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We consider two identical, parallel M/M/1 queues. Both queues are fed
by a Poisson arrival stream of rate I and have service rates equal to #.
When both queues are non-empty, the two systems behave independently
of each other. However, when one of the queues becomes empty, the cor-

responding server helps in the other queue. This is called head-@the-line
processor sharing. We study this model in the heavy traffic limit, where
p 1/#1. We formulate the heavy traffic diffusion approximation and
explicitly compute the time-dependent probability of the diffusion approxi-
mation to the joint queue length process. We then evaluate the solution
asymptotically for large values of space and/or time. This leads to simple
expressions that show how the process achieves its stead state and other
transient aspects.
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1. Introduction

Queueing systems are used in a wide variety of applications, such as computer and
communications networks and manufacturing systems. In analyzing such models, one

typically wishes to compute the probability distribution of some stochastic process.
Obtaining the full time-dependent distribution is a difficult task for all but simple
models.

Here we consider the following model, which is sometimes referred to as head-@
the-line processor sharing of parallel queues. There are two parallel M/M/1 queues,
each fed by independent Poisson arrival streams with rate I. Each of the two servers

works at rate #. When both queues are non-empty, each server tends to its own

queue. However, if the first (resp., second) queue becomes empty, the first (resp.,
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second) server helps the server in the other queue, thereby providing a service rate of

2# during the idle period. The steady state joint queue length distribution for this
model was analyzed by Konheim, Meilijson and Melkman [11] and a more general
model which allows, e.g., for different service rates was analyzed by Fayolle and
Iasnogorodski [6]. In [11], the authors obtained an expression for the two-dimensional
generating function of the joint queue-length distribution in terms of elliptic integrals.
The inherent complexity of the solutions in [11] and [6] led other authors to investi-
gate asymptotic properties of these solutions, in order to gain more qualitative in-
sights.

The heavy traffic limit is defined as p- ,/#1. In this limit, the joint queue
length process (Nl(t),g2(t)) (Nj(t)- number of customers in the jth queue) may be
approximated by a diffusion process, whose analysis proves to be simpler than that of
the discrete model. In particular, Knessl [9] and Morrison [12] obtained a relatively
simple answer for the steady state distribution of the diffusion approximation. Also,
some exact [12] and asymptotic [9] results were obtained for more general models,
which allow different service rates and discriminatory processor-sharing. Diffusion
approximations were also used by Fendick and Rodrigues [7] to treat more complica-
ted models, with more than two queues. Related models with finite capacity were
analyzed by Morrison [13]. Applications of these models include the buffering of
channels (i.e. virtual circuits) in wide-area data networks (see [13]).

In this paper we compute the time-dependent distribution for the heavy traffic
diffusion model, thereby obtaining information on how steady state is achieved, and
other transient phenomena. Denoting by p(m,n,t) the joint probability that
Nl(t)=m and N2(t)=n we obtain (in the stable case) the approximation
p(m, n, t) e2P(x, y, T), where 1 p and (x, y, T) (em, ca, #e2t) are scaled space
and time variables. We shall obtain explicit, albeit complicated, expressions for P
and then evaluate these asymptotically for various ranges of space and time. This
leads to very simple formulas that clearly show the basic qualitative structure of the
joint density function.

In particular, we show that there is a surface T- T,(x,y) in the (x,y,T) space
so that for T > T,, the process has settled to its steady state distribution, while for
T < T,, the probability distribution depends upon time as well as on the initial condi-
tions. We shall also consider the unstable case where p > 1 in the heavy traffic limit.
Here the process is transient and the queue lengths tend to grow without bound. We
shall show (cf. Theorem 3(a) and (3.10)) that the two queues are nevertheless coupled
in this limit, and obtain a simple quantitative measure of this interaction.

In the asymptotic analysis, we shall allow for space (x,y) to be large as well as
time T. We contrast this to "relaxation rate" asymptotics, which are discussed in
the book of Cohen [5] for single server queues and by Blanc [2] for two tandem
M/M/1 queues. These asymptotics (for the diffusion model) would assume that the
space variables are held fixed and use the approach to equilibrium in the form
P(x,y,T)-Peq(X,y Te-cT/(x,y), where a (-relaxation rate) and t are con-
stants. Here Peq is the equilibrium density, which is non-zero only if p < 1. We be-
lieve that the asymptotics presented here give a more global description of the tran-
sient distribution. We have previously obtained analogous asymptotic results for var-
ious models with one space dimension (see Knessl [10], Xie and Knessl [23], and Tan
and Knessl [18]). In the probability literature, these types of asymptotics are some-
times referred to as "large deviations theory." However, such theory generally only
gives the exponential rate of growth or decay of the desired quantity. In contrast,
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here we give very precise results and also indicate how to obtain full asymptotic
series. We obtain the results by the saddle point and related methods for evaluating
integrals [3].

We also mention related work on the M/M/1-PS queue and more general models
by Coffman et al. [4], Ramaswami [16], Yashkov [20-22], Ott [15], and Sengupta [17].
These authors consider single queues with the processor sharing service discipline.
The main focus in these papers is the calculation of the sojourn time distribution of a

tagged customer, as well as its moments. The queue length distribution in the
M/M/1-PS model is the same for the PS and FIFO service disciplines. It is the so-

journ time distribution that is very different for PS and FIFO service. If we condi-
tion the sojourn time on the total service that the tagged customer must receive, then
the PS discipline is much more efficient at servicing shorter jobs. In [4], the authors
analyzed the M/M/1-PS model and computed the Laplace transform of the sojourn
time distribution, conditioned on the job size. In [16], the GI/M/1-PS model is
analyzed. In particular, simple expressions are given for the first two (unconditional)
sojourn time moments. The M/G/1-PS model was analyzed by Yashkov [20-22] and
Ott [15]. The response time distribution is computed in [20], the transient distribu-
tion of the number of customers present is analyzed in [21] and a good survey of work
on processor-shared queues appears in [22]. In [15], the author extended the results in
[20] to calculate the joint distribution of the sojourn time and of the number of cus-
tomers present upon the departure of the tagged customer. Some approximations for
the more difficult GI/G/1-PS model are given in [17].

