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We consider nonlinear nonconvex evolution inclusions driven by time-vary-
ing subdifferentials 0(t,x) without assuming that (t,.) is of compact
type. We show the existence of extremal solutions and then we prove a

strong relaxation theorem. Moreover,r we show that under a Lipschitz con-

dition on the orientor field, the solution set of the nonconvex problem is
path-connected in C(T,H). These results are applied to nonlinear feed-
back control systems to derive nonlinear infinite dimensional versions of
the "bang-bang principle." The abstract results are illustrated by two
examples of nonlinear parabolic problems and an example of a differential
variational inequality.
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1. Introduction

Recently in a series of papers (see Papageorgiou [17-19]), the third author investigat-
ed evolution inclusions of the subdifferential type and proved existence theorems,
determined the structure of the solution set and studied problems depending on a

parameter. Crucial in these works was the assumption that the function (t,x) in-
volved in the subdifferential is of compact type as a function of x. In this paper we

remove this hypothesis and instead we impose a compactness-type condition on the
multivalued term F(t,x). We focus our attention to the nonconvex problem and in
particular on the existence and density of the set of extremal trajectories. Also for
the nonconvex problem, we show that the solution set is path-connected. We present
applications to nonlinear feedback control systems.
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So let T [0, b] and H a separable Hilbert space. The problem under considera-
tion is the following:

{ -(t)O(t,x(t))+F(t,x(t)) a.e. onT
(1)

In conjuction with (1) we also consider the following multivalued Cauchy pro-
blem, which is important in the study of control systems in connection with the
"bang-bang principle""

&(t) O(t, x(t)) + extF(t, x(t)) a.e. on T (.
(0)- o

Here extF(t,x) denotes the extreme points of the orientor field F(t,x). The solu-
tions of (2) are called "extremal solutions" (or "extremal trajectories"). Their study
was initiated by DeBlasi-Pianigiani [8], who considered differential inclusions with no

subdifferential term present. That formulation precludes the applicability of their
work to partial differential equations with multivalued terms. Their proof is based
on an ingenious application of the Baire category theorem. Their method was forma-
lized in a "nonconvex" continuous selection theorem due to Tolstonogov (see Hu-
Papageorgiou [10], Theorem II.8.31, p. 260). We use this result to show the existence
of extremal solutions and then to prove that the solution set of (2) is a dense Gs-set
in the solution set of (1), in the space C(T,H). These results are then applied to non-
linear control systems driven by evolution equations with a priori feedback. For such
systems we obtain nonlinear versions of the celebrated "bang-bang principle."
Finally we illustrate our abstract results with two examples of parabolic boundary
value problems and an example of a "differential variational inequality" in RN.

Problems related to (1) were studied by Attouch-Damlamian [1], Watanabe [24],
Kenmochi [11], Yamada [25], Yotsutani [26] and Kubo [13]. hl (except Attouch-
Damlamian), assumed F(t,x) to be independent of x E H and single-valued. In
Attouch-Damlamian the subdifferential term is independent of t E T and the authors
deal only with the convex problem (see Theorem 4.1 where (. is of compact-type
and Theorem 4.6 where (. )is not necessarily of compact-type but F(t,x)is single-
valued and weakly continuous in x).

2. Mathematical Preliminaries

In this section we fix our notation and recall some basic definitions and facts from
multivalued analysis and convex analysis that we will need in the sequel. For details
we refer to Hu-Papageorgiou [10].

Let X be a separable Banach space. We will be using the following notations:

PI(c)(X)- {A C_ X: A nonempty, closed (and convex)}

P(w)k(c)(X)- {A C_ X:A nonempty, (weakly-) compact (and convex)}.
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Let (,E,#) be a finite measure space. A multifunction F:-P (X) is said to be
measurable, if for all x E X, the function wd(x,F(w)) inf{ II x ]-- z [[’z E F(w)} is
measurable. Note that if F(. )is measurable, then GrF E B(X) with B(X) being
the Borel -field of X (graph measurability of F(. )), while the converse is true if E is
-complete. If 1 p , by S we denote the set of selectors of F(. that belong
to the Lebesgue-Bochner space LP(,X) i.e., S {f LP(,X):f(w) F(w)-
a.e.}. For a graph measurable multifunction F:2 {O}, S is nonempty if and
only if winf{ [[ z l[ "z e F(w)} e LP(w). Also the set S is decomposable, i.e. for
every triple (f,g,A) SxSxE, we have XAf + XAg S.

On PI(X) we can define a generalized metric, known in the literature as the
"Hausdorff metric," by setting for A,C PI(X),

h(A,C) max{sup[d(a,C)’a A],sup[d(c,A):c C]}.

A multifunction F" X--PI(X is said to be "h-continuous" (Hausdorff continuous), if
it is continuous from X into the metric space (Pl(X),h). Note that (Pl(X), h) is
complete, while_(Pk(X), h) is separable.

Let :XR- Rt2 { + c}. We say that (.)is proper if it is not identically
/ cx. The family of all functions "XR which are proper, convex and lower semi-

continuous, is denoted by Fo(X). By dome we denote the effective domain of (. ),
i.e., dome- {x G X:(x)< + c}. The subdifferential of (.) at x G X is the set

c9(x) {x* E X*" (x*, y x)

_
(y) (x) for all y dome}. In this direction by

(.,.), we denote the duality brackets for the pair (X,X*). If (. )is Gateaux differ-
entiable at x, then c9(x)- {’(x)}. We say that Fo(X is of "compact-type" if
for all > 0, the lower level set {x X" (x)+ II x II 2 _< } is compact.

