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1. Introduction

Congestion control based on thresholds [4, 7-10, 15] is aimed to control the traffic
causing overload before a significant delay builds up in the network and so to satisfy
the quality of service (Qos) requirements of the different classes of traffic. The QoS
requirements are often determined by two parameters; the loss probability and the
mean delay [5]. S.Q. Li [10] proposed a congestion control with double thresholds
consisting of an abatement threshold and an onset threshold to regulate the input
rate according to the congestion status. Packets are classified as one of the two priori-
ties: high priority and low priority. When the queue length exceeds the onset thres-
hold, the low priority packets are blocked and lost until the queue length decreases to
the abatement threshold. O.C. Ibe and J. Keilson [8] extended this model to the sys-
tem with N doubles of thresholds (N _> 1) and N different priority packets. For the
above systems, they assumed that the arrival processes are a Poisson process [8] and a
Markov modulated Poisson process (MMPP) [10], and they obtained the steady state
characteristics.

In order to find out performance of a congestion control, first we need to analyze
the transient behavior of the system. The Laplace transform and z-transform
methods [1, 6, 14, 16] are usually applied within conventional transient analysis. It
seems not to be easy to analyze the transient behavior of the system with finite buffer
and congestion control based on thresholds by the above transform methods. For
transient analysis of such a system, D.S. Lee and S.Q. Li [11, 12] used a discrete time
analysis with its time indexed by packet arrivals. They assumed the arrival processes
are MMPP [11] and a switched Poisson arrival process [12] and obtained the one-step
transition probabilities of an embedded Markov chain. But they considered a conges-
tion control with only one threshold called partial buffer sharing policy.

In this paper, we consider the congestion control with double thresholds as in [9]
and [10]. We assume that the arrival process is a queue-length dependent Markovian
arrival process (MAP). The motivation of this model comes from the study of the
congestion control in a signaling system No. 7 (SS7) network [15]. A congestion con-

trol called inernational control in a SS7 network is a reactive control with double
thresholds, which uses a notification to inform senders about the congestion status of
the system. Each sender regulates its traffic load to the system when he receives a

notification, and uses timers to resume its traffic load. For such a system, the arrival
process can be modeled as a queue-length dependent Markovian arrival process
(MAP) [4].

For a transient analysis, we use the discrete time analysis as in [11, 12] but using
the advantage of simple notations of MAPs we obtain the one-step transition probabi-
lities by a simpler derivation than that of D.S. Lee and S.Q. Li in [11, 12]. The
models dealt with in [11, 12] are special cases of our model. We obtain the mean
delay and loss probability of the nth arrival packets. In order to evaluate the per-
formance measures we give an algorithm, which enables us to reduce the complexity
of iterated Kolmogorov equation in Section 3. We apply our result to analyze the
international control in SS7 networks. In the numerical examples, we show the im-
pact of various parameters such as the value of the thresholds and the length of times
and input rates on the transient performances.

This paper is organized as follows: In Section 2, we give a transient analysis of an

MAP/M/1 queueing system at arrival epochs in order to provide better understand-
ing of the main result of Section 3. The one-step transition probabilities are derived
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by using matrix formulation. In Section 3, we consider the congestion control based
on double thresholds with queue-length dependent MAP and derive the transient
queue length probability at arrival epochs. We give performance measures and an

algorithm to compute the performance measures. In Section 4, we describe an analy-
tic modeling of the international control in SS7 networks and present numerical exam-

ples and observations.

2. Transient Analysis of MAP/M/1 Queueing System at Arrival Epochs

In this section we study an MAP/M/1 queueing system without any congestion con-
trol to provide a better understanding of the system with congestion control in Sec-
tion 3. We assume that the packets arrive according to a Markovian arrival process
(MAP) with representation (C,D), where C and D are m x m matrices [2, 3, la].
Here C is the rate matrix of state transitions without an arrival and D is the rate
matrix of state transitions with an arrival. The service time of a packet is assumed
to be exponentially distributed with parameter #. We denote the number of packets
in the system and the state of the underlying Markov chain of the MAP at time by
N(t) and J(t) (1 <_ J(t) <_ m), respectively. Then the two-dimensional process
X(t) (N(t),J(t)) forms a continuous time Markov chain. Let T, denote the nth
packet arrival epoch. Then we form an embedded Markov chain {Xn In >_ 0} defined
by

Xn-(N(Tn+),J(Tn+)).