We believe that the structure of P(x, y, T) revealed here (both exact and asympto-
tic) will also arise in other diffusion (and also discrete) models corresponding to two
or more coupled queues. Other explicit solutions to diffusion models arising in queue-
ing networks are given in Newell [14], Foschini [8], Knessl and Tan [19] and Avram
[1]. In [1], the author classifies the steady-state densities of a large class of two-dimen-
sional diffusion models according to their tail behaviors as x and/or y---,oe. We
believe that such a classification should also be possible for the transient behavior,
and this work may be viewed as a first step in that direction. We also mention that
the diffusion approximation analysis presented here should be extendible to problems
with general arrivals and/or service. However, these generalizations are likely to lead
to somewhat more complicated PDEs and boundary conditions (BCs) then those in

(2.10)-(2.12).
In Section 2, we formulate the model. In Section 3, we summarize and briefly

discuss our main results. The detailed calculations are presented in Sections 4 and 5.

2. Statement of the Problem

We let Nl(t (resp., N2(t)) be the number of customers in the first (resp., second)
queue. We define the transition probability distribution by

p(rn, n, t; rno, no)

Prob[Nl(t m, N2(t n NI(0) m0, N2(0 no].
(2.1)

In terms of (re, n), the distribution (2.1) satisfies the forward equation (see also [9,
11, 12])
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A[p(m 1, n, t) + p(m, n 1, t) 2p(m, n, t)]

+ p[p(m + 1, n, t) + p(m, n + 1, t) 2p(m, n, t)]
(2.2)

with the boundary conditions

Pt(m,O,t) A[p(m 1, O, t) 2p(m, O, t)]

+ 2#[p(m + 1, O, t) p(m, O, t)] + #p(m, 1, t)

Pt(O,n,t) [p(0, n 1, t) 2p(0, n, t)]

+ 2#[p(0, n + 1,t)- p(O,n,t)] + #p(1,n,t),
(2.4)

the corner condition

Pt(O, O, t) 2#[p(1, 0, t) + p(0, 1, t)] 2Ap(0, 0, t) (2.5)

and the initial condition

n, 0) (2.6)

Here subscripts denote partial derivatives and 5 is the Kronecker delta symbol.
We study the model in the heavy traffic limit, where p A/#---.1. Formally, we

define the small positive parameter by

1 p 1--- ea (2.7)

and scale space and time by e as follows

x0 Y0 (2.8)m---, n--, t- p-, m0--U, n0 --.
Note that this means that the initial queue lengths are assumed to be large, of the
order O(e- 1).

If the queue is stable (i.e., p < 1), we will set a + 1, and then (2.7) defines in
terms ofp. In the unstable case (p > l), we will set a -1. Ifp=l, wetakea=0
and then (2.8) corresponds to viewing p(m,n,t) on large space/time scales, with
m, n, t--c and m/X/, n/V/ fixed.

With (2.8), we expand the probability distribution as

p(m, n, t) 2[p(x, y, T) + P(1)(x, y, T) +...]. (2.9)

From (2.2)-(2.4) and (2.6), we find that the leading term P satisfies the PDE (see
also [9, 12])

PT Pzz + Puu + a(Pz + Pu); x, y, T > 0, (2.10)

the boundary conditions (BC)
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Px(O, y, T) + Py(O, y, T) + aP(O, y, T) 0; y, T > 0,

Px(x, O, T) / Py(x, O, T) + aP(x, O, T) 0; x, T > 0,

and the initial condition

(2.12)

v, 0)  0)6(v v0).

We also have the normalization condition

(2.13)

i i P(x,y,T)dx dy-lfor all O.
0 0

(2.14)

We do not consider the corner condition (2.5) in formulating the heavy traffic
diffusion model. We will show that P(x,y,T) becomes infinite near the origin x
y 0, and hence (2.9) cannot be the correct asymptotic approximation to the discrete
probabilities p(m,n,t) for small values of x and y (more precisely for (x,y)= O(c),
which is the same as (m, n) O(1)). A proper analysis of the corner region would in-
volve analyzing the discrete model (2.2)-(2.5), with # + #ca. However, we will
show that such a detailed treatment is not necessary to determine P(x, y, T), which is
the heavy traffic diffusion approximation valid away from the corner. The total pro-
bability mass in the corner region is asymptotically smaller than that on the (x,y)
scale. However, calculating the higher order terms in the series (2.9) (e.g., the func-
tion p(1)) would necessitate a careful treatment of the corner region.

We shall obtain an explicit solution for the leading order diffusion approximation
P(x,y,T). Then we shall obtain detailed asymptotic results for this limiting density,
that apply for x and/or y and/or T large. The final results are summarized in
Section 3 and the details of the calculations are given in Sections 4 and 5.

3. Summary of Main Results

In Section 4 we solve (2.10)-(2.14) and obtain the following integral representations
for P(x, y, T).

Theorem 1: The transient solution to the diffusion model is

P(x, y, T) Pi(x, y, T) + Pii(x, y, T), (3.1)

whe_,re

PI exp --T-(x- x0 + y- Y0)

x exp 4T exp 4T

F[ (x+U+Xo)2+(y+u--Yo)21+
x + xo2T-y + Y0 exp 4T

du

0

(3.2)
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and

x + x + y + Y exp

0

[- (x + u- x)2 + (y + u + y)2]
T o o

Pll--------exp y)]/ / J exp[ -a2--’r 4--2]
0 0 0

5 16V/ 7.5 /-
H4 2V

+ a 1H:3( k )]ddud’r,
o +Vo____+ + ( +) + (v +)2

Here Hi(. are Hermile polynomials, hence

(3.3)

H3(z)-8z3-12z, H4(z)-16z4-48z2+12.

Alternate expressions for PII are

1 / eOTii(x y; O)dO,PII --- Brwhere

20+a2[ a]e a(x+y)/2 [ ( ir0 v/a2 + 20 + exp (x0 + YO)

(+)(v+)
( +) + (v +

0

K 0 + -V/( +) + ( +) e

(3.4)

(3.5)

or

PII v/a2-k-20+al a2 a( + )/2 I2r0 0+---e- exp(xo+yo) - +-
sinh(2r/) a2x coshr/+isinhr/CXp O+-(xcosh7+iysinhq) dq.