For our problem T- [0, b] and H is a separable Hilbert space. The following
hypotheses concerning (t,x) will be valid throughout this paper and originally were

formulated by Yotsutani [26] (see also Kenmochi [11] and Yamada [25] for a little
more restricted versions). In what follows for A C_ R by AI we denote the Lebesgue
measure of A.

It(C): : T H-R R t { + c} is a function such that
(i) for every t e T\N, NI O, (t,. is proper, convex and lower semicon-

tinuous (i.e., (t,. E Fo(X));
(ii) for every positive integer r, there exist a constant Kr > 0, an absolutely

continuous function gr’TR with [Ir L3(T,R) and a function of
bounded variation hr:TR such that if T\N, x dome(t,. with

II x II - r and s It, b]\N, then there exists " E dome(s,. satisfying

]1 - x II -< gr(s)- gr(t) l((t,x) + Kr)

and (s, )

_
(t, x) + hr(s)- hr(t) l((t, x) + Kr)a

1 ifce[1/2,1]where c [0, 1] and/ 2 if c [0, 1/2] or/ 1-
Remark: Hypothesis H()(ii) allows the effective domain dome(t, .) of (t,.)

to vary in a regular way with respect to T, without excluding the possibility that

dom(t,.)Ndom(s,.) 0 if s. This situation arises in the study of obstacle
problems.

By a solution of problem (1) we mean a function x C(T,H) such that x(.)is
absolutely continuous on any closed subinterval of (0, b) and satisfies"
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(a) x(t) E dome(t,. a.e. on T;
(b) there exists f E S(. ,x(. )) such that -&(t) O(t,x(t))+ f(t) a.e. on T;
(c) (0)- 0.
By Sc(xo) (resp. Se(xo) we denote the solution set of problem (1) (resp. of (2)).

3. Extremal Solutions

In this section we prove a theorem on the existence of extremal solutions (i.e., on the
nonemptiness of Se(xo) ). For this we need the following hypothesis on the multivalu-
ed term F(t,x).

H(F)I" F" T H---Pwkc(H is a multifunction such that
(i) for every z H, t--F(t,x) is measurable;
(ii) for very t T, x---F(t, x) is h-continuous and for every B C H bounded,

we have F(t,B)e Pk(H);
(iii) for almost all t E T and all x H, IF(t,z) sup{ 1] v I]’v r(t,z)) <_

(t) / c(t)II II with a, c e L2(T).
In the next proof we use the following easy fact about the weak* convergence in

the dual X* of a Banach space X. Namely, if .w . .,xnx in X then for all KCX
compact we have that (x, u)-(x*,u) uniformly in u K, i.e. sup{ (x-x*, u)]"
u K}0 as n---,cx.

Theorem 1" If hypotheses H(), H(F)I hold and xo dome(O,.), then Se(Xo) is
nonempty.

Proof: First we derive an a priori bound for the elements in Sc(x0)C_ C(T,H).
To this end, let y C(T, H) be the unique strong solution of the Cauchy problem

-(t) 0(t, (t)) a.e. on TL
(0)- x0

(3)

(see Yotsutani [26]). Let x Sc(xo). Then -5:(t) O(t,x(t))+ f(t)a.e, on T,
x(0) x0 with f E S(.,x(.)). Exploiting the monotonicity of the subdifferential
operator, we have

(- it(t)+ 9(t), y(t)- x(t))

_
(f(t), y(t)- x(t)) a.e. on T

1/2 II y(t) x(t) II 2

_
(f(t), y(t)- x(t)) a.e. on T

21- II y(t)- (t) II 2 j (f(s), y(s)- x(s))ds
0

< / II f(s)II 11 y()- ()II d.

0

Invoking Lemma A.5, p. 157 of Brezis [5] and using hypotheses H(F)l(iii we
h&ve
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II u(t)- (t)II

_
/ II S()II d

_
]’ (()+ c()II ())d

0 0

II (t)II II II oo / / (() / c()II x()II )ds for n T.
0

By Gronwall’s inequality, we deduce that there exists M1 > 0 such that for all
x Sc(Xo) and all t T we have I] x(t)II M1. Thus without any loss of generality
we may assume that for almost all t T and all x H, F(t,x) (t), with
(t)- a(t)+ UlC(t L2(T) (otherwise we replace F(t,x) by F(t, PMl(X)) where

PMl(. is the Ml-radical retraction on H; this substitution does not change the

solution set Sc(Xo) ). Let BM {z H: ]]z /1} and set V(t)= F(t,BM )_
From hypothesis H(F)I(ii weknow that V(t) Pk(H) for every t T. Also
{xm}m > is dense in BM, since by hypothesis H(F)(ii) F(t .) is h-continuous,

1

we hve for he suppor function, (h, V(t)) sup[(h, v): v V()], h H:

(h, V(t)) su (h, r(t, .)),
m>l

But for each rn >_ 1, tF(t, Xm) is measurable (see hypothesis H(F)I(i)) and so

tr(h,F(t, Xm) is measurable for every h E H (see Proposition II.2.33, p. 164 of Hu-
Papageorgiou [10]). Therefore t-(h,V(t))is measurable for every h E H and since

tY(t) is Pk(H)-valued, from Proposition II.2.39, p. 166 of Hu-Papageorgiou [10] we

infer that t--,Y(t)is measurable from T into Pk(H).
Let p:L2(T,H)C(T,H) be the map which to each g L2(T,H) assigns the

unique solution of the Cauchy problem

&(t) O(t, x(t)) + g(t) a.e. on T[ (4)
(0) o

(see Yotsutani [26]). It is easy to verify that p(.)is nonexpansive (hence
continuous). Let g- p(Sz). We claim that It" C_ C(T,H)is compact. To this end,
first we show that K is equicontinuous and then using the equicontinuity, we show
that every sequence in K has a C(T, H)-convergent subsequence.

