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In the present paper we study nonlocal problems for ordinary differential
equations with a discontinuous coefficient for the high order derivative.
We establish sufficient conditions, known as regularity conditions, which
guarantee the coerciveness for both the space variable and the spectral
parameter, as well as guarantee the completeness of the system of root
functions. The results obtained are then applied to the study of a nonlocal
parabolic transmission problem.
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1. Introduction

Many physical problems, the problem of heat and mass diffusion in anisotropic
media, diffraction problems, and others lead to the study of equations with a discon-
tinuous coefficient for the high order derivative [13]. In the present paper, we start
with the study of boundary value problems for ordinary differential equations with a
discontinuous coefficient for the high order derivative and with boundary conditions
containing abstract functionals. We establish sufficient conditions of regularity type
which guarantee the coerciveness for both the space variable and the spectral para-
meter, and which also guarantee the completeness of root functions. Regular pro-
blems for differential operators are studied in [3, 9, 10]. Completeness of the system
of root functions for differential operators with functional boundary conditions is
analyzed in [4, 6, 11, 14]. The coefficient of the high order derivative is assumed to
be constant in [6, 11], whereas it is assumed to be continuous in [14]. The results ob-
tained are used to show the existence and uniqueness of the solution, of a mixed
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problem for a parabolic partial differential equation with a discontinuous coefficient
for the high order derivative, and multipoint boundary values and transmission condi-
tions containing abstract functionals. They are also used to show the completeness of
elementary solutions of this given mixed problem. Thus, the study is reduced to a
Cauchy problem for a parabolic abstract differential equation, where the analysis of
the operator coefficient is given in detail in this paper.
2. Preliminaries
Let W{'(a,b) denote a Sobolev space, defined so that
Wit(a,b) = {u € L,(a,b): D*u € Ly(a,b);a <m}, g€ (1,00).
Lemma 1: Forue¢ W;"(a, b), we have the following inequality [2]:

k — m -
Jmax [u9e)| SC(hl X,y +h XnunLq(a,b)),

whereO<Ic<m,O<h<h0,x ‘5 d:)qe (1,00).
Lemma 2: Fory€W2(a b) an we have

k—s k
10 g < O 191+ 12 nyan(a,b)), 0<s <k

Remark 1: Lemma 2 is a particular case of a result given in [1].

3. Nonlocal Problem for an Ordinary Differential Equation

In [0,1]\b, we consider the equation
L(\u = —a(z)u"(z) + (Bu)(z) — du(z) = f(), (1)

where A is a complex parameter. To equation (1) we add the boundary conditions:

N
Liu= au"(Kl)(O) + [311“(1{1)(1) + Z 61p“(K1)($1p) +Tu=/

p=1
- 2)
(Kq) (K K
Lyu = agyu“2(0) + 5, 2 (1) + > 52;0“( 2)($2p) +Tyu=fy
p=1
and we include the transmission conditions:

Lyu = ag;u(b—0) + B3yu(b+0) + Tyu = f4 )
Lyu =y u'(b—0)+ Buu'(b+0)+Tu=f,
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where a(z) = {“0 for z € (0,0]

arfor € (5,1]" ag,aq # 0, Ty pr Loy € (0,6). B is a linear operator and

each T', is a linear functional (v = 1,4). «a;,8,1,6;, € C; K;=0,1; i=1,2; j=1,4;
p=1,N. Let

©: = max{arg ag, arg a,}, w: = min{ arg ay, arg a,}
and
Se={ eCe+<argh<2mr—e+w}
3.1 Coerciveness of a Principal Boundary Value Problem

Consider, in [0,1]\b the simplified problem:

Lo(Nu = — a(e)u"(z) - Mu(z) = f(2), )
with
Lyjgu= CV11“(K1)(0) + ﬁllu(Kl)(l) =f (5)
Lyogu = aZIu(KZ)(O) + ,321U(K2)(1) =f
and with
L30u = aBlu(b—0)+ﬂ31U(b+0) = f3 (6)

Lyou = ayu'(b—0)+ Bqu'(b+0) = f,

Theorem 1: Suppose that )
(—1);26’11521 _ (—1):1"21r311 £0a 31841 1331a41;£0
e .
VR e Ve v

Then for each € >0 there exists R_>0, such that for any complezx number A€ S,
with | X| > R, the operator