(3.6)

Here K2(. is the modified Bessel function of order 2 and Br is a vertical contour in
the complex O-plane.., on which Re(0)> 0.

We note that Pll is the Laplace transform of PII" When a > 0 (i.e., p < 1), PI!
has simple pole at 0 0, which determines the limiting behavior of Pll as T+oo"

PII(X, y, c) lomo[OPii(x y; O)]

e
(x+u)2+(y+u

0

(3.7)

As Tcz, we have PI--O and thus (3.7) gives the steady-state density of the
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diffusion approximation, and this agrees with the result previously obtained by
Knessl [9] and Morrison [12]. When a <_ 0 (i.e., p >_ 1), the poles is absent and we

now have PI, PII---c as T---oc.
Now observe that the total number of customers Xl(t + N2(t in the two queue

network belmves as the standard M/M/1 model with an arrival rate -2, and
service rate 2#. In appendix A, we show after a lengthy calculation that

P(, z- ; O)d -"(z- 0)/ z- 0l 07/-d %-- exp
V/

0

V/20 + a2 + a
exp 0 +V20 +a-a ,/5

where z0 x0 + Y0 and P is the Laplace transform of P(x, y, T) over time.
We denote by (X(T), Y(T)) the diffusion process that approximates our discrete

queue. Then the density of X(T)+ Y(T) should be precisely that of the heavy traffic
diffusion approximation to the standard M/M/1 model. Denoting this density by
(z,T), it satisfies

Ozz + az; z,T > 0

z + aP- 0; z-0, T>0 (3.9)

lr o e(z- Zo).
1 in the time-derivative of (3.9) arises due to the fact that the discreteThe factor of g

model has a total arrival rate -2,, rather than ,. We let (z;0)-

f -rV(z,T)dT. Then, solving (3.9) for the Laplace transform , we obtain
0 z.

precisely the right side of (3.8). This shows that (z;0)- f P(w,z-w;O)dw, and
this must be the case. 0

Since the solution in Theorem 1 is quite complicated, we evaluate it asymptotical-
ly for large values of space and/or time. This yields simpler formulas that show
more clearly the basic qualitative features of the joint density. First we take initial
conditions x0 Y0 0. In view of (2.8), this does not mean that the discrete process

(Nl(t),N2(t)) starts at the origin (0,0), but rather that m0 and no are of order
o(-1). When x0-y0=0, we have PI-O and hence P-PII. The following re-

sults are established in Section 5.
Theorem 2: For xo yo O and p < l, we set a= +1. Asymptotic expansions

of P(., , T) a Ioao: /
(a) x, y T with T < T,(x, y) vX2 + y

2

P(x,y,T) K(x,y,T)exp[1t(x,y,T)]

x + +

_
+

___
T)Y 2 4T
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(c)

P(x,y,T)

(d)

(f)

(g)

K(x, y, T) / xy 1
T( + )V/: +

_
x, y, T---,o with T > T,(x, y)

1 25/4xy [ 1/2(x + y)P(x, y, T)
(x + y)(x2 + y2)3/4

exp 1V/X2 + Y21;

A

25/4 xy exp[_21_(x + y) lv/x2 y2 1 [ e- ’2/2
x2 "- y2)3/4(x + Y) 3 -- jV/.__cx

dt,

21/4
y2)l/4[T T,(x, y)];

( +

y O(1)," x, T---,oc with

+ TP(x, y, T) exp| 2k x2]X 1 2__T);

y 0(1); x,T with

P(x, y, T) --exp + x
x3/2

y O(1); x,Tc with T x/X/ (more precisely T- x/V/- O(v/--))
A1

P(x,y,T)-2]4Y+’exp[-(1/2+ 1 ) 1 1 J 2/2

2/4[ X .
o(1);

use (d)-(f) and the symmetry P(x, y, T)= P(y,x, T);

_l
e (x + y)/2e T/2

2 T3/2

(i) To, + y O(T)
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P(x,y,T)-Peq(X, y) e (x + y)/2e T/2 [ J(x, y, T)
2rT3

(x q- u)(y q- u)exp --(x
0

+ + +
4T .du,

x exp[- (z

In (a)-(c) it is assumed that x,y,T are simultaneously large and of the same
order of magnitude. In parts (h) and (i), Peq is the steady-state or equilibrium distri-
bution, as given by (3.7) with a- + 1. We also note that when T---+oo with x,y-
O(V/-), J and J1 are both of order 0(T3/2). However, aS (gg2-4-y2)/T--O, J1
becomes asymptotically larger than J.

To discuss the asymptotic results, we refer to the case where x, y, T are all large
and of comparable magnitudes as "interior" asymptotics, as this corresponds to the
interior of the (x, y, T) space. When two of (x, y, T) are large and the third is not, we

call the resulting asymptotic expansions "face" asymptotics; when only one of
(x,y,T) is large, we call it "edge" asymptotics. Thus, (a)-(c) refers to interior
asymptotics, (d)-(g) to face asymptotics, and (h) and (i) refer to edge asymptotics
along the T-axis or edge. Along the face where x,y+ with T fixed, we can easily
show that (a) remains valid. Along edges where x+ with y,T fixed (resp. y
with x, T fixed) we can show that (d)(resp. (g)) remains valid. Hence, it is necessary
to give different expressions along only two of the three faces and one of the three
edges.

Parts (a)-(c) show that for each fixed, large x and y, there is a critical time
T- T. at which the process has reached its steady-state. For times T < T.,
transient effects are important and the leading term in the expansion of P depends
upon time, while for T > T., the leading term depends only upon x and y. We refer
to the cylindrical surface T T.(x,y) as a "front"; as time increases, this surface
moves outward and eventually covers the entire space. Such fronts were previously
found in other, one-dimensional queueing models (see [18, 23]).

Part (h) gives the standard "relaxation rate" approximation. Such asymptotics
are discussed for single server queues in Cohen [5] and for two tandem M/M/1
queues in Blanc [2]. Our analysis shows that for large times T, the behavior of P is
different according as x, y O(1) (cf. (h)); x, y O() (cf. (i)); or x, y O(T) (cf.
(a)-(c)). We also note that along the face y 0, the transition in the behavior of P
occurs at T x/, which is where the cylindrical front intersects the plane y 0.