First we show that equicontinuity of K. To this end, let x G K and let t < t’.
We have 1

II (t’)- (t)II f II e()II X[t,t’](s)as II e()II.
0 0

Since S is bounded in L2(T,H), from Lemma 6.11 of Yotsutani [26] we infer that
there exists M2>0 such that for all xGK, II &II2-M2" Hence for all xEK we

have

II (t’)- x(t) II _< M2(t’- t)2

=K is equicontinuous.
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Next, let {xn}n < 1 -- K. Then xn p(vn) with vu e S, n >_ 1. Since

II Vn(t)[[ <- (t) a.e. o T with E L2(T), by passing to a subsequence if necessary,
we may assume that VnV in L2(T,H), vest. Let x-p(Y) eg and zn(.)-
(xn-x)(.). Then for all nl and all tGT, [[zu(t) 2g -M3 where
g[ sup{ ] x ] : x G K} < , since K is bounded. Therefore for all n 1 and all
t T, zn(t BM-- {y H: l Y M3} e Pwkc(H). Moreover, since K is equi-
continuous, {zn}n I is equicontinuous, afortiori then weakly equicontinuous. So
invoking the Arzelg-Ascoli theorem, we deduce that {zn}n > 1 is relatively compact in
C(T, BwM3 where BwM3 denotes the closed ball BM3 furnied with the weak topolo-

gy. Recall that B is compact metrizable. So Theorem 8.2(3), pp. 269-270 of
Dugundji [9], tells u that {zn}n >1 C(T, Hw)is relatively sequentially compact
(here by Hw we denote the Hilberg space H equipped with the weak topology). So
we may assume that ZnZ C(T, Hw) as n. Exploiting the monotonicity of the
subdifferential operator as before, we have

II z (t)II 2 II  (t)II 2 /
0

Note that z e C(T, Hw) and so z e L(T, H) C_ L2(T,H). Hence f o(Vn(S) v(s),
z(s))ds--+O as n-+oo. Also note that In(s)- f(s) Y(s)- Y(s)- W(s) Pk(H) for
all s T. So sup[(Zn(S z(s), w)’w W(s)]-+0 as n-+oo and by the dominated con-

vergence theorem, we have that f to(Vn(S)- v(s),Zn(S)- z(s))ds-+O as n+oo. Since
we already know that {Xn}n > 1 C C(T,H) is equicontinuous, from the hrzela-hscoli
theorem, we infer that {Xn-}n>l is relatively compact in C(T,H). Because
Xn(t)--+x(t in H for all T, w-have Xn-X in C(T, H) and x K. Thus we have
proved the compactness of the set K C_ C(T, H). Let K- convK. Mazur’s theorem
tells us that It" Pkc(C(T,H)). Observe that Sc(Xo) C_ It’.

Let R: ,---Pwkc(LI(T,H)) be defined by R(y)- S)(.,u(.)). Apply Theorem
1II.8.31, p. 260, of Hu-Papageorgiou [1] to produce a continuous map r: Ii--+Lw(T,H

such that r(y) extR(y) for all y E K. By L1 (T H) we denote the Lebesgue-Boch-W

net up_ace e..quipped with the weak norm I1 g II w sup[ II f tog(s)ds 1]" t T]. Let u
p o r" K-oK. Using the lemma, p. 327 of Papageorgiou [19], we have that u is contin-
uous. So we can apply Schauder’s fixed point theorem to obtain x K such that
x p(r(x)). Since r(x) extR(x) extS}(.,x(.)) extF(.,x(.))’ we conclude that
x S(Xo). Q.E.D.
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4. Strong Relaxation Theorem

In this section we prove a strong relaxation theorem, which says that the solution set

Se(Xo) of problem (2) is dense in the solution set Sc(Xo) of problem (1) for the
C(T,H)-norm topology. In other words, convexification of the orientor field
(t, x)-.extF(t, x) does not add too many solutions. This result is of significance in
control theory, in connection with the bang-bang principle. The interpretation of the
result there is that it is possible to have essentially (i.e., within closure) the same
attainable set by economizing on the set of controls. So we can have practically the
same results with controls that are much simpler to build. To do this, we need the
following stronger conditions on the multifunction t(t, x)-.F(t, x).

It(F)2: F: T x H--Pwkc(H is a multifunction such that
(i) for every x e H, tF(t,x) is measurable;
(ii) for almost all t

with k(.
(iii) for all t e T and all B C_ H bounded, we have that F(t,B) is compact;
(iv) for almost all tT and all xH, IF(t,x) -sup{llv[l’vCF(t,x)}<_

a(t) + c(t)I[ x l] with a, c e L2(T).
For this, let {xn}n > 1 be a sequence of points in B1 which is dense in the dual

closed unit ball B {x-’* X*" [I x* [[ <_ 1} for the Mackey topology m(X*,X). Let

7F" T x H x H---R R t_J { + oc} be defined by

, v)2 }(Xn’ if v F(t x)
7F(t,x, v)

E n

_
1 2

+ oc otherwise

Let A..ff(H)- {the set of all continuous affine functions a: H-R}.
H H--,R R U { + oo} be defined by

Let F: T x

F(t,x,v)- inf{a(v):a G Aff(H) and a(z) >_ 7F(t,x,z) for all z F(t,x)}.

As always, inf0--oc. The "Choquet function"
{- oc} corresponding to F(t,x)is defined by

F:TxHxHR RU

The next lemma lists the basic properties of this function and can be found in
Hu-Papageorgiou [10] (Proposition II.4.1 and Theorem II.4.2, p. 190).

Lemma 1" If hypothesis H(F)2 holds, then
(a)
(b)
(c)

(d)

(e)
Now we are ready to prove the strong relaxation theorem
Theorem 2: If hypotheses H(), H(F)2 hold and xo dome(O,

dense, G6-subset of Sc(Xo) in C(T,H).

