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In this paper, we extend the sensitivity analysis framework developed re-
cently for variational inequalities by Noor and Yen to variational inclu-
sions relying on Wiener-Hopf equation techniques. We prove the continui-
ty and the Lipschitz continuity of the locally unique solution to parametric
variational inclusions without assuming differentiability of the given data.
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1. Introduction

Variational inequalities theory has emerged as an interesting branch of applicable
mathematics which enables us to study a large number of problems arising in econo-
mics, optimization, and operations research in a general and unified way. Numerous
numerical methods are now available for finding the approximate solutions to varia-
tional inequalities and variational inclusions. Recently, much attention has been
given to develop sensitivity framework for variational inequalities using quite
different techniques, see for example, Dafermos [5], Tobin [21], Kyparisis [9],
Robinson [18]. Some results have been obtained with special structures; see for in-
stance, Qui-Magnanti [17], Janin-Gauvin [8], and Noor [12]. Inspired and motivated
by the recent research in this field, we consider the class of variational inclusions,
which includes variational inequalities, complementarity problems, convex optimiza-
tion, and saddle point problems as special cases.
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Variational inclusions have potential and useful applications in optimization and eco-
nomics, see [1-23]. Using Wiener-Hopf equation techniques and ideas of Dafermos [5]
and Noor [12], we develop a sensitivity analysis for variational inclusions. In the pro-
cess, we establish the equivalence between variational inclusions and Wiener-Hopf
equations. This equivalence provides us with a new approach for studying sensitivity
analysis for this kind of inclusions by relying on a fixed-point formulation of the
given problem. We would like to emphasize that our approach is totally different
from the techniques of Robinson [18] based on the Wiener-Hopf equations coupled
with implicit-function theorem, as well as those of Pang-Ralph [16], which use the de-
gree theory for studying the piecewise smoothness and local invertibility of the para-
metric normal (Wiener-Hopf) equations.

2. Preliminaries

Let X be a real Hilbert space and || - || the norm generated by the scalar product
(+y+). Let A, g be nonlinear operators, and B a maximal monotone operator.
Consider the problem:

find z € X such that 0 € Az + B(g(z)), (2.1)

which is called the general variational inclusion and generalized the concept of varia-
tional inequalities [13-15].
Related to this problem, we consider the equation:

-1¢B
find z € X such that Ag™"J /(z) + B,z = 0. (2.2)
where > 0 is a real constant, JE: =(I+pB)~!and B, = H(I —JE) are the resol-
vent and the Yosida approximate associated with B, respectively, and I stands for
the identity on X and g is injective. The equations of the type (2.2) are called the
generalized Wiener-Hopf equations or the resolvent equations. For the applications

and formulations of the resolvent equations, see Noor [13-15].
We recall that the resolvent mapping is nonexpansive, i.e.,

- = -y 'Y 3
i =d0yll < lz—yll VeyeX
the Yosida approximate is Lipschitz continuous with constant %z

1

|Bz-Buyll <gllz—yll VeyeX,

and they are related by the following formula:

B

Bux € B(Jux) Ve,y € X.
Now, we consider the parametric versions of problems (2.1) and (2.2). To formu-

late the problems, let A be an open subset of a Hilbert space Y in which A takes

values, and | - | be the norm generated by its scalar product. Then the parametric
version of (2.1) is given by:
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find z) € X such that 0 € A(z),A) + B(g(zy,A),A), (2.3)

where A(-,A): X x A—X, B(-,)): X x A—X are given operators.
The associated parametric Wiener-Hopf equation is:

find 2y € X; Ag_lJf("’\)z/\%-(B(-,/\))uz)\:0. (2.4)

We assume that for some A € A, problem (2.3) has a unique solution z. We will
show that in this case, (2.4) also has a unique solution z. In what follows, we are in-
terested in knowing if (2.3) (respectively, (2.4)) has a solution, denoted z, (respective-
ly, z,), close to T (respectively, Z) when X is close to X, and how the function
z(A): =z, (respectively, z(A): = z)) behaves. In other words, we want to investigate
the sensitivity of the solutions Z and Z with respect to change of the parameter A.

The object of the next result is to establish the equivalence between (2.3) and
(2.4).

Lemma 2.1: The parametric variational inclusion in (2.3) has a solution x, if and
only if the parametric Wiener-Hopf equation in (2.3) has a solution zy, where:

g(zy,A) = JE( ' "\)z,\ and zy = g(xy, A) — pA(zy, A). (2.5)
Proof: Let z, be a solution of (2.3), i.e.

— Az, A) € B(g(zy,2),2),
which is equivalent to

9(xy, A) = nA(xy, A) € g(zy, A) + 1B(g(2 s A), ).