We next give analogous asymptotic results for the unstable cases, where p > 1 or

Thmrem 3: For xo yo O and p> 1, we set a= -1. Asymptotic expansions

of P(x, y, T) are as follows:
(a) x,y,T

P(x,y,T) L(x,y,T)exp[ap(x,y,T)]



320 CHARLES KNESSL

(c)

(d)

(I)(x,y,T) x+y-T x2+y2
2 4= 4 [(x-T)2+(y-T)2]

L(x, y, T) V/ xy 1
T(x + ) v/:+ +y O(1);

x2.1V 1 2___T)4TJrT x + fit( y +

P(x, y, T) e(z + u)/2e T/2 FJ(x, Y, T) Jl!-x’-Y: T) .7--Y -- V/Tr3/2TT/2j,
where J and J1 are as in Theorem 2, part (i).

Theorem 4: For xo yo O and p l, we set a O; the asymptotic expansions
are as follows:

a x y T----cx:

[ x2 + Y2]
r

xy 1 expP x y, T) X/
T x + y)V/x2. + y 4--T J

(b) y O(1); x, Toe

P(x, y, T) exp 7rTx

(c) o(1); ,T-

.(., , T) x ..+

(d) x,y O(1); Toe

P(x,y,T)

T---,o, x2 + y2 O(T)

x+y
7r3/2 x2

__
y2

P(x,y,T)
o

47r3/2T5/2 ]3V/I r]
0 0

exp[ (x + u)2 + (y + u)214T drl du.

We observe that if p >_ 1, P0 as Toc for any fixed x,y. The expression in
Theorem 4, part_(e) is in fact the exact result for P- PII when a- 0; for
with x, y O(v/T), this cannot be simplified any further.

If we specialize the result in Theorem 3 (a) to x-T- O(x/) and y-T-
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O(x/r), we obtain

1 (x’ (Y’) T,y’Lexp exp 4T 4T J’ x’-x- -y-T (3 10)

This is similar to the diffusion approximation for the standard M/M/1 queue for
p > 1 and shows that the two queues decouple in this limit. However, it is important
to note that Theorem 3 (a) is more general than (3.10) as the former assumes that
x,y,T are large, but x/T and y/T are not necessarily close to one. The coupling of
the two queues is evident by the form of the function L(x,y, T). The results in part
(d) again give the standard relaxation rate asymptotics.

Next we give analogous results for non-zero initial conditions (x0, Y0)"
Theorem 2": For fixed conditions xo and Yo and p < 1, we set a + 1.

Asymptotic expansions of P(x,y,T) are as fqllows:

(a) , ,-. T < T,(, ) / y2

I+ sinh 2- ] + x + 2T

(b) x, y, Toc with T > T,(x, y)

same as Theorem 2, part (b)

(c) x, y, T---,c with T .. T,(x, y)

same as Theorem 2, part (c)

same as Theorem 2, part (e)

(f) y O(1); x, T---,oc with T , x/V

same as Theorem 2, part (f

x O(1); y,Tc

use (d)-(f) and the symmetry P(x, y, T; Xo, Yo) P(Y, x, T; Yo, Xo)
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(h) x,y O(1); T---,c

P(x, y, T) Peq(X, y)
/ /
2 7r3/2 x2 + y2

(i) T--,, + O(T)

1 te- (x + y)/2e- T/2

2rTr T3/2

P(x, y, T) Peq(X, y)

2T3 2 ]X/r3/2TT/2

+Xo+Yoj +x-y
4rT2 2 -5J3 + XXo + YYo

4rT2 exp

J2 / exp
(x+u)2+(y+u)2

du,
0

J3 / [Y0(Y + u)- Xo(X + u)]exp (x + u)2 + (y + u)2
4T du.

0

Here t,K, Peq, J and J1 are as in Theorem 2. We note that when x,y,T are all
large, the dependence of P on the initial conditions disappears as time increases past
T,(x, y). For Toc with x, y- O(V/), we have J2- O(V/) and J3- O(T).

Theorem 3": For fixed initial conditions x0 and Yo and p > 1, we set a- -1.
Asymptotic expansions of P(x,y,T) are as follows:

(a) x, y, T--cx

{ IP(x,y,T) exp[O(x,y,T)] L(x,y,T)exp 2 r-- jj
1+ rT(x + y).e [ (XXo (YYo (XXo YY0)I}-(o + o)/2 xcosh\2T)sinh\-.)+ysinh\2r)cosh(-.

(b) y 0(1); x,

exp[X+y-T x2P(x y, T) [. 2 4T
o

{ X I (XO_W__Yo)X] sinh[Xxo YOcosh(_l}x+x/T
exp

2/-T J+ \2T]+--

(c) x O(1); y,Tc

use (b) and the symmetry P(x, y, T; Xo, Yo) P(Y, x, T; Yo, Xo)

(d) x,y O(1); Tcx
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P(x, y, T) e (x + y)/2 1+ x2 2 T3/2

() T-oo; + O(T)

P(x,y,T) e(x+Y)/2e-(z+Y)/2-T/2{Je +(l+x+Y) Jl
2T3 2 3/2T7/2

4T 8TaJa + 4T

Theorem 4*: For fized o and go and p= l, we se
sions for P are as follows:

() ,,T

_.xp
( + )g,,,,+ TP(, T)

1 [xcosh(Xxo (YYo (XXo {’YY0)I}+ X + YL \2T )sinh\-ff)+ y sinh \-ff-)cosh\--
y O(1); (x,Tc)

x (XXo YOcosh(P(x, y, T) Texp y + 2-2T-T + -lx sinh\---/ +-(c) x O(1); y,

use (b) and the symmetry P(x, y, T; Xo, Yo) P(Y, x, T; Yo, Xo)

(d) x,y O(1);

same as Theorem 4, part (d)

T-oo, + y O(T)

+ I o,_,+ oj - o +oP(x, y, T) xx + YYo exp + +
4rT2 4--T ] 4rT2 2 8rT3J3 4.T3

(x / u)(y + U)
exp

47r3/2TS/2
o o r/av/i r] 4T

We note that when Theorem 3* (a)is specialized to the scaling x- T- O(V/)
and y-T- O(V@), we again obtain the decoupled Gaussian form (3.10), a.nd the
dependence on the initial conditions disappears in this limit. It is also possible to

show that the double integral f f [expression in Theorem 4* (e)] dxdy- 1, which
0 0

shows that when p 1 (a 0), the density is concentrated in the range x,y
O(V/), as we might expect. For p > 1, Theorem 3* (a) shows that the density is
concentrated where x- T, y- T- O(v@). For p < 1, it is concentrated for x,y-
O(1), and we can easily show that the double integral of the right-hand side of
Theorem 2* (h) vanishes.