Lo(A): u—(Lou, Lygu, Lygu, Lygu, Lygu),

from Wé(O,b)fo](b,l) onto Wé_z(O,b)xWé_z(b,l)XC‘l, is an isomorphism.
Furthermore, for any such A and any solution of problem (4)-(6), the following
estimate holds.

l 1
- k)
S I ko
k=0 qt\™? q

Hi-2)

ce)II | + 1Al

4 Lok _1
3 ), (7)

v=1
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Proof: Clearly, operator L,()) acts linearly and continuously from Wé(O,b)x
Wfl(b,l) into WQ_Z(O,b)XW2_2(b,1)xC4. Let us show that, for every f €

Wf]— 2(0,b) x Wf]" %(b,1) and for every f, €C, v=T1/4, problem (4)-(6) has a unique
solution belonging to W;(O,b) X Wfl(b, 1).

We seek the solution y of problem (4)-(6) in the form y =y, +y,, with
Y1 = (uq,uy) and yy = (ug,uy), so that y, will be a restriction on [0,1] of the solution
7, to the equation

LO()‘)?jl = 7 (IL'), S IR, (8)
where
f(z), =zel0,1]

e B

and y, will be the solution of the problem:

Lo(Myy =0 9)
Lyoys = = Loy + f,, v=1,4. (10)
By applying a Fourier transform, denoted by ¥, to equation (8) and by making the
change of variable A = — aop2 and A = — alpz, we obtain
apl(ic)? — pz]cful = -%f,
a,[(i0)? — p?|Fu, = — Ff,.
As S +e<argp < 37" —¢ and o € R, using geometrical arguments, we have
| (i0)? = p?| > c(e)(lo |2+ | p|?). (11)
Then u(-k) =F~ lgugk) =7 1(ior)k‘3‘uj =—-F~ 1(ii)_ka]~___11[(ia)2;p2] - I?F?j. Now,
let T{(s,A) = pt- k(ia)ka]"-‘_l1[(1'0)2 ~p?]7! j=1,2 and k=0,2. Clearly, each
Tj{(o,)) is continuously differentiable with respect to o in R and, from inequality
(11), we get

T <o), | LRz i)

Then, by virtue of the Mikhlin theorem (3], the function Ti(o’,)\) is a Fourier
multiplier of type (g,q). Hence, if f € L (R)x Lq(R), then a function 7, is a solution
to equation (8) belonging to Wg(R) X WgZ[R), and so we have

2 ~
k;o lp|2-k ” 55’”“ L R)x L (R) < 6(6)“ f ” LR x L Ry (12)

Using (12) and Lemma 2 with a recursive argument, we can easily show that if? €
Wf]— 2(R) x sz— (R), then ¥, € WQ(R) X WfI(IR) and the following estimate is valid
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l

La_ky o
S

= whR) xwhk®)

(13)

~ Lo o)~
<171y gynt-r* 1T L, m)

Thus, equation (8) possesses a unique solution ¥, € WZ([R) X Wg([R) and for y; we get

L Lok
D OREY AP

k k
= wko,b) x Wk, 1)

1

_([_2)
< + X2 .
<c(e) (”f“ Wé_z(o,b) XWfl- 2(b’1) | A “f”Lq(O,b) qu(b,l))

Now, let us establish that for any complex number f, € C, v = 1,4, problem (9)-(10)
has a unique solution y, belonging to Wfl(O,b) X Wfl(b, 1); and for an estimate of the
solution, we have Ly(A)y, = 0, which is equivalent to

— aguy — Aug = 0 in [0,b) (14)
—aquy — Auy =0 in (b,1].

Setting py = 4/ %OA and p; = %1—)‘, we get that the general solutions of the equations

of (14) are, respectively, us = c,exppyz + coexp[ — po(x —b)] and u, = czexpp;(z —b)
+ cqexp[ — py(x —1)]. Substituting these expressions into the conditions of (10), we
obtain a system for ¢, k =1,4. By a straightforward computation, it is easy to see
that the determinant of this system is of the form:

A=0+ R(pOapl),

k k k k
where 0 =[ay) 85,90 (= p1) 2 = a1 B11p0* (= p1) '] (@31841p1 + B31041p0)  and
R(pg,p1)—0 for |pgl|, |py|—00, in S, According to the assumption, we have
6 #0.
Again, by straightforward computation, we find that each c; is of the form: ¢, =
61' + Ri(pO’ Pl)
0+ R(Poypl) ’
formed by right-hand sides of the boundary conditions of (10) such that R,(pg, py)—
0,i=1,2for |pyl|, |py|—00,in S . Substituting these values in the expressions of
ug and u,, we find that problem (9)-(10) has a unique solution, given by

0y + Ry(pgs p1) 05 4+ Ry(pgs p1)
Uqg = " X r+——-t———Tlexp | — z—>b
3T 04 Rlpgr ) P T 0 R(pg o) T [= oo =)

e

where 0, is obtained from 6 by replacing the column i with the column

05+ Ry(pg, P1) 04+ Ry(pg, p1)
Uy = ————F"7— €X X — b 4+ —-—
1Z 0 R grn) P T R0

In the sector S,, for |py|, |py|—0oc we have | exppyz || L,(0,b) <cle)|pyl %

exp [ = py(z— 1))

Q=
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—

-1 -
1 ||eXPP1(x_b)||Lq(b,1)SC(E)|P1 | e

|l exp[ — po(z —b)] || Lq(OYb) <c(e) ] po |

Q=

and || exp[ — py(z—1)]|| Ly(b1) <ec(e)| pq | Hence, for k>0 and A € S, we get

4 Lo 1 4
[0 20,0y <@ 20 1T (L 12,0 09)

To evaluate | L, gy, |, we apply Lemma 1 for x = j +% and h= | A| 71, since

u
Y.

AT I 230 +)]
<CZ <|Po 2 ||“1||L(o,b)+|Po| 2wl L o8) )
=0 q q
This, from (13), gives

lall gy,

7=0

+1 -2
<c(e [ po ’ T f _g +1pol f .
<>§: 0 (n tlhyics + 1ol =21l 0

By an analogous argument for u,, we obtain

u
s | b

u -1
Jtg—! -2
<c(e)Y . 1oy’ 70 <||f2 l Wfl("o?b)xwfl_z(b,l)_i- Lo 12 M1 2l Lq(b,l)).

;=0
As | Loyl <cllygll & k 280

c Y[0,b)xc Y(b,1]

W VTR
| Loy | <) A2 925y

-2 -2
=% W™ %(0,6) x wy ™ %(5,1)

1
5(1-2)
+ 212 I/l Lq(o,b)qu(b,l))

H-t+k, +1 FU-2
<@ TN TP 0w o)
q b

=1,4. (16)

Applying (16), we get that inequality (15) gives estimate (7). The uniqueness of the
solution of problem (4)-(6) follows from estimate (7).
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3.2 Coerciveness of the General Problem

First, consider the following definition.
Definition 1: Boundary value and transmission conditions (2)-(3) are said to be
regular if the following hold.
K, Ky
(=1) 2ay,0y (-1) “agByy q%1Pn _ Baica
VT T e T ym T
0 1 0 1 k,,

2. For some ¢ € (1,00), each functional T, is continuous in W, (0,b) x

Wl;"(b,l), where v =1,4, 0 <k, <1for v=1,2 and k5 =0 and k, = 1.
Remark 2: The above definition coincides with the Yakubov definition ([14], p.
86) in the case where ag; = oy = 837 = B4 = 0.
Theorem 2: Suppose the following hold.
1. Boundary and transmission conditions (2)-(3) are regular.
2. Operator B, from W,(0,b)xWl(b,1) into W.=%(0,b)x W.=%(b,1) is
compact, where { > 2 and ¢ € (1,00).
Then, for all X € S,, the operator

1.

L(A):u—(Lgu, Lygu, Lygu, Lygu, Lygu),

from W;(O,b) foI(b,l) into Wfl_2(0,b) X Wé_z(b,l) x C*, is a Fredholm operator.
Proof: The operator £()) can be represented in the form L(X) = £5(A) + £,(}),
where

Ly(A) = (= a(@)u"(z) — Au(z), u(0), w'(1), u(b — 0),w'(b + 0))
and
£,(A) = (Bu, Lygu — u(0), Lygu — u'(1), Lygu — u(b — 0), Lyyu — u'(b + 0)).