Thus \
g2y, A) = TEC N g2y, 2) - pA(ey, 0).

This, combined with definition of the Yosida approximate, yields

(B(+ )93 X) — 1A(zy, A)) = — Ay, Vi
that is

A(x,\7 ’\) + (B( ) ’\)),u(z/\) =0,
where
zy = g(zy,A) — pA(zy, A).
Conversely, let zy € X be a solution of (2.4). Then
Ay, ) + (B(+, ), (23) = 0 with g(zy,A) = J50C Mz, (2.6)

which yields that
(B( ’ a)‘))u(z,\) € B(x,\’ )‘)'

This, combined with (2.3) gives:

0 € A(zy,A)+ B(g(zy, M), A).
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Thus, z, is a solution of (2,3). 0
Remark 2.1: (i) We can give another proof based on an abstract duality principle
for operators. Indeed (2.3) is equivalent to the problem

find zy € X;0€ —g(zy,A) + pA(z),A) + g(2), A) + uB(g(xy, ), A). (2.7)

Setting A: = —g+ puA and B: = (I + puB)og, and applying the abstract duality
principle (Attouch-Theéra [2]), (2.3) is equivalent to:

find z, € X; 0 € zy + AB™ 'z, with z, € Bz,.

B

Noticing that B~ 'z, is nothing but g~ I(J#( ' ”\)z,\), we derive:

Byzy+Aog™ l(Jf( N2y, ) with g(z,,A) = Jf( RPN

(74) We have assumed that (2.3) has a unique solution Z. By Lemma 2.1 above,
we deduce that problem (2.4) admits a solution Z, for A € A.

Now let 9 be a closed convex neighborhood of z. We will use Lemma 2.1 above to
study the sensitivity of variational inclusions. More precisely, we want to investigate
those conditions under which, for each z, near zZ (respectively z, near Z), the func-
tion zy: = z(A) (respectively z,: = (X)) is continuous or Lipschitz continuous.

Definition 1: Let A be an operator defined on ¥ x A. Then, for all z,y € 9, the
operator is said to be

(7) locally strongly monotone if there exists a constant a > 0 such that

(A(z,A) = Ay, M)z —y) 2 aflz—y || 27
(it)  locally Lipschitz continuous if there exists a constant B > 0 such that

| Az, ) — A(y, ) | <Bllz—yll.

It is clear that o < .

3. The Main Results

We consider the case when the solutions of the parametric Wiener-Hopf equation
(2.4) lie in the interior of ¥. Following the ideas of Dafermos [5] and Noor [12], we
consider the map

F(Z,/\):Jflﬂ(.’)‘)

25— wA((z3, 1) (3.1)
B () = 9nd) —pdlzy ),
where g(:c/\,/\):,]“l zy and B o dom BNJ—X with B, ;= B.

We have to show that the map z—F(z,A) has a fixed point, which is also a
solution of (2.4). First of all, we prove that the map is a contraction with respect to
z, uniformly in A € A.

Lemma 3.1: Let the operator A(-,A) be locally strongly monotone with constants
a, locally Lipschitz continuous with constant 3, and g(-, ) be locally strongly mono-
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tone with constant 6 and locally Lipschitz continuous with constant o. If

Vo —4k(1 - k)?
pB? ’

1—k>0, a>28/k(1—k) and

then, for all z;,2, €9 and X € A, we have:

(3.2)

o
p——=| <
#

| F(z,8) = F(z9, ) || <01l 2, =2, I,

where

k: = /126 (3.3)

- 1-k

and

Proof: For all z;,2, € ¥, A € A, by (3.1) and by the triangular inequality, we get
| F(21,) = F(zs M) || < [ 2y =25 = (9(21,A) — 923, M) ||

+ [l 2y — 2y — p(A(z1,A) — Az, M) || -

(3.5)

Setting E = ||z —zy— (9(x1,A) — g(z4, ) || 2, since g(-,)) is strongly monotone
and Lipschitz continuous, it follows that:

E= |2y =2y || = 2og(21,)) = g(2, ), 21 = )

4 g1 — glap ) 112 < (1= 2640 [ 2y — 2, ]| o0
Similarly,
Il 2y =2 = (T (1) = T(2)) | < (1= 2pa + 42 5%) || &y — 25 || % (3.7)
From (3.5), (3.6) and (3.7), we obtain:
| N = PV || <(VI“25 507+ VI 0 d 5 )l e — 2l (39)

According to (3.6) and using the nonexpansiveness of the resolvent, we can write:

B ('1A) B (',A)
ey =2y || < ll2g =2 = (g(2y, M) = gz, M)+, 17y = 10 ey

Skllzy—zy|l + |l 2 — 215
thus, .
|2y =z, |l <zl =zl
which combined with (3.8), yields:
| F(21,A) = F(z M) || <012y — 24| -

Since 6 < 1 for p satisfying (3.2), it follows that the map z—F(z,]) is a contrac-
tion and has a fixed point z(}), the solution of the parametric Wiener-Hopf equations
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(2.4). ) O
Remark 3.1: Since Z is a solution of (2.4) for A = A, it is then easy to show that
Z is the unique fixed point in ¥ of the map F(-,A). In other words,

7 =2(0) = F(z(2),)). (3.9)

Using Lemma 3.1, we prove the continuity of the solution z()) (respectively, z()))
of (2.4) (respectively (2.3)) which is the main motivation of the next result.

Lemma 3.2: If the operators A(z, -) and g(-,)) are continuous (or Lipschitz con-

tinuous), then the functions z()) is continuous (or Lipschitz continuous) at A =X. If

S A)
in addition, the map /\-——>J# |6 Z is continuous (or Lz’pschz’tz__continuous), the

function z(X) is in turn continuous (or Lipschitz continuous) at A= X.
Proof: For A € A, using Lemma 3.1 and the triangular inequality, we have:
[2(0) =2Q) | = | F(z(A),2) = F(Z,2) || (3.10)
< NFEA),N)=FE NI + 1 FE,A) - FE, ) ||
<Oz =2 || + 1 FE, - FE M)l
On the other hand, from (3.1):
” F(Ea’\)_F(E’X) ” = ” g(i,/\)—g(i,/\)—;L(A(E,A)—A(E,X)) H . (3'11)
Combining (3.10) and (3.11), we obtain:
12 =% | <7 (| AGE N =A@ D) | + o,V -gE D)) (312)

from which the first part of the desired result follows.
Now, we have:

[2() =z || < [12(X) =2 = (g(z(A), ) = 9@, M) || + 1 9(z(32) = g(@,A) ||

<kllz) =z || + lg(z(A),A) = g(@, X) || + [ 9(Z,2) — 9@, M) ||

. B’g(’:’\) _ - B|g('rx)_ .
Since g(z(A)) =J, z(A) and g(z ) = g(z())) = J, Z, we can write:

- B, o(-,A) B o -,X)
l2) =2 || <27z =2 |+ 17,17 7 =0, 17 77
+||g(i,)\)—-g(i,j\)||).
This, combined with (3.12), yields:
Iz -2 Il < 117 (251 4@ D =A@ ) | + 22519z, 0) - 9 2 11

1 B 19(1’\)_ B 19(,X)_
+m”z}“| Z—Jul Z”,
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from which we obtain the required result. ]

Lemma 3.3: If the assumptions of Lemma 3.2 hold true, then there erists a neigh-
borhood X C A of X such that for all X € R, z()\) (respectively, z(A)) is the unique solu-
tion of (2.3) (respectively, (2.4)) in the interior of ¥.

Proof: Similar to Lemma 2.5 in Dafermos [5]. O

We now state and prove the main result of this paper.

Theorem 3.1: Let T be the solution of parametric variational inclusions (2.3) and
Z the solution of the parametric Wiener-Hopf equations (2.4) for X =X. Let A(-,))
and g(-,A) be locally strongly monotone and locally Lipschitz continuous operators on
9. If the operators A(ZT,-) and g(T, -) are continuous (or Lipschitz continuous) at
X=X, then there exists a neighborhood X C A of X such that for A €R, (2.4) has a
unique solution z()\) in the interior of ¥, 2(A\)=7%, and 2()) is continuous (or

A)

190N conti
Z 18 continuous

— B
Lipschitz continuous) at A = X. If in addition, the map )\—>J#

(or Lipschitz continuous) at A = X, then for A € R the parametric problem (2.3) has a
unique solution x()\) in the interior of ¥, z(\) =%, and x()) is continuous (or Lip-
schitz continuous) at A = X.

Proof: The proof of this theorem follows from Lemmas 3.1-3.3 and Remark 3.1.

Remark 3.2: It is better to impose assumptions on the operator B | 9(++A), which
would imply the continuity or the Lipschitz continuity of the map: )\—>Jf | o /\)E.
It is well known (Brézis [4]) that the graph convergence of the filtered sequence
{B | o) | M)} to B | e ,A) implies the pointwise convergence of

Big(-N) < B (- %)z
{7, z|AA}to J, for all p > 0 and for all z € X.

To have the Lipschitz continuity, we introduce a localization of the Hausdorff
metric and consider a pseudo-Lipschitz property introduced by Aubin [3].