All our asymptotic results apply for some or all of x,y,T large but with fixed
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initial conditions xo, yo. Other interesting insights may be seen by evaluating
P(x,y, T;xo, Yo) for large initial conditions (i.e. x0 and Y0 large), but we do not con-
sider these here. Experience with other models (see [18, 23]) shows that asymptotics
for large initial conditions better reveal how the two-dimensional process
(X(T), Y(T))interacts with the barriers (reflecting boundaries) at x 0 and y 0.

4. Derivation of the Integral Representations

We obtain the representations for P(x,y,T)in Theorem 1 by solving (2.10)-(2.14).
We write the solution as P PI + PXI where PI will satisfy (2.10)-(2.13) and be
finite at the origin (x,y)= (0,0). Hence PI is the Green’s function for the parabolic
PDE (2.10) with the BC (2.11)and (2.12). The second part PII will satisfy (2.10)-
(2.12) and homogeneous initial conditions (i.e., Pil(x,y,O)= 0). To uniquely deter-
mine PII, we will use the normalization condition (2.14).

First we set

Pi(x,y,T)- e-a(x-Xo)/2e-a(u-Uo)/2R(x,y,T) (4.1)

to find that R satisfies

a2RT-AR---R, Rx+Ry-Owhenx-Oor y-0,

R IT o 5(x- Xo)5(y- Yo),
(4.2)

2 is the Laplacian. Introducing the Laplace transform (x,y,T)-where A 02x + 0
f e OTR(x, y, T)dT, setting ) (0z + 0) and noting that
0

(o + o)( o)( o) (oo + o)( o)5( o),

we find that Q (OXo + Ouo)Q where Q satisfies

A- 0 + - 5(X- Xo)5(y- yo), O O when x O or y O. (4.3)

This is a standard Green’s function problem for the modified Helmholtz operator
with Dirichlet boundary conditions. The solution of (4.3) is easily obtained using the
method of images, and we have

{ (i a2 )2)

a2Ko(/O+--V/(X-Xo)2+(y+yo)2)}. (4.4)

Using (4.4) we compute )- (0Zo+0o) and then from - (0 +0)-(,
where the operator (0 + 0)- is defined by
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(x -+- 50y)- 1F(x, y) i F(t -4-

(x+)/

x-y y-x)2 ’u+ 2
du

i F(u+x,u+y)du.
0

We denote by and .5- 1 the Laplace transform operator and its inverse, respec-
tively. Hence,

(0) i e-TF(T)dT’ F(T) .5-1[(0)1_ 1i eOT-(O)dO[F(T)]
0 Br

where Br is an appropriate Bromwich contour in the complex 0-plane. From the
tables of the Laplace transforms, we obtain

.5 1[/t’0(1li _t_ a)J exp [ a2---T-xj,,k2l k > 0, (4.5)

where k is any constant. Using (4.5) and (4.4) we obtain the solution to (4.2) in the
form

R(x, y, T) 4T.e
a

4T

+ exp 4T exp 4T

(X--Xo)2+(Y + y0)2}exp 4T

and then PI is given by (4.1). A straightforward calculation shows

(0x + 0y) l(0x0 + OyO)exp[-(( x0)2 + (9 + 0)2)]

and

--(Ox-t-Oy -l(0x0 + 0y0){ exp[--4--((x + x0)2 + (y y0)2)l}

o

The use of (4.6) in (4.1) then gives precisely P1 in Theorem 1.
We note that PI-+O as T-oc and thus (4.1) cannot represent the full density of

the diffusion model, especially when p < 1. The solution (4.4) to (4.3) is a particular
solution to the Green’s function problem. However, we now show that there also
exists a non-zero solution to the corresponding homogeneous problem (obtained by
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dropping the delta function in (4.3)) that plays a role in ultimately determining
P(x,y,T).

We return to (2.10)-(2.12) and set

Pii(x, y, T) e a(x + y)/2e a2T/2U(x, Y, T)

to find that U satisfies the problem

AU UT, Ux + Uy 0 when x 0 or y 0, U 0 when T 0. (4.8)

To solve (4.8) we introduce the Laplace transform (x,y;s)- f e-sTu(x,y,T)dT
0

and set V- U + U. The function V- V(x,y;s) satisfies the modified Helmholtz
equation (A s)V 0 with the boundary conditions V(x, 0; s) V(0, y; s) 0. The

only solution of this problem that is integrable both as p- V/x2+ y2--,cx and as
p0 is given by

V(x, y; s) F (s).x:y2K2( v/-V/x2 + y2), (4.9)

where K2(. is the Bessel function. By using integral representations for Bessel func-
tions we also have

2xy y’2 if sinh(2r)e-X/xcshn-iV/Y sinh

x2 + y2g2(x/V/x2 + -- e Td (4.10)

and this holds true for x > 0 and y _> 0.
Using the representation (4.10)in (4.9) we obtain

(4.11)

where F(s)- -(s)/(2V/). Finally, we obtain the solution U to (4.8) by inverting
the Laplace transform in (4.11). Then PI1 i2 given by (4.7). It remains to determine
the function F(. ). In view of (4.7)-(4.11), PII- [PlI](O) is

] isinh (2)
e v/O+’a2/2(xcsh?+iysinhr)dr]. (4.12)PII e a( + )/2F cosh r/+ sinh r/

We use (2.14), which in terms of Laplace transforms is

PI(X, y; O)dx dy + Pii(x, y; O)dx dy
0 0 0 0

(4.13)
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By noting that PI satisfies (2.10) and this function is finite at the origin x-y- 0,
we integrate (2.10) over the first quadrant and obtain