(t, x, v)--F(t x, v) is measurable;
for every T, (x, v)--F(t,x v) is upper semicontinuous;
for every T, x H, VF(t,x,v is concave and strictly concave on

r(t,x);
for almost all t T and all (x, v) arF(t,. ), 0 _< F(t,x, v) <_ 4a(t)2 +
4c(t)2 11 x II 2;
F(t, x, v) 0 if and only if v extF(t, x).
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Proof: Let x e Sc(x0). Then by definition, x p(f) with f e S(.. ,x(. )). Let
K E Pkc(C(T,//)) be as in the proof of Theorem 1. For e > 0 and y E K, we define

Ae(t) {h F(t,y(t))" II f(t)- h II < + d(f(t),F(t,y(t)))}.

From Proposition II.7.8, p. 229 of Hu-Papageorgiou [10], we know that (t, x)F(t, x)
is jointly measurable. Hence tF(t,y(t))is measurable and then so is td(f(t),
F(t,y(t))). Therefore we infer that

GrA (T) B(H)

where is the Lebesgue a-field of T and B(H) the Borel r-field of H. Thus we can
apply the Yankov-von Neumann-Aumann selection theorem (see Hu-Papageorgiou
[10], Theorem II.2.14, p. 158) and obtain h:T-H, a measurable map such that

h(t) Ae(t) a.e. on T. Let Fe: ’2LI(T’H) be defined by

r(y) {h s(,, (, ))= II f(t)- h(t)II < + d(f(t), F(t, y(t)) a.e. on T}.

We have just seen that F(y) # 0 for every y K. Moreover, from Lemma II.8.3,
p. 239 of nu-Papageorgiou [10], we know that y-Fe(y) is a lower semicontinuous
(lsc) multifunction with decomposable values. Hence so is yF(y). Apply Theorem
II.8.7, p. 245 of [10] to obtain u: ;LI(T,H), a continuous map such that u(y)
Fe(y) for all y K. Hence we have

II f(t)- u(y)(t) II < + d(f(t),F(t, y(t))) <_ ck(t) II (t)- y(t) II a.e. on T.

Now apply Theorem II.8.31, p. 260 of [10] to obtain v’[---Lw(T,H), a contin-
uous map such that v(y) extS ". (. )) SlextF(., (. ))and II (y)- (y)II <
for all y R (recall that Lto(T,H) denotes the Lebesgue-Bochner space LI(T,H) fur-
nished with the weak norm II II w defined by II g II w sup[ II f g(s)d II’t T];
see also the proof of Theorem 1).

Let n- and un-u vn-re, n>l be as above. As in the proof of
n n

Theorem 1, via Schauder’s fixed point theorem, we can find xn K such that xn
(p o v,)(x,), n > 1. Since K

_
C(T,H) is compact, we may assume that xz in

C(T, H) as n-. We have

(- ien(t + x(t), x(t) x,(t)) < (Vn(Xn)(t) f(t), x(t)- x,(t)) a.e. on T

I] x(t)- Xn(t II 2 < (vn(Xn)(t) f(t),x(t)- x(t)) a.e. on T

2 < / (vn(xn)(s)_ f(s), x(s)- xn(s))ds
0
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From the lemma, p. 327, of Papageorgiou [19], we have that vn(x)- u,(Xn)O
in L2(T, H) as noe. So we can say that

(Vn(Xn)(S) Un(Xn)(S), x(s) Xn(S))ds---O as n--+.

Also we have

(u,(x,)(s) f(s), x(s)- x(s))ds

0

<f(e.
0

Thus in the limit as nc, we obtain

1 2II z(t) II < [[ .(s)- z(s)[[ :ds
0

=x- z (by Gronwall’s lemma).

Hence we have x,.--x in C(T,H)and clearly, xn E Se(Xo), n > 1. So we have
proved that Sc(xO)C_ S(xo) the closure taken in C(T,H). But Sc(Xo)is closed (in
fact, compact)in C(T,H). Thus Sc(xO)= S(Xo).

Now let En {x Sc(XO): fboF(t,x(t),f(t))dt < n where f S2F( z()), x

p(f)}. By virtue of Lemma 2 and Theorem 2.1 of alder [2], we see tlt "(x0) C_
NEn. On the other hand, if x E we have 0 < fboF(t,x(t),f(t))dt < n

r for all
n> 1, hence fboF(t,x(t),f(t))dt--O. Because F>0, we infer that SF(t,x(t),
f(t))- 0 a.e. on T which implies that f(t) extF(t,x(t)) a.e. on T (see Lemma
2(e)). So indeed S(Xo)is a dense G-subset of Sc(xo). Q.E.D.

5. Topological Structure of the Solution Set

In this section we examine the topological structure of the solution set of the
nonconvex problem. In previous works we investigated the structure of the solution
set of the convex problem (see Papageorgiou [16, 17]). Here, for the nonconvex

problem, we show that the solution set is path-connected. It will be compact in

C(T,H) if and only if the orientor field F(t,x) is convex-valued (see Papageorgiou
[17]). Note that our conclusion is stronger than that of the usual Kneser-type
theorems which assert that the solution set is connected. Recall that a path-
connected set is automatically connected but the converse is not necessarily true (see
Dugundji [9], Example 4, p. 115). However, in order to achieve this stronger
conclusion, we need to strengthen our continuity hypothesis on F(t, .) to h-
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Lipschitzness. Recently, related results for single-valued semilinear parabolic pro-
blems were established by Ballotti [3] and Kikuchi [12].

tI(F)3: F: T x HPI(H is a multifunction such that
(i) for every x H, t--F(t,x) is measurable;
(ii) for almost all t T and all x,y H, h(F(t,x),F(t,y)) <_ k(t) I[ x- y II

with k LI(T);
(iii) for almost all t T and all x H, [F(,x) <_ a(t)+ c(t)[I x II with

a, c c L2(T).
Let S(xo) C_ C(T,H) denote the solution set of (1) when the orientor field E(t,x)

satisfies the above hypotheses. We shall assume that S(Xo) 5 O. With an extra com-
pactness-type condition either on (t,. (see Papageorgiou [16, 17]) or on E(t,. (see
hypothesis H(F)I(ii)) we know that we can have that S(xo)is nonempty.