From Theorem 1, it follows that £,()) is an isomorphism for A € S_. Hence, it is a
Fredholm operator. By virtue of hypotheses 1 and 2, £,(A), from WfI(O,b) X Wfl(b, 1)
into sz_ 2(0,b) x Wfl_z(b, 1)x C*, is compact. Then, by a theorem on perturbation
of Fredholm operators (see [7]), £(A) = £,(A) + £,(A) is a Fredholm operator.

Theorem 3: Suppose that conditions 1 and 2 of Theorem 2 are satisfied. Then,
for any € >0, there is R_ > 0 such that for any complex number X where A € S, and
| A| > R,, the operator

L(A):u—(L(A)u, Ly (A)u, Ly(A)u, Ly(X)u, Ly(X)u),

from Wfl(O, b) x Wfl(b, 1) nto Wfl_ 2(0,b) x Wf]_ 2(b,1)xC*, is an isomorphism.
Furthermore, for such a A, estimate (7) holds for the solution of problem (1)-(3).
Proof: By displacing the perturbed terms of problem (1)-(3) to the right-hand
side members, and by applying Theorem 1 to the obtained problem, we find that
l

Lok
S A

k k
= We(0,b) x We(b,1)
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1
3(1-2)
<C(e) (”f”Wfl‘z(o,b)fol‘z(b,l)-i_ |Al2 ||f||Lq(0,b)qu(b,1)

i etk
+ D 1A [ £, 1+ || Bull

v=1

1-2 1-2
wh=2(0,6)x Wi T 3(b,1)

Lo _ 4 Ly _p 1
+ |,\|z( 2)“]3u I LOb)XL (1) T > |,\|2( v q)lT,,ul )
v=1

The above inequality, Lemma 2.7 from [14] and the continuity of T', give

! 1
Li-k)
Z |12 ”u”Wk(Ob)ka(bl)
k=0 q\™’ q\”’

li-2)
C(e) (Ilfll W2_2(0,b)foJ"2(b,1)+ | Al ||f||Lq(0,b)qu(b,1)

4 1 1
—(l—ku—~)
+3 A7 11,

v=1

+e(e)(E +e(6) | M| 2‘1>Z|A|2(’ Null,

1
Choosing 8 such that ¢(e)(6+c(6) | A | 2'5’) <1, We get inequality (7), Wthh implies
that £()) is injective. Since operator B, from W (0, b)le (b,1) into W* _2(0 b) x
W!=2%(b,1), is compact, and since according to Theorem 2 L(A): W 4(0,0) x
Wy(b 1)— Wl ~2(0,b) x Wl ~2(b,1)xC* is a Fredholm operator, then by a Fredholm
alternatlve L()\) is surJectlve Therefore, it is an isomorphism.

wko,b)xwke, 1))

4. Completeness of Root Functions
In the space Ly(0,b) x Ly(b,1), consider the operator £ defined as follows.
Lu= —a(x)u"(z)+ (Bu)(z)
D(L) = (W2(0,b) x W3(b,1), Lu = 0,v = 1,4).

The root functions of operator £ are root functions of the following problem:

{ L(\u =0
. (17)
L,MNu=0, v=1,4.

To establish the completeness of the root functions of £, we shall use a theorem given
in [14] (Theorem 3.6, with n = 1). This theorem is actually a variation of the well-
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known theorem of N. Danford ad J.T. Schwartz [3]. Consider the following.
Theorem 4: Suppose that the conditions given below are satisfied.

1. There exist two Hilbert spaces, H and H,, with the compact embedding
HCH,,andH,|g=H

2. The embedding operator § belongs to ap(Hl,H) for some p > 0.

3. The linear operator A from H, and H 1s bounded.

4. There exists a set of rays Iy, in the complex plane such that angles between

the neighboring rays are less than ; and there exists a number m € N such
that || R(A, A) || B(H,H,) <c|A|™, with A€l and with | X | —oo0.

Then the spectrum of operator A is discrete and the system of root vectors of
operator A is complete in the space H,.

Applying the method used in proving Theorem 2.1 in [14] and Theorem 3, we can
prove the following lemma.

Lemma 3:

(W3(0,6) x W3(b, 1), Lyu = 0,v = 1,4) |, = L,(0,b) x Ly(b, 1).

2(0,8) x Ly(b,1)

Theorem 5: Suppose that the conditions below hold.