Let the nth step transition probabilities from X0 to Xn be denoted by

pn. A

30 j(io, i) P{Xn (i, j) Xo (o, Jo))

and in a matrix form by

pn(io, i) A_ [pjno, j(io, i)]

for 1 _< _< 0 + n. Let the one-step transition probabilities be denoted by

PJ0, J(i i) A_ p1.
3o, j(io, i)

and in a matrix form by

P(i0, i) - pI(i0, i).

The Chapman-Kolmogorov equations for {Xn} are

p’(i0, i)
i0+1

k =max(1,iTl-n)
P(io, k)Pn- l(k, i) for 1 < _< 0 + n. (1)

Hence, the queue length probability Pn(io, at the nth arrival epoch can be obtained
from (1) recursively once the on-step transition probability P(i0, i) is known.
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2.1 One-Step Transition Probabilities

For convenience, we define the set of all states (i, j), 1 _< j < m, by level i.
the exit time from level i0, i.e.,

Let S be

S -inf(t: N(t) iolN(O -io).

Then we have the following lemma.
Lemmal" For o>1,

and

P{S > s,X(s)- (io, k) lX(O -(io, Jo)}ds -((#I-C)-I)j0,
0

P{S
0

> s,X(s)- (0, k) lX(0 -(O, jo)}ds -(-C-1)jo, k.

Note that the left-hand side of (2) is the expected time that X(t) spends in state
(io, k until the Markov chain departs from its level o starting from state (io, Jo)"

Proof: See Appendix 5.1.
Let the transition probabilities of the underlying Markov chain {J(t)]t > O} with

the first transition of level be denoted by- P{X(S) (io 1, j) X(O) (io, Jo)}Rjo, j - P{X(S) (io + 1, j) X(O) (io, Jo)}Gjo, j

for o > 1, and - P{X(S) -(1,j) X(O -(0, jo) }.Hjo, j

Define matrices l, G, and tl as

R--[Rjo, j],G -[Gjo, j],H- [Hjo, j],

which are all m x m matrices. Lemma 1 yields the following.
Lemma 2:

l (#I C) 1#I (3)

G (#I- C)- 1D (4)

H- (-C)-ID.

Proof." See Appendix 5.2.
Now we are ready to arrive at the one-step transition probabilities.
Proposition 3: For <_ o + 1,
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Rio- + 1G
P(io, i)

if > 1

R’H if 1.

Proof: We will show that

P(io, i)-RP(i0-1,i) for 0>_i

and

G ifi>l
P(/- 1,i)-

tt if i- 1.

(i) First, consider the case of 0 _> i" In this case, the next arrival occurs after at
least one service completion and, therefore, T1 > S. By the strong Markov property,
we have

P{X(T1) (i,j) Xo (io, Jo),X(S -(io 1,k)} Pk, j(io- 1,i). (6)

Using (6), we have

Pjo, j(io, i) P{X(T1) (i,j) Xo(io, Jo)}

’ P{X(S)- (io- 1,k) lxo -(io, Jo)}
k=l

P{X(T1) (i,j) lXo (io, Jo),X(S (io- 1,k)}

m

Rjo,cP,j(io 1,i).
k=l

The above equation can be rewritten in the matrix form as

P(io, i) RP(i0 1, i). (7)

(ii) Secondly, consider the case of o- i-1" In this case, the next transition
occurs with an arrival, i.e., S T1. From the definitions of G and tt, we have

Pjo, j(i- 1,i) P{X(T1) (i,j) Xo -(i- 1,jo) )

P{X(S)- (i,j) lXo (i- 1,jo)}

_{Gjo, j i>1

Hjo, j i- 1.

The above equation can be rewritten in the matrix form as
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G ifi>l
P(i-l,i)-

H if i-1.

From (7) and (8), we get

P(i0, i) = RP(io 1, i) =...

Rio + 1p(i 1, i) RiO + i
G

RiP(O, 1) R’tl
for i> 1

for 1.

2.2 Special Cases

From Proposition 3, we can obtain the following corollaries, which agree with the
results in [11, 12].