(iT
0 0 I" 0

+ J -[PI, y(x’O’T)+aPI(x’O’T)]dx
0

f + j" o, o,
0 0

(4.14)

Here we have used the boundary conditions (2.11) and (2.12).
evaluate PI(O, O, T) in (4.14) we are led to

Using Theorem 1 to

1 d i i PI(X’ y’T)dxdy xO + Yo (4.15)2 dT 4vfT3/2 exp
aV/ x0 + Yo

o o

Taking the Laplace transform of (4.15) and noting that f f Ps(x,y,O)dxdy- 1 we

obtain o o

i i I(X’YlO)dxdy- l-exp (xO+yO) - + (4.16)
0 0

Next taking a > 0 and integrating (4.12) over the first quadrant, we arrive at

sinh(2r/) 4 ).dr/,F()i coshr/+isinhr/(a+2x/rcoshr/)(a+2ix//-ssinhr/
(4.17)

where s- 0 + a2/2. The last integral is readily evaluated using residues. Its inte-
grand has simple poles at r/- ir./4, 5ir/4 and at - iuo where u0 is the solution to

sin(u0) a/(2V/- a/V + 2a2 in the range 0 < u0 < r/2 (recall that a > 0). Let
Io denote the integral in (4.17), which goes from - to + c in the r/-pIane and let

11 denote the integral over a shifted contour that goes from -cx + ir/2 to + c +
ir/2. The only poles inside the strip 0 < Ira(r < r/2 are at r/- ir/4 and r/- iuo.
Hence

I0 -I1 --2ri[res(r/- )+ res (r/- iuo)1. (4.18)

By letting r/---,- u + ir/2 we see that I -I0. Then explicitly computing the resi-
dues in (4.18) we find from (4.17) that

i S
o o i0 + a2/2

(4.19)



328 CHARLES KNESSL

In view of (4.13), (4.16) and (4.19), we determine F as

F -V/a2+20+a O+ exp (zo+Yo) -2rO (4.20)

In obtaining (4.20) we have assumed that a > 0. However, an analogous calculation
shows that in fact the same result is true for a _< 0. With (4.20) and (4.12) we have
now completely determined Pll and hence the final result for the density P(x,y,T) is
P - 1[I + II] PI + 1[ii]. We have thus established the representation
in Theorem 1 arising from (3.1), (3.4)and (3.6).

We now derive the alternate representations (3.3) and (3.5) for PI. To obtain
(3.5) we use the identity

V/(cosh r/+ sinh rl)Udu1 -V/ e (4.21)cosh r/+ sinh
0

to express PII in (4.12) as a double integral. However, the integral over r/ (with
(4.21)) may be explicitly evaluated by shifting the contour with 7-z + iw, where
w w(x, y, u) is chosen to satisfy

cos(w) x + u sin(w)
+ + (v +

Hence,

0 --oo

+ + (v +

h//V/(x + u)2 + (Y + u)2csh Zdz du

V/-/ (-sinh(2w))J cosh (2z)e
0

v/V/(X + u)2 + (y + u)2cosh Zdz du (4.22)

-4 i sinwcswkK2(v/(x + t)2 + (y -+- t)2)dzt’
0

where s 0 + a2/2. Using (4.20) and expressing sin wcosw in terms of x,y and u, this
establishes (3.5).

To obtain (3.3), we invert the transform in (3.5). We use

K2(z)--1/2z2/ t-3e-t/2exp(--[Z2)dt
0

in (3.5) to get

PII--^ 2 83,2 +
o

(x + u)2
2t
+ (y + u)2)l dt du.

(4.23)
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Then using the inverse transforms

I 1 / I n-i kV/J e-k2/4T ( )2.,-1 G(O) .L-l[a(o)]()d, -1 s 2 e n+lH k

o

where Hn(.)is the hUh Hermite polynomial, we ultimate obtain (3.3) from (4.23).
This completes the analysis.

5. Asymptotic Expansions

We establish Theorems 2-4 (and also 2"-4") by evaluating Theorem 1 in various
asymptotic limits. We do not give all the technical details, but simply sketch the
main ideas.

We first consider p<land set a= +1 in (3.5). For any fixed 0 with Re(0)>
-1/2 and x and/or y large, we can approximate the Bessel function K2(.) by its
asymptotic expansion:

z-- [ 15 -2)1 (5.1)K2 z e 1 + - + O z z cx:)

Using the leading term in (5.1)in (3.5), we evaluate the integral over u

asymptotically for x2+ y2----o. The major contribution to the integral in (3.5) will
come from the lower limit u 0, and Watson’s lemma [3] then yields

0

+ + +

The error term in (5.2) is order O(p-1)(p- V/X2-t y2) and it may be easily
calculated by using the higher order terms in (5.1) and then carrying out a more

precise evaluation of the u-integral in (3.5). We use (5.2) in (3.4) and set 0 - 1/2
to get

x2xye-T/2+ -(x+y)/2V{Br2I/4 (T-/V/x2+y2d} (5.3)PII y2)3/4
e 1 e

where Re()> 1/2 on the Br contour.
For x,y and T simultaneously large, we evaluate the integral in (5.3) by the

saddle point (or steepest descent) method. There is a saddle point with

-[T- VV/x2 + y2]- T- 1 _v/X2 + y2 0 (5.4)2V/,
so that

x2 + y2 (55)4T2
Thus the saddle lies on the positive real axis and we can easily show that the
directions of steepest descent at (0 are arg(- 0) /2. From (5.3), we also note
that the integrand has a simple pole at (= 1/2 and a branch point at 0. For
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0(x, y, T) > 1/2, the saddle lies to the right of the pole and we may thus shift the Br
contour into the steepest descent contour through 0" From (5.5), we see that

0 > 1/2 is equivalent to T <//x2+ y2
2 T, and this establishes part (a) of Theorem

2. We also note that

x2 + y2 2 x2 + y2 1T 0- v 0v/ + =

When T > T,, we have 0 < 1/2. Thus shifting the contour in (5.3) into the
steepest descent contour, we must take into account the contribution to the integral
from the pole at 1/2. We can easily show that the residue from this pole domin-
ates the integral through the saddle point and hence

1 J 21/4
IN

-1Br

e_,T- V4X2 -t- y2d [residue at 1/2]
23/4eT/2e 4x2 _f. y2 /

Using the above in (5.3) we obtain part (b) of Theorem 2. The dependence on time
disappears and the result is precisely the leading term in the asymptotic expansion of
the equilibrium density Pq(X, y), for x and y large.