Theorem 3: If hypotheses H(), H(F)3 hold and x0 E dome(O,.) holds, then
S(Xo) is a path-connected subset of C(T,H).

Proof: As in the proof of Theorem 1, through a priori estimation, we know that
without any loss of generality we may assume that for almost all t E T and all x
H, we have F(t,x) <_ (t), with e L2(T). Let V- {u e LI(T,H)" II u(t) II <-
(t) a.e. on T}. Consider the multifunction R’V--+PI(LI(T,H))defined by R(u)-

Consider the following equivalent norm on the Lebesgue-BochnerS}(. ,()(. )).
space LI(T, H):

Ihl
b

exp(- LO(t)) II h(t) II dt,
0

with L > 1 and O(t)- f tok(s)ds e T. In what follows, by dl(. .) we denote the
distance function corresponding to this new norm and by hi(. .) the Hausdorff
metric on PI(LI(T, II)) which is generated by I" I. We will show that u---,R(u)is
an hvcontraction with constant < 1. To this end, let uu V and let h R(u1).
We have

dl(hl,R(u2) inf{[h h2 h2 R(u2)}

inf exp(- LO(t))II hi(t)- h2(T)II dt:h2 R(u2))
0

b

/ exp(- L0(t))inf[ II hi(t) v II .v F(t,p(u2)(t)]dt
0

(see Hu-Papageorgiou [10], Theorem 11.3.24, p. 183)

b

/ exp(- LO(t))d(h
0

l(t),F(t, p(u2)(t)))dt.

Hence we have:
sup[d (h1,/i(u2))" h G/(u1)]
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=sup exp(-LO(t)d(hl(t),F(t,p(u2)(t)))dt:h1

0

b

/ exp( LO(t))sup[d(v,F(t, p(u2)(t))’v F(t, P(Ul)(t)))]dt
o

(again Hu-Papageorgiou [10], Theorem II.3.24, p. 183)
b

f exp( LO(t))h*(F(t, p(ul)(t)),F(t p(u2)(t)))dt. (5)
o

Interchanging the roles of Ul, u2 we also have

sup[dl(h2, R(Ul)): h2
b

/ exp( LO(t))h*(F(t, p(u2)(t)) F(t, p(t1)(t)))dt.
o

From (5)and (6), we obtain that

b

hl(R(Ul),R(u2) <_ / exp(- LO(t))h(F(t, P(Ul)(t)),F(t P(U2)))dt
0

b

_< / exp(- LO(t))k(t)II P(ttl)(t)- p(tt2)(t ]1 dt
0

b

_< / exp(- LO(t))k(t)/ II ttl(8)- it2(8)I[ dsdt (see the proof of Theorem 1)
0 0

L II /1(s) Z2(S)II d(exp(- LO(t)))
0 0

b

_< -/ exp(- LO(t))II Ul(t)- u2(t)I[ dt (by integration by parts)
0

_1

Set o-j-= {u V:u R(u)}. From Theorem V.I.ll, p. 524 of Hu-Papageorgiou
[10], we know that T : q). Also the theorem of Bressan-Cellina-Fryszkoski [4],
implies that ff is an absolute retract of V. Note that V, being a closed, convex

subset of LI(T,H) is by Dugundji’s extension theorem (see Dugundji [9], Theorem
6.1., p.188 or Hu-Papageorgiou [10], Theorem 1.2.88, p. 70) an absolute retract of
LI(T,H). So V is an absolute retract in LI(T,H) (see Kuratowski [14], Theorem 6,
p. 341), which means that Y is path-connected in LI(T,H) (see Kuratowski [14], p.
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339). Note that S(Xo)= p(g’). Recalling that the solution map p(.)is continuous
and that the continuous image of a path-connected set is path-connected (see
Dugundji [9], p. 115), we conclude that S(Xo)is path-connected in C(T,H). Q.E.D.

Remark: If hypotheses H(F)2 hold, then S(Xo) is compact and connected ifi
C(T,H), thus a continuum in C(T,H). Moreover, arguing as in Papageorgiou-
Shahzad [22], we can show that in fact, S(Xo)is a Rh-set in C(T,H) (i.e., a

decreasing sequence of compact absolute retracts). Recall that an Rh-set is acyclic
and connected, but not necessarily path-connected (consider the topologists sine
curve; see Dugundji [9], p. 115).

6. Control Systems

In this section we consider infinite dimensional control systems with a prior feedback
and we use our results on subdifferential evolution inclusions to obtain nonlinear ver-

sions of the bang-bang principle and investigate the properties of the reachable sets.
So consider the following nonlinear feedback control system:

it(t) c9(t, x(t)) + g(t, x(t)) + B(t)u(t) a.e. on T [.
x(O) Xo, u(t) U(t,x(t)) a.e. on T

In conjunction with (5), we also consider the system, which has an admissible
controls the "bang-bang" controls. More precisely, we consider the following system:

&(t) c9(t, x(t))+ g(t, x(t))+ B(t)u(t) a.e. on T (.
x(O) Xo, u(t) E extU(t,x(t)) a.e. on T

We start by showing that system (8) has trajectories (solutions), which we call
"extremal solutions" and as before denote them by Se(xo) C_ C(T,H). The set of tra-
jectories of (7) is denoted by S(xo)C_ C(T,H).