1. Boundary and transmzsswn conditions of problem (17) are regular.

2. Operator B, from W2(0,b) x W2(b,1) into L,(0,b) x Ly(b,1) is compact.
Then the spectrum of problem (17) is discrete, and the system of root functions of
problem (17) is complete in (W3(0,b) x W3(b,1), L,u=0,v =1,4) and, therefore, in
Ly(0,b) x Ly(b,1).

Proof:  Set H = L,(0, b)xL (b,1) and H, = (W2(0 b)x Wi(b,1), L, u=0,
v =1,4). Since embeddlngs W3(0,b) C L,y(0,b) and W3(b,1) C Ly(b,1) are compact
[12], then embeddings W3(0, b)xW2(b 1) C Ly(0,b) x Ly(b,1) is compact. Using
hypothesis 1 and Lemma 3, we find H, |y =H. take p_;+6 where 6 is an
arbitrary positive number. From [12], we get S,(4, W2(0,b), Ly(0,)) ~ j =2 and

S (8, W3(6,1),Ly(b,1)) ~ j 7%, and so, 3601 (W (0,b), L,(0,b)) and 3601+6
(W3(b,1),Ly(b,1)). Tt is easy to see that je o1, (W (0,b) x W2(b,1), Ly(0, b)
Ly(b,1)). Since H, is a closed subspace in w? 5(0, bfo (b,1), applying [5], we have
€0y +6(H1’ )- It is obvious that operator £ is bounded from H, into H. From
Theorem 3, we see that in the sector S, we have || R(\ L) || B(H, H,) <c(¢), for

| A| —oo. From this sector S, take two rays [; and [, centered at the origin and

choose a number 6 > 0 such that the angle between the two rays is less than 7—.

Since all conditions of Theorem 4 are satisfied we get the desired result. 2t$

5. A Nonlocal Parabolic Transmission Problem
5.1 Correct Solvability

In [0,T]x ([0,1]\b), consider the equation



288 M. DENCHE

u(t, O%u(t,
0 (8tt ) a(m)———agé—z-i-(Bu(t, N(z)=0 (18)

with the functional boundary conditions:
(

Lypu = 0‘11" 1)(i 0) + 811 nas )(t 1) 1)(t z1p) + Tyu(t, ) =0
(19)

Lygu = agyu®2(1,0) + g, ut 2 (1, 1) + N(t,25,) + Tou(t, -) =0,

I Mg I Mz

with the functional transmission conditions:

Ligu = agqu(t,b—0) + Byu(t,b+0)+T3u(t, -) =0 (20)
Lygu = oyqu'(t,b—0) + B4u'(t,b+0) + Tyu(t,-) =0,
and with the initial condition:
u(0,z) = py(c), (21)

ag for z €[0,b)
a, for z € (b,1]. _ . L
is a linear functional (v = 1,4); o;1,81,6,€C K, =0,1;:=1,2; j=1,4 p=1,N.
Theorem 6: Let the following conditions be satisfied.
1. a; #0 and |arga;| > 7.

where a(z) = T1pTgp, € (0,0); B is a linear operator; each T',

K K
9 (1) %0448y (=1) lay8yy £0 and 31841 _ P12 £0
' Ky Ky Ky Ky V% NG '

(/3) (/a1 (/%) *(\/a))

3. The operator B, from W3(0,b) x Wi(b,1) into L,(0,b)x Ly(b,1) is com-
pact.

4. Each functzonal T y V= 1,4, is continuous in W2 (0,b) x Wk"(b 1).

5. 9006(W2(0b)xW(b1),Lu_0 v =1,4).

Then problem (18)-(21) has a unique solution u in

C((0, 71, Ly(0,b) x Ly(b, 1)) N CX([0, 7], W(0,6) x W3(b, 1), Ly(0,6) x Ly(b,1));
and we have the following inequalities:

Hu(@) | Ly(0,b) x Ly(b,1) <clleoll w(0,8) x W(b, 1) te(0,T]

and

H U’(t) ” L2(O,b) X L2(b,1) + ” U(t) “ W%(O,b) x W%(b,l)

et el te(0,77].