Corollary 4: (Corollary 3 in [11]) If the arrival process is an MMPP with the re-

presentation (Q,A), where Q is the infinitesimal generator of the underlying Markov
chain, and A is the arrival rate matrix, then for <_ 0 + 1,

P(io, i)-{ ((#I-Q+A)-I#I)i-i+I(#I-Q+A)-IA
((#I- q + A)- l#I)iO(A Q)- 1A

i>1

i-’l.

Proof: An MMPP with the representation (Q,A) is an MAP with the representa-
tion (C,D), where

C=Q-A, D=A.

Therefore, the result follows from (3) and Proposition 3 directly.
Corollary 5: (Proposition 2.1 in [12]) If the arrival process is a switched Poisson

process with the representation (Q,A), where

rI --rl] 0 "1

then for <_io+1 and > l,

i_io_1
c0z1

P(io, i)
0(0Zl

i- o i- o 1
d-/0z2 loiz

i-io-1 i-io-1+ 0Z2 O1Z

i-io-1 )-- /1Z2i--io--1-[-- /lZ2

where for j O, 1,

/j( -t- "1 j -I- r j Z
Oj #2Z1(Z2_ Z1

Aj(/z +/1 j + rl j --/z2)
/g2Z2(Z Z2)
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Ajrl-jAjrl-j
/3’ #2ozj #2z1(z2 Zl) z2(zl z2)

and Zl,Z2 are the tools of the quadratic equation

(# + Ao + ro- #Z)(l + A1 + r1 #z)- rot1 O.

Proof: Since

R- (#I- Q + A)- 1#I- (I-Q +A)-
G-(#I- Q / A)-IA -(I-Q + A)- IA,

we h&ve

P(i0, i)- It,io -i +1G [(I_Q+A)-I]io-i+2A.
Here,

#+ro+Ao

I-Q+A
ro

#+r1 +A
#

is diagonalizable with eigenvalues z1 and z2 which are roots of the quadratic equation

(# + AO + rO- #z)(#-}- A1- r1- #z)- rOr1 0

where

Z 0 )I-Q+A U U -1,
0 z2

].t+r1 +A1-#z r0 ,\
r1 # + r0 + A0 #z2

whose columns are the eigenvectors of I -gQ +-}A with respect to z and z2, respect-
ively. Then by simple calculation, we can obtain

zo 0
P(io, i) U

0 2 U A
0 z2

i_io_1 i-io-1 i-io-1 i-io-10Zl + fl0Z2 alZl + fllZ2
0 1 0 1 0 1 0 1 )"OoZl + floZ2 OZl Zl + 31Z2

For 1, we can obtain similarly
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( )Z 0
P(io, 1) U io U

0 z2

This agrees with the result of Proposition 2.2 in [12].

3. Transient Analysis of the Congestion Control with Double Threshold

In this section we consider a congestion control with double thresholds consisting of
an onset threshold M and an abatement threshold L (see Figure 1).

Figure 1: The model of the congestion control with two thresholds

Let B denote the buffer size. Until the queue length reaches the threshold M, the con-
gestion status of the buffer is assigned to 0. Once the queue length exceeds M from
below, we assign the congestion status of the buffer to 1 during the period until the
queue length crosses L from above. When the queue length crosses L from above, the
congestion status of the buffer is assigned to 0 again and the procedure is repeated.
We assume that the packets arrive according to an MAP with the representation
(Co, Do) when the congestion status of the buffer is 0 and the packets arrive accord-
ing to an MAP with the representation (C1,D1) when the congestion status of the
buffer is 1 and Co, Do, C and D1 are m x m matrices. We will describe the matrices
Co, Do, C1 and D1 in detail for modeling of congestion control in SS7 networks in Sec-
tion 4.

Let I(t) denote the congestion status of the buffer at time t. Then X(t)= (I(t),
N(t),J(t)) forms a continuous time Markov chain and Xn (I(Tn + ), N(Tn + ),
J(Tn+)) forms an embedded Markov chain of the Markov chain {X(t) lt >_ 0},
where Tn is the nth packet arrival epoch. Let the nth step transition probabilities be
denoted by Pn(0, i0; , i) which is an m x m matrix, where

[Pn(0’ i0; ’ i)]jo’ J P{Xn (’ i, j) Xo (0’ io, Jo))"

Let the one-step transition probabilities of X, be denoted by

P(o, io; , i) PI(o, io; , i).