In what follows, Y is a separable Banach space and models the control space.
Our hypotheses on the data are the following:

tI(g): g: T H-H is a multifunction such that
(i) for every x e H, t-g(t,x) is measurable;
(ii) for every t T, x-g(t,x) is completely continuous;
(iii) for almost all tT and all xU, ][g(t,x)[[ _a(t)+c(t)[[x[I with

a, c L2(T).
If(B): For every e T, B(T)e (Y,H), is compact, for all u Y, t-B(t)u is

measurable and ]1B(t)II 2. < M a.e. on T, with I1" II denoting the operator norm
on the Banach space (Y,//.

It(U): U: T H---,Pwkc(H is a multifunction such that
(i) for every x H, t-U(t,x) is measurable;
(ii) for every T, xU(t,x) is h-continuous;
(iii) for almost all tET and all xH, IU(t,x) _al(t)+cl(t)[Ixll with

a1, C e L2(T).
Proposition 1: If hypotheses H(), H(g), H(B), H(U) hold and xo dome(O,. ),

then Se(Xo) C C(T, H) is nonempty.
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Proof: Let F:T x H---,Pwkc(H be defined by F(t,x)- g(t,x)+ B(t)U(t,x). It is
easy to see that t-F(t,x) is measurable. Also for every t E T and all x,y H, we

have

h(F(t, x), F(t, y) <_ II g(t, x) g(t, y) [I + h(B(t)U(t, x), B(t)U(t, y))

<- II g(t, x) g(t, y)II + Mh(U(t, x), U(t, u))

x--,F(t,x) is h-continuous.

Moreover, hypotheses H(g)(ii)and H(B)imply that for all B C_ H bounded and
all t T, F(t,B) Pk(H), while hypotheses H(g)(iii) and H(U)(iii) tell us that for
almost tT and all xH, IF(t,x) <_(t)+F(t)llxll with ,5"EL2(T). A
straightforward application of the Yanikov-von Neumann-Aumann selection theorem
shows that (7) is equivalent to the following evolution inclusion (control free or

deparametrized system)"

2(t) O(t,x(t)) + F(t,x(t)) a.e. on T(.
(0)-

Finally note that

(9)

extF(t,x(t)) g(t,x(t)) + extB(t)U(t,x(t)) C_ g(t,x(t)) + B(t)extU(t,x(t)).

So an application of Theorem 1 gives us the nonemptiness of Se(xo). Q.E.D.
In fact, the above proposition remains valid if Y is assumed to be the dual of a

separable Banach space; i.e., Y V* with V being a separable Banach space. In this
case, our hypotheses on the control constraining multifunction are the following:

tI(U)I" U:H-2Y\{O} is an h-continuous multifunction with w*-compact and
Convex wluts e H, _< II x II, > 0.

Then with minor changes in the proof of Proposition 1, we obtain the following
result:

Proposition 2: If hypotheses H(), H(g), H(B), H(U)I hold and xo dome(O,. ),
then Se(xo) C_ C(T,H) is nonempty.

If we strengthen our hypotheses on the data, we can have nonlinear versions of
the "bang-bang principle." The stronger hypotheses needed are the following:

l](g)l" g" T x HH is a map such that
(i) for every x e H, t-g(t,x) is measurable;
(ii) for almost all tT and all x, yEU, IIg(t,x)-g(t,Y)ll <-kl(t)]lx-Yll

with k1 LI(T);
(iii) for almost all tT and all xU, IIg(t,x) l[ <-a(t)+c(t)llxl] with

a, c L2(T).
If the control space Y is a separable Banach space, then our hypotheses on U

have the following form:
II(U)2: U: T HPwkc(Y)is a multifunction such that
(i) for every x H, tU(t,x) is measurable;
(ii) for almost all t T and all x,y H, h(U(t,x),U(t,y))<_ k2(t [[ x-y I]

with k2 L2(T);
(iii) for almost all tT and all xEH, IU(t,x) <_al(t)+c(t)][x[[ with
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O1, C1 ( L2(T).
If the control space Y is the dual of a separable Banach space V (i.e., Y V*),

then the hypotheses on U take the following form:
tI(U)3: U: T--,2Y\{q)} is a multifunction with w*-compact and convex values, for

all x, y E H, h(U(x), U(y)) _< k2 II x- y II, k2 > 0 and for all x H U(x) <_ c II x II,
c>0.

In what follows by R(t) (rasp. Re(T)) we denote the reachable set at time t e T
of (7) (rasp. (8)); i.e., R(t)= {x(t): x e S(x0)} and Re(t {x(t): x Se(x0)}, t T.

Using Theorem 2, we obtain the following nonlinear "bang-bang principle":
Proposition 3: /f hypotheses H(), H(g)l H(B), H(U)2 hold and xo dome(O,. ),

then S(Xo) e(Xo)C(T’H) and for all t T, R(t) Re(t)
H

Pk(H).
We can also treat the case when the feedback control constraint multifunction

need not have convex values. In this case, Y is a separable Banach space and the
hypotheses on U(t,x) are the following:

II(U)4: U:T H-Pwk(Y is a multifunction satisfying hypotheses H(U)3(i), (ii)
and (iii).

Using Theorem 3, we obtain the following result"
Proposition 4: /f hypotheses H(), H(g), n(B), H(U)4 hold and xo dome(O,. ),

then S(Xo) is path-connected in C(T,H) and for every t T, R(t) is path-connected
in H.

Finally, note that if rl:C(T,H)R is a continuous cost functional and we
consider the following optimization problem:

inf{r/(x)" x E S(Xo) ) m (10)

then (10) has a solution x* and given any e > 0, we can find an extremal trajectory

x Se(Xo) which is e-optimal, i.e., m _< (x:) _< m + e.