Ww2(0,6) x Wi(s,1)’
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Proof: Let A denote the operator defined on Ly(0,b) x Ly(b,1) by Au(z) =
— a(z)u"(z) with D(A) = (W32(0,b) x W2(b,1), L u = 0,v = 1,4). Then problem (18)-
(21), in L5(0,b) x Ly(b,1), can be rewritten as follows.

w'(t) = Au(t) — Bu(t) (22)
u(0) = po, (23)

where u(t) = u(t, -) and f(t) = f(t, -) are functions with values in L,(0,b) x Ly(b,1),
Yo = <p0( ) € Ly(0,b) x Ly(b,1). Using Theorem 3 in sector S, we get || R(A,A) || <
c|A| 71, |A| —oco. From hypothesis 1, the number ¢ > 0 can be chosen sufficiently
small so that for some o > 0 we have

IR, A) || <clA] =", Jargh| <T+a, |A] oo

We know that operator B is compact, from W?2 5(0, b)xW (b,1), into L%(O ,b) x
Ly(b,1), and operator R(A,A) is bounded, from L,(0,b)x L,(b, 1) into W5(0,b) x
W%(b 1) (by Theorem 3). Consequently, operator T = BR(A, A) is compact, from
Ly(0,b) x Ly(b,1) into Ly(0,b) x Ly(b,1). Now, by Lemma 3, D(A) is dense in
Ly(0,b) x Ly(b,1); and since the space Ly(0,b) x Ly(b,1) has a basis and is reflexive,
then, by Lemma 2.7 from [14] we have that for arbitrary € >0 and for arbitrary
u € D(A)

1 Bull 1,(0,8) x 1,(b,1)

Sell(A=2Dull 1 0,5)x £yb,1) TNl 1 (0,8)x Ly(5,1)

Since ¢, € D(A), then Lemma 2.7 from [14] can be applied to problem (22)-(23),
which gives the desired result.

5.2 Completeness of Elementary Solutions

It is not difficult to show (see Lemma 0.1 from [14]) that a function U j, given by the
formula

At k—l
Uj(t):e O(k" 0+(k’ 1)'u1—|- +1'uk_1—{—uk> (24)

where j = 0,k, becomes a solution to equation (22) if and only if ug, uy, -~ uy is a
chain of root functions of the operator A + B corresponding to eigenvalue A;. A solu-
tion of form (24) is called an elementary solution to equation (22).

Theorem 7: Suppose that all conditions of Theorem 6 are satisfied. Then
problem (18)-(21) has a unique solution:

w € C([0, T, Ly(0,6) x Ly(b, 1)) N C1(0, T}, W3(0,6) x WE(b, 1), Ly(0, ) x Ly(b,1));

and there exists a set of numbers, c. , such that

ik

n
- Zcmu](t

lim  sup =0

=0 4 e [0,T] ) Ly(0,b) x Ly(b,1)




290 M. DENCHE

and

n

u’t(t’ Z ]n jt

lim sup t
7 e (0,T]

L,(0,b) x Ly(b,1)

=0,
W2(0,b) x W3(b,1)

where u is a solution of problem (18)-(21) and each u; is an elementary solution of
problem (18)-(20).

Proof: By Theorem 6, we get the existence and uniqueness of the solution to
problem (18)-(21); and by Theorem 5, the completeness of root functions of problem
(17) is guaranteed. Therefore, if we denote by A, j = 1,00, the eigenvalues of pro-
blem (17), taking into consideration their order ofz algebraic multiplicity, there exists
a set of numbers € iny such that

lim
n—oo

Z Cjn Jk

j=1

=0,
W2(0,b) x Wi(b,1)

where Ujoy Ujgse '?“jkj form some chain of root functions of problem (17) correspond-
ing to the eigenvalues A;. On the other hand, using Theorem 6, we find that problem

n
(18)-(20), with the initial condition u(0,z) = ¢y(2) — 3_ c,,u; (z), has a unique
solution 1=1 I

n

(t,@)—v(t,2) = u(t,@) = Y cjnu (t, @)
J=1
in the space

C([0,T], Ly(0,5) x Ly(b,1)) N C1((0,T], W2(0,b) x W2(b, 1), L,(0,b) x Ly(b, 1)).

We also have the following inequalities:

u(t, )= ety ) o-Yc, jntjk,

=1 L,(0,b) x L2(b,1) i=1 wg(o,b) x W(b,1)
and
n
Wit ) = D egutelts )
7=1 L5(0,b) x Ly(b,1)
n
+ u(t, ')_ Z Cin J(t )
1=1

W3(0,b) x Wi(b,1)
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n
-1
S P

i=1 J

2 2
W5(0,b) x W5(b,1)

Therefore, the proof of the theorem is complete.
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