When T , T,, the saddle point and pole are close to each other. Now we expand
the integrand using 1/2 and set

with which

1 21/4
Z-- O(p-1/2)2 (x2 A- y2)1/4

21/4Tr- /4X2 + y2 + Z "(x2 + y2)1/4
(x2 q-21/4Y2)1/4.1

and hence

x +y2 z2 o(1)2 +- +

IN 23/4eT/2e V/x2 + y2/V/ 1 / eAzez2/2dz
2ri --, A-

C

21
(x2 A- y2)1/4

Here the contour C goes along the imaginary axis in the z-plane, with an indentation
A u2to the right of z- 0. The last integral is easily evaluated as (2r)-1/2f e- /2du

and thus obtain part (c)of Theorem 2.
Next, we consider the face asymptotics where y- O(1) and x,T--oc. For

and y O(1), we have [(x + u)2 + (y + u)2]1/2 x / u -t- o(1). Then the leading term
in the expansion of JN in (5.2) becomes

JN -(0 + 1/2)3/4 x--/2
y + V/0 + 112 exp[- V/0 + 1/2x]. (5.6)
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Using (5.6) in (5.3) we again expand the {-integral using the saddle point method.
The analog of (5.4) is now T- z/(2) 0, so that the saddle point is at {;
x2/(4T2). For T < x/X/ we have {; > 1/2 and this leads to Theorem 2 (d). Eor
T > ,/V/-, we have {; < 1/2. Then the pole at {- 1/2 determines the asymptotic
behavior of P and we obtain Theorem 2 (e). Theorem 2 (f) applies to the case where
; 1/2, and the result is derived in a similar manner as for part (c).

We examine the limit T---,ec with m,y o(T). First we fix z and 9. Eor
(x2+ y2)/T2---O, the saddle point in (5.5) approaches the branch point at - 0 and
hence the calculations that led to parts (a)-(c) of Theorem 2 are no longer valid. For
T---,oe, the leading term for P is clearly the steady state density Peq" To obtain the
approach to equilibrium we write

1 [eOTiidOP- Peq 27ri J
Br

where on Br’, 1/2 < Re(0) < 0. For T--,oc the behavior of the integrand in (5.7) is
determined by the branch point at 0- -1/2((- 0), which is the singularity with
the largest real part. We write

2 2 f -w z2K2(z)---fi+--fid we exp -- -1 dw (5.8)
0

and note that K2(z 2z-2 as z---0. We first compute the contribution to (5.7)
(with (3.5)) from the first term in the right-hand side of (5.8), which gives

2ri r X/r- 1 [(x + u)2 + (y + u)]2e
Br’ 0

For small, we have 4/V/2)-1- -4-4V/+O( and the u-integral in (5.9)is
easily evaluated as

[(* + + (v +
0

_1 x+y x2+y2 > 0.du - x2 + y2,

Thus (5.9) becomes, for

x+y
3/2 x2r + Y

2e
-(z+y)/2e -T/2

T3/2 (5.10)

To evaluate the contribution to (5.7)(with, (3.5))from the integral in (5.8 we use

(5.8) in (5.7). Apart from the factor e- T)/2, this gives (with A"- (x +y+

) + ( + )2)
2 1 / 2____ eT / (x+u)(y+u) [K2(v/v/(x+u)2+(y+u)2)r 2-i V/- 1 (x + u)2 + (y + u)2

Br 0

2 1 ]dud
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2)eT we- w exp 1 dwd du

0 Br 0

8r / x -t- u
4

--t- u)

0

1 eT( exp T d we-Wdwdu
0 Br

/,4 We
w 5(T) 5 T dw du

0 0

7r A4 u)(_ 1) we-
A2k4T] kw dwdu

0 0

1 (x + u)(y + u)exp du
2rT3

0

1 u2 exp du (since T-oe with x, y O(1))
2rT3

0

1 1 (5 11)

Here we have set 5(T)= 0 (since T--,o) and used some standard identities involving
delta functions. Upon multiplying the last expression in (5.11) by e- ( + + T)/2 and
adding the result to (5.10) we obtain part (h) of Theorem 2.

Now observe from (5.7) that for x,y,T all large and of the same order, the
leading term in the expansion of P-Peq is determined by the saddle point in (5.5).
Thus P-Pea is given by the expression Ke in Theorem 2 (a) for this range of x
and y, and T > T,. However, Ke, when expanded for x, y0, does not agree with
the expression in Theorem 2 (h). Thus, the two expansions do not "asymptotically
match" and this indicates that another expansion(s) is needed for the range T
with x,y but x,y- o(T). To construct this intermediate expansion we return
to (3.5) (with a= +1 and x0=y0=0), scale ( to be small, and use the integral
representation

0
which follows from (5.8). We thus obtain

( +y+T)/22 1 f 2 e(T(x + u)(y + U).KP Peq e- 2 1 A2 (A)dud
Br 0

0 0 Br
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exp T d dw du

/-(x -t- y -t- T)/2 (x + u)(y + u) w- 3e w/25" T dwdu

0 0

0 0

4T
du

0

1 e-(x + y + T)/2j. (5 12)
2.T3

This gives the leading term in Theorem 2, part (i). From the above, it is easy to

show that J- O(T3/2) for x,y- O(x/-), and the integral cannot be further simpli-
fied in this limit. We also have

2T exp- ocJ J(x, y, T) xyx + Y 4-- J’ T

2+y2
T

Comparing this with the expansions for x,y O(T) and x,y O(1), we see that the
expansion on the intermediate scale matches properly to the other two. To compute
the correction term in part (i) that arises from J1 we simply refine the small
approximation of the integrand to 2/(V/- 1)- -2(-2V/3/2 + O((2). Then a

calculation completely analogous to (5.12) yields the term proportional to J1 in
Theorem 2 (i). We also obtain the asymptotic result for x,y- O(v/-) by using
representation (3.3) for PII" This completes the proof of Theorem 2.