Definition 3.1: A subset C()\)—2% is said to be pseudo-Lipschitz at (X, ) if there
exist a neighborhood W of X, a neighborhood & of Z, and a constant & > 0 such that:

COYNS CON)+E[A=X[b(0,1) VA XNEANW, (3.13)

with 6(0,1) denoting the closed unit ball of X.
Now, let C and D be two subsets of X and z € C N D. For any neighborhood & of
z, we define the localized Hausdorff metric between C' and D with respect to & by:

Hausq(C, D) = max(e(C NS, D);e(DNS,C)),
where e(C, D) is the excess of C on D, and is defined by:

e(C, D) = sup dist(z, D), with dist(z, D) =inf ||z —y|.
zeC yeD

In view of Definition 3.1, we easily conclude that the pseudo-Lipschitz of C()) at
(A,Z) can be rewritten as:

Hausg(C(A),C(X)) < €[ A=X| VA XN eANW.

The next results contains a fundamental estimate from which we will derive
Lipschitz properties of solutions.



230 ABDELLATIF MOUDAFI and MUHAMMAD ASLAM NOOR

Proposition 3.1: Let z € 9. The following estimate holds true:

B o(+:A) B g(+\X)
|9 |9
I, z—J,

z|| < (2+ p)Hausg(B | o(+,2), B 4(+, 1)),
with § = max(l,u)ﬁx 9, and B | 4 is identified by ils graph.
Proof: Suppose that Hausg(b | o), |19( ,A) < n, for some 7 > 0.
WA
Because (B o1 A)u7 € B (- /\)( ol )z) and by the definition of the
Yosida appr0x1mate, we get

(Jul( z(Bw) z)GBlﬂ( )\)ﬂmax( 2)19><19

By definition of the localized Hausdorff metric, there exists (2',y’) € Bw(-,j\)
such that:

’ B|19(.’)‘) '
Il2'=J, z|l <nand [|y' = (B 4(-,M)uz |l <.

|19(» )

Set Z,= = 2' + py', which implies 2’ = =J, 2 thus,

X B o(-,A
)zM—J”“’( )

B -
19 b
7, 2|l <7

and

By Bgld)
[.t

Ig( 1 ) Blg( A
7, -J, || <, z |l

e '\) By (-, X)
B z, Ju‘

+ 11, zl <n+ 2, -2l

On the other hand,

Bl,_g("k)

lzy=zll = ll2'—z+m/ || = 11—, 24 u(y = (B (- M) ) |l

<1+ pm.

Hence, B A B X
|,9(', ) B Ig(': )
I, z=J, z|| < (24 p)n,

from which the result follows by letting 7 tend to Hausg(B ,A), B | S5 )).
Due to Lemma 3.2 and Proposition 3.1, we obtain the fohowmg result:
Proposition 3.2: If the operators A(.z', -) is Lipschitz continuous with constant 7,
9(T, +) is Lipschitz continuous with constant 7, and there exists § € B(T) such that
B is pseudo-Lipschitz at (X,(Z,7)); then:

) o) ~2 | < plguy +7) A=K |

e -1 < g (E22TE L o e a3,
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Remark 3.3: In the special case where B(-,A): = N, the normal cone to a closed
convex set Ky and g(-,A) =1, (2.3) reduces to A
find zy € X;(A(zy,A),y—xy) >0forall ye K,

and we recover the main result of Noor [12]. Now suppose C) is defined by the
following system of linear equalities and inequalities

KX) ={z €R" cz =\, Dz < A}

where A = (A}, A;) € RP xR, and C,D are pxn and ¢ x n real matrices, then, from a
result in Yen [22], there exists & > 0 such that

KN)YCKA)+k|A=X]b(0,1) VAN eA={ceR";K()\)#0}.
If K(X) is given by the following formula
D(’\) = {:L' ER" I zeC, gi(x’/\) <0, = 1,~-oap,9,‘(iﬂ,/\) =0,i= p+1a-~"‘I}v

where C' is a closed subset and g;; X xA—R, i=1,...,¢ are locally Lipschitz

n
functions. It was proved in [3] that the set valued map K:A—»?R is pseudo-
Lipschitz at (Z,A) if a certain qualification condition holds true. More precisely,
assume that the following condition is satisfied

0= (6;,...0,) ERI
6, >0and 0,g,F, ) =0,i=1,.,p p=0=0,

0€ 3 7 10,m(09,(z, X))+ N ()

where N (Z ) is the Clarke normal cone to C at z,0g,(Z ,A) is the Clarke generalized
gradient of g at (Z,) ) and
7,(0g,(,))) = {z" e R™:3IN* € R", (2", X") € 0g,(Z,7 )},

then K is pseudo-Lipschitz at (Z A ).
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