7. Examples

In what follows, Z C_ RN is a bounded domain with a Cl-boundary r.
(1) First we consider the following nonlinear control system:

0x div(a(t,z)]1Dx II P-2Dx)+ fl(x(z))- f zk(t,z z’,x(t z’))dz’Ot

+ zb( , z, on T Z

x(O,z) Xo(Z a.e. on Z, x [Tx r 0, u(.,
O <_ u(t, z) _< 1 a.e. on TxZ, p_>2

measurable,

(11)

We make the following hypotheses:
lt(a): ct" T x Z--R is a function such that for all e T, z--,c(t,z) is measurable,

for all zZ and all t,sT, la(t,z)-a(s,z)l _</(z) lt-sl with /ELC(Z) and
for almost all (t,z) T x Z, 0 < m <_ c(t,z) <_ m2.

lt(fl): :R---,2R is a maximal monotone set with 0 dom/. This implies (see
Brezis [5], p. 43) that fl(. is cyclically maximal monotone and so there exists j: R



Nonconvex Evolution Inclusions 247

R R O { / oc} proper, convex and lower semicontinuous (i.e., j E F0(R)) such that
-Oj.

It(k)- k: T x Z x Z x R-R is a function such that
(i) for every r e R, (t, z, z’)--k(t, z, z’, r) is measurable;
(ii) for every (t,z,z’) e T x Z x Z, rk(t,z,z’,r) is continuous;
(iii) for almost all (t,z,z’)eTxZxZ and allreR, Ik(t,z,z’,r) <_7(t,z,z’)

(1 + r [) with 3’ e L2(T x Z x Z).
tI(b): b: T x Z x Z--R is a continuous map.
Let H 52(Z) and define : T x H- R U { + oc} by

(t,

f z(t,z) II Dx II Pdz + f zj(z, x(z))dz if w e Wlo’p(Z),j(" ,x(. )) e LI(z)
otherwise

(12)

}.
Note that for t,s e T and x e Wlo P(Z) we have

(s,x)-(t,x) <_ / (a(s,z)-a(t,z)) II Dx II dz
z

1/-p (z) t- s II D ll Pdz.

Since j G r0(R (see hypothesis H()), we can find Cl, c2 > 0 such that -c yl
c2<_j(y). So if Ilxll2-<r, then fzj(x(z))dz>_ -cal[xll2-c4>_ -c3r-c4 for
some c3, c4 > O. Thus if we take Kr > c3r + c4 > O, we see that hypothesis H() is
satisfied. Moreover, from Proposition 5.2, pp. 194-195 of Showalter [23] we have that

c9(t, x) -div( II Dx II p 2Dx) +/(x) Lp(t, x)

for all x e D(t)- {y e W’P(Z)" L(t,x)e L2(Z)}. Let g: T x H---H be defined by
g(t,x)(z)- f zk(t,z,z’,x(z’))dz’. From Fubini’s theorem we see that for every v e
L2(Z)- H, t(g(t,x), v)is measurable. So tg(t,x)is weakly measurable and since
H is separable from the Pettis measurability theorem, we have that t--.g(t,x) is mea-
surable. Moreover, by virtue of hypothesis H(k) and the Krasnosel’skii-Ladyzenskii
theorem we have that g(t,.) is compact. Also II g(t,x)II <- II 7(t, ",’)11 2(1+
II x [I) a.e. on T. So hypothesis H(g)in Section 6 holds.

Let Y-L(Z)-LI(Z)* and set U-{uGY" Ilull-<l,u->0}. Let B: T
(Y,H) be defined by

B(t)u(z) I b(t,z,z’)u(z’)dz’.

Hypothesis H(b) implies that B(t)(. is compact. Thus we have satisfied H(B).
Now rewrite (11) in the following equivalent evolution inclusion form"

(t) O(t, x(t)) + g(t, x(t)) + B(t)u(t) a.e. on T |.
x(0) Xo, u(t) U a.e. on T, u(. measurable / (13)
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Recall that extU- {XA" A C_ Z Borel}. Using Proposition 3 to obtain:
Proposition 5: If hypothesis H(a), H(/), H(k), H(b) hold, xo E W2’p(z) n

W’P(Z) and x(.,.)E C(T, L2(Z)) is a trajectory (weak solution) of (11), then given
e > O, we can find A C_ Z Borel such that if y C(T, L2(Z)) is the trajectory of (11)
generated by the control function u(’)--XE(’) (time-invariant), we have

tET

(2) We consider the following multivalued porous-medium equation:

ox A/(t x(t,z)) f(t,x(t))(z) on T ZOt

x(O, z) Xo(Z a.e. on Z, (t, x(t, z)) 0 on T x F measurable,

0 <_ u(t,z) _< 1 a.e. on T x z, p >_ 2.

(14)

In conjunction with (14), we consider the following problem"

o_ A/3(t, x(t, z)) e ext/(t a:(t))(z) on T x ZN-

x(0, z)- Xo(Z a.e. on Z, (t,x(t,z))- 0 on T x F measurable,

O <_ u(t,z) _< l a.e. on T x z, p >_ 2.

We need the following hypotheses:

(15)

H(fl)l: /’T x Z---2R\{0} is a measurable maximal monotone map and j(t,z)is
a normal integrand such that Oj(t,z)- (t,z) (see Hu-Papageorgiou [10]). Assume
t-+j(t,z) is nonincreasing.

