / e-

see [14], Formula (16), item 9, p. 919 (note that "i" in front of the integral in this
formula is a misprint). So Proposition 3 above implies

Corollary 3:

where

Fe, l (o; a, b) F*(2,1

r,l(C,C S
v/i s

0

See Figure 5 for the behavior of the functions F,l(a,c for different c; here the
influence of c is "monotone" in contrast to the previous three figures.
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O. B"
/

O..6. /

0.2

Figure 5. Limit distributions of normed maximal cycle length b-1 and for
a/V’b --O, 0.25, 1.0, 2.0 (from below in this order).

Denote by (i; ), E X(A, K) the length of the unique cycle which is generated by
a particular element E X(A, K) and

DC(; ) ;/
Denote finally

1 EMc(a;A’K) R((A,K)) E

the mean value of functions De(a; b) over E (A, K).
Proposition 4: There exists the uniform limit

re(a; a, b) -lLmMe(; [av/], [bn]),

where the equality

ve(; a, b v:(x/; a/v/g)

holds with
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2.3 Proof of Proposition 1

It is convenient to define (0, K) as a completely random mapping on the set

X(0, K) { 1,..., K},
that is, as the totality of all possible mappings X(O,K)X(O,K). Denote by fl(1,)
the cardinality of a basin of attraction which contains the element 1 and r(1,)=
K- fl(1,).
Lemma 3: The limit equality

nli_,rnp(r(l.)_ c:(O,K))-#([c, 1])- V/1-a

is valid.
Proof: This follows from the Stepanov assertion [14], Corollary 1, p. 625.
Denote by /3 (i, ) the basin of attraction of the mapping which contains (not

the cardinality of this basin as above!). Define by induction

ill(e) (1;), ilk(e) --/3 (ik;)

where k is the minimal element which does not belong to the previous sets
Finally denote, ilk(e) R(flk)) and rk() rk 1()- ilk(e)"
Lemma 4: The limit equality

lrnP( rk() < a; (O K)) V/I a
is valid, rk 1 (1)

Proof: From the previous lemma by induction.
Let

yN() {1() fiN(C))
and

K "’" K

NYk rdk(yN())

Corollary 4:

nlim--,P(YkN() _< z; q(0, n)) _A DkN(z) DkN(z;#).
This together with Lemma 1 gives
Corollary 5:

nlLrnD%,k(z,O,n)----NlirnoDkN(z) Fk(z; #).

Denote by /3(0,) the cardinality of the points which are eventually absorbed by
zero.
Lemma 5:

with c- a/v/.
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Proof: Follows from the Burtin statement [5], item (II), p. 411.
Proposition 1 follows from Corollary 5 and Lemma 5.

3. Discretizations of the Logistic Mapping

3.1 Distribution of Basins for the Logistic Mapping

Consider the logistic mapping

f(x)-4x(1-x)-l-(2x-1)2 xE[0,1]. (3.1)

The dynamical system generated by this mapping is a classical example of a chaotic
one-dimensional system. Denote by L the uniform 1/u lattice on [0, 1]"

L-{0,1/u, 2/u,...,1}, u-1,2,

For x e [0,1] and k/u <_ x < (k + 1)/u, for some 0 _< k _< u- 1, denote the roundoff
operator [x]u by

k/u, if k/u <_ x < (k + 1/2)/u,
[x]u

(k + 1)/u, if (k + 1/2)/u <_ x <_ (k + 1)/u.

Denote by fu the mapping Lv--Lv defined by

f()-[f()], @ L.
The mapping fu is a Lu-discretization of the mapping f.

For each u the set Lu is partitioned into a disjoint union of basins of attraction of
different cycles. Therefore this defines the cardinalities %(fu)" For each u and each
positive integer k there are defined k-sequences %k(fu) rdk(%(fu)); here, as above,
the i-th element of ordk(%(u)) is defined to be zero if is greater than the number of
elements in %(fu)"

Principle of Correspondence for Large Basins Distribution

There exist positive constants a and b such that for large N and n, the statistical
properties of the distribution of the set

Bk(N,n) {%k(fN + 1),’",k(fN + n)}

are close to those of the random set

B(N, ) {k(N + 1)," Jk(N +n)}

where Cu is a random element from the set
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See [6], p. 562-564 for justification and discussions of this principle. The key
parameter c- a/x/ was identified in [7] as approximately 0.9. Making use of
Corollaries 1, 2 and Proposition 2 above, we can get from this principle the following.

Corollary 6:
(a) For typical large N and 1 << n << N, the distribution

D%, l(a; N, n) A_ (a; B(N, n))
is close to the function F%, l(a; 0.9/v/In(N)).

(b) For typical large N and 1 (< n <C. N, the distribution

Dg.(a; N, n) A_ (a; {g.(fN)," ", g.fN +
function

(c) For typical large N and 1 < n N, the function
Nq-n

M%(c;N,n) - lp D%(a;
is close to the function F%(a;0.9/v/ln(g)).

The above formulated assertion admits to experimental testing. See, for example
Figures 6 and 7. A large number of other experiments have also been carried out. All
our experiments support strongly the principle of correspondence within the range of
several percent.

0. +

0,,+

0.2+

Figure 6. The distributions Dg, l(a 105, 104), Dg.(a, 105, 104) and the function

M%(a, (105,104)) against the theoretical predictions F%,l(a,O.9/ln(105))
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1+

O. @+

0.6

0.4

O.

Figure 7. The same as in Figure 6 for N- 107 and n- 103.

3.2 Cycles

For each u, the set Lu is partitioned into a disjoint union of basins of attraction of
different cycles. Denote by C(fu) the set of cardinalities of such cycles. For each u
and each positive integer k there are defined k-sequences Ctc(fu) ordk(C(fu) ).

Analogous to the principle of correspondence for large basins distribution, there is:

Principle of Correspondence for Large Cycle Distributions

For large N and n the statistical properties of distribution of the set

Ck(N,n) {Ck(fN + 1),’",Ck(fN + n)}

are close to those of the random set

C (N, + C (N + ,))

where is a random element from the set
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and a, b are the same as in the first principle of correspondence.
The parameter b was identified as approximately 4.45. Therefore, by Corollary 3

and Proposition 4, we can state the following:
Corollary 7:
(a) For typical large N and 1 << n N, the distribution

is close to the function r,l(a; 0.9/V/I(N)).
For typical large N and 1 n N, the function

N+n
Me(a;N,n) A_ lp E

v--N

is close to the function F(x/r-a;O.9/v/ln(N)).
See Figure 8 for numerical testing at n- 105, n- 104.

periments have been carried out.
Again, many similar ex-

H"

0.8+

0.6+

O. 4+

O. 2+

Figure 8. The distributions DC, l(C, 105, 104), Dg,(a, 105, 104) and the function

Me(a, (105, 104)), F* 1 (105,l(k/5a, 0.9/ n )), and F(V/.45a, 0.9/1n(105)).
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