Next we consider p>l and set a= -1 and x0=y0=0. The proof of Theorem
3 is similar to that of Theorem 2. The main differences are that the factor
-(+)/e in (5.3) must be replaced by e(x +y)/2, and --1 in the integrand’s

denominator must be replaced by X+ 1. The saddle point is as in (5.4) and (5.5),
but now the pole at 1/2 is absent. Thus, the saddle point approximation
P Le is valid in the entire interior of the (x, y, T) space. The face asymptotics are

again obtained (for y O(1)) by using (5.6) and the saddle point method to evaluate
the integral over 0 (or ). The edge asymptotics follow from (5.7)-(5.12), after the
two changes noted above.

When p 1, we set a 0 and obtain

f + +
r 2ri (x + u)2 + (y + u)2

Br 0

+ + + eo.
(5.13)



334 CHARLES KNESSL

Applying the representation for K2(. above equation (5.12), to (5.13) we can expli-
citly evaluate the integral over 0. Then, after some elementary manipulation, we are
left with a double integral, which is the same as that in Theorem 4 (e). The other
parts of Theorem 4 are easily established using either the last integral, or (5.13) and
the saddle point method.

Finally, we briefly discuss the proof of Theorems 2*-4*. For fixed (xo, Yo) the

initial conditions in (3.5) appear only in the factor exp (x0 + Y0) - +-q4-- and

this does not affect the location(s) of the saddle points. This factor, when evaluated
at 0 0-1/2, multiplies the function K in Theorem 2* (a). The other terms arise
from the expansion of PI in (3.2). The calculation of these terms is routine, as it
only involves the asymptotic expansion of the integrals in (3.2). These may be ex-

pressed in terms of standard error functions whose asymptotic properties are well esta-
blished. The functions J2 and J3 in Theorem 2* (i) arise from PI" In the limit T--
oe, with x, y- O(), these integrals cannot be explicitly evaluated.

Thus, we have given very detailed asymptotic results for large space/time scales,
but fixed initial conditions (xo, Yo). If x0 and/or Y0 are also large, the asymptotics be-
come invalid, as the locations of the various saddle points now also depends on initial
conditions.

Further interesting insights into the behavior of the density P(x,y,T;xo, Yo) can
be seen by considering large initial conditions, and we hope to accomplish it in sub-
sequent work. For example, when xo, yo are both large, and (x,y) is sufficiently far
from the boundaries, we can approximate PI by the first of the four terms inside
{...} in (3.2). This corresponds to a free space, two-dimensional diffusion process and
for certain ranges of (x,y,T) (e.g. short times) we have PI >> PII and thus P PI"
We can view the other three terms inside {...} as interactions with one of the two
boundaries, and PII corresponds to the process interacting with both boundaries
simultaneously. An asymptotic analysis for x0 and Y0 large would better quantify the
time and magnitude of the boundary interactions, as was the case with the one-dimen-
sional models studied in [10, 18] and [23].

Appendix A

We obtain the density for the sum process X(T)+ Y(T) by evaluating the Laplace

transform of P(w,z-w,T)dw. We first evaluate the contribution to this integral
0

from PII, using representation (3.6). Setting s- 0 + a2/2 we have

Cx3 Z

/ coshisinh(2r])r]+ sinh r] f exp[- X/Q((z w)cosh r] + iw sinh r])]dw dr]
--cx:) 0

/ sinh(2r]) [e
o V cosh2r] + sinh2r]

v/Z sinh r/ v/;z osh (A.1)
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J sinh(2o)
X_

o
cosh2r/+ sinh2 r/e ivzsinhrd7.

The last integral is easily evaluated by shifting the contour down, with r]-v- ir/2.
The integral over the new contour vanishes, since the integrand is an odd function of
v. Inside the strip r/2 < Im(r/) < 0, there is a pole at r/= -ir/4. Hence, (A.1) is
equal to

2r/[residue at -ir/4] exp z.

Using (A.1), (A.2), and (3.6) we obtain

z

j iI(W,Z- w T)dw X/ -+- a
20

0
ox.I(-)o-(/ (A.3)

where zo xo + Yo" z
Next we consider the contribution to f P(w,z- w, T)dw that comes from PI" In

view of (3.2), we write o

z

PI(W,Z- w,T)dw e

0

-a(z-zo)/2 -a2T/2
4rT (A.4)

where the 2j’s correspond to the respective contributions from the four terms inside
{...} in (3.2). Thus we have

and

1- j exp{-T{(-t- -Xo nt-( -yo)21} dw,

{/ / /z /1}exp + w + xo + -- w + Yo dw,

3

loo-zl { / z) / z
2T exp v+xo+w-- -t- v-yo+--w dvdw

0 z/2

oo z

// o { zl z 1}---exp V+Xo+W-- + v-Yo+--w dwdv

z/2 0

z12

exp v + xo- + Yo- V-- dv
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/
Setting v- v in the first part of P3 and adding the result to (A.5) yields

1 -{- 2 + 3 exp - + w- xo + w- Yo dw

/ ), (:exp -j+w+xo + -w+Yo dw.

(A.6)

A calculation analogous to that for z23 leads to

P4--/ exp{ 4T( x-J--J-( -Y)21} dvv z)2 v

z/2

exp v-xo--j + v+Yo+-j dv.

z/2

(A.7)

We set v--,- v in the second part of 4 and then add (A.6) to (A.7), which gives

1 + 2 +3 +4 exp (w + -- x0)2 + (w + Y0 )2 dw

(A.8)

ox.(_- -. j.

Using (A.8)in (A.4) and taking the Laplace transform over the time variable we
obtain

z

f i(w,z-w,O)dw-- e-a(z-zo)/2 -(z+z0)/-2
2V/ [e

,z-zo]_e ]. (A.9)
0

Here we have used 2..{(Tr)-l/2exp[-8A-]}--0-1/2exp(- [AIv//2). By adding

(A.9) to (A.3) and noting that s + a2/2, we obtain precisely expression (3.8).
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