Let f: T x H I(Z)P](H (Z)) be defined by

H- l(z)f(t,x) {h e L2(Z)’lh(z)l <_ r(t,z, II x II H- I(Z) a.e. on Z}

with r(t, z, v) satisfying:
lt(r): r: T x Z x R + -oR + is a function such that
(i) for all v R +, (t,z)-or(t,z,v) is measurable;
(ii) for almost all (t,z) G TxZ and all v,v’E R+, r(t,z,v)-r(t,z,v’)l <

k(t,z) v- v’ with k LI(T x Z);
(iii) for almost all (t,z)TxZ and all vR+, r(t,z,v)_a(t,z)+c(t,z)v

with (, c L2(T x Z).
Let H H- I(Z) and define : T x H--+ by

f zj(t, x(z))dz if X E El(z), j(t, x(. )) El(z) .(t, x) (16)
+ c otherwise

Hypothesis H(fl)l guarantees that H() holds and from Brezis [6], we know that
-1

O(t, x) A(t, x) where A: T x H l(Z)--*2H (z) is defined by

A(t, x) {- Au: u e Hlo(Z) an du(z) e t3(t,x(z)) a.e. on Z}
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for all x E D(t)- {x H-I(Z)N El(Z) there is some u H(Z) such that u(z)
/(t,x(z)) a.e. on Z}. Recall that -A is the canonical isomorphism from H(Z) onto
H- I(Z).

Since L2(Z)is embedded compactly in H-I(Z), we verify that H(f)2 holds for
the multifunction f(t,x). As before, by Zoc(Xo) (resp. coe(Xo) we denote the set of
weak solutions of (14) (resp. (15)). Theorem 3 gives us:

Proposition 6: If hypotheses H()I H(f) hold and xo LI(Z), j(t, xo(. )) LI(Z)
for almost all t T, then Sc(Xo) zoe(Xo)C(T’H- l(Z)). Moreover, for every x

Ox L2 1Sc(Xo)’ -bY (T,H (Z)), j(.,x(., )) L(T, LI(Z)) and /3(.,x(., ))

L2(t, Hlo(Z)).
{ 0 ifxEK(t) } Itis(3) Now let (t,x)- cOhK(t)(x with 5K(t)(x + o otherwise

well-known that.OhK(t)(x NK(t)(x the normal cone to K(t) at x). Then pro-
blems (1) and (2) become

-it(t) NK(t)(x(t)) + F(t,x(t)) a.e. on T

x(0)- x0 e K(0) / (17)

and

NK(t)(x(t))+ extF(t,x(t)) a.e. on T [.
(o)- e

(18)

Problems of this form are known as "differential variational inequalities." They
arise in theoretical mechanics in the study of elastoplastic (see Moreau [15]) and in
mathematical economics in the study of planning processes (see Cornet [7] and the
references therein). In particular, as it was shown in Cornet [7], if H-/N and
K(t)- K PIc(RN) for all t T, then problem (12)is equivalent to the "projected
differential inclusion" -ic(t) Eproj(F(t,x(t));TK(x(t)) a.e. on T, x(0)=x0 with

TK(x(t)) being the tangent cone to K at x(t). In many applications, when dealing
with systems having constraints, in describing the effect of the constraint on the dyna-
mics of the system, it can be assumed that the velocity is projected at each time
instant on the set of allowed directions toward K at x(t). This is true for electrical
networks with diode nonlinearities.

We make the following hypothesis concerning the multifunction tK(t).
H(K): K:T--,PIc(H is a multifunction such that h(K(t’),K(t))<_ f’v(s)ds

with v L2(T).
If (t,x)= 5K(t)(x), then it is easy to check that H() holds with gr(t)-

V(T)- foV(s)ds, 0r(t)- v(t),-2, a-0 and Kr 1. Thus using Theorems 1
and 3 we obtain the following results which complement the work of Papageorgiou

Proposition 7: If hypotheses H(K) and H(F)I hold, then problem (18) has a

solution x WI’2(T, H).
Let Sc(Xo) (resp. Se(Xo) be the solution set of (17) (resp. of (18)).
Proposition 8: /f hypotheses H(K) and H(F)2 hold, then Se(Xo) is a dense G5-

subset of Sc(Xo) in C(T,H).
Moreover, using Theorem 3, we can have the following result which complements

and extends the structural result of Papageorgiou [21].



250 K. ARSENI-BENOU, N. HALIDIAS and N.S. PAPAGEORGIOU

Proposition 9: If hypotheses H(K) and H(F)3 hold, then the solution set of
problem (17) is path-connected in C(T,H).

Let us consider a specific such problem in RN. So H- RN, RN+ is the positive
cone and we write x_<y if and only if y-xER%, while x<y if and only if
y- x E intR%. The problem that we will examine is the following"

x(t) >_ u(t) for all T

-[c(t)iF(t,x(t)) a.e. on T1 {s 6 T:x(s) > u(s)}

[c(t) F(t, x(t))+ RN a.e. on T2 {s G T: x(s) u(s))}

(o)- <

(19)

Here u WI’2(T,RN) is the "obstacle function."
Let K:T-PIc(RN be defined by g(t)= {v RN:v u(t)}. Note that for all

0 _< t _< t’ _< b we have h(g(t’),g(t)) <_ II u(t’)- u(t)]] _< f II u(s)II ds, hence H(K)
holds. Also for v K(t) we have

TK(t)(v RN+ if v u(t)

and

TK(t)(v RN if v > u(t).

Thus it follows that

NK(t)(v) TK(t)(v)* RN_ RN+ if v u(t)

and

NK(t)(v TK(t)(v)* {0} if v > u(t).

Therefore we can equivalently rewrite (19) as follows:

[c(t) NK(t)(x(t)) + F(t,x(t)) a.e. on T .
(0)- xo

(20)

This means that the results of this paper apply to problem (19).
has a nonempty solution set which is compact in C(T, RN).

In particular, it
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