Then we have the following Chapman-Kolmogorov’s equations: For 1 _< 0 _< M

min(i0 4- 1,M)

Pn(0,/o; , i) P(0,/o; 0, k)Pn 1(0, k; , i)
k max(1,i 4- n)
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+ 1{i- M)P(O,M;1, M + 1)pn-I(1,M + 1;,i),

and, for L+l_<io_<B,

(9)

min(i0 + 1,B)

pn(1, io;,i) P(1,io;1,k)pn-l(1,k;, i)
k=max(L+l,i+ -n)

L
+ Z P(l’io;O’k)Pn-l(O’k;’i)’

k max(l, + 1 n)
(10)

where 1A is the indication function of set A. Hence, the queue length probability pn
(o, io;,i) at the nth arrival epoch can be obtained iteratively once the one-step
transition probability matrices P(o, io; , i) are known.

3.1 One-Step Transition Probabilities

Let the exit times from levels be denoted by

So-inf(t:N(t) TkiolN(0)-io,(O)-O) for 0_<io_<M

S1 inf (t" N(t) o N(0) io, (0) 1) for L + 1 _< o _< B.

Let the transition probabilities of J(t) with the first transition of N(t) be denoted by

Rjo, j

Gjo, j

H.
30, j

Rjo, j

Gjo, j

Hjo, j

Define the matrices

A_ p{X(So (0, o 1, j) x(o) (0, o, Jo)}
A_ p{X(So (0, o + 1, J) X(0) (0, io, Jo)}
A_ p{X(So (0,1, J) x(0) (0, 0, Jo)}

(io : O)

(io # M)

A_ p{x(s1 (1,io_ 1,j)i X(0 (1,io, Jo)} (i 5 L + 1)

A_ p{x(s1 (1,i + 1,j)[ X(0)- (1,io, Jo)} (io :)b_ B)- P{X(Sl)- (0, B- 1,j) X(0) (0, B, jo)}.

[to -[Rjo, j],Go -[Gjo, j],tIo -[Hjo, j

11 --[/j0, j], G1 --[Gjo, j],lt1 -[Hjo, j

which are all m x m matrices. Then we can establish the following lemma similar to
Lemma 2.

Lelnma 6:

Ro (#I Co) 1#i, GO (#I Co) Do Ho Co) Do
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l1 (#|_C1)-I#I,G1 (#|-C1)-1D1 ,]tI G1"

Note that

P{X(So) (1,M + 1,j) X(O) (0, M, jo) } Gjo, j

and

P{X(S1) (O,L,j) X(O) -(1,L + 1,jo) } -Rjo, j.

Now we are ready to obtain the one-step transition matrix.
Proposition 7: For 1 <_ o <_ M,

{’-P(O, io;O,i)- PI*oIG0 2<_i<_Mi_l,
P(0,M;1,M+I)-GO and for L + l <_ o <_ B,

P(1, io; 0, i) { RRo LlHo-LI -i -t- 1Go

P(1, io; 1, i) l:t + G1

2<i<L

L+I<_i<_B,

and P(1, B; 1, B) G1 + l1G1.
The proof is identical to that of Proposition 3 and is therefore omitted.

3.2 Performance Measures and Algorithm

Once the transient queue length probability Pn(o, io;,i at arrival epochs is
obtained, the performance measures can be easily evaluated. Let dn be the delay of

J0th
the nth arrival packet and ej0 (0,...,0, 1 ,0,...,0). Under the initial condition

Xo- (o, io, Jo), both the mean and the variance of dn are obtained as

1E{dn Xo (o, io, Jo}
min(i0 -t- n, M)

i-1
(i 1). ejoP’(o, io; O, i)e

1
min(i0 + n, B)

i-L+1
(i 1). ejoPn(o, io; 1, i)e (11)

1Var{dn Xo (0,*0, J0)}
#-

min(i0 + n, M)

i-1
(i- 1)2 .ejoPn(o, io;O,i)e
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1
#2

min(i0 + n,B)

i-L+1
(i 1)2. ejoPn(o, io; 1, i)e

-[E{dn Xo ((o, io, jo)}] 2, (12)

where e is the column vector whose elements are all 1. Let Plss(O, io, Jo) denote the
loss probability of the nth arrival packet under the initial condition Xo -(o, io, Jo).
Then

n pn 1(o, io; 1, B)Gle.Ploss(o, io, Jo) ejo (13)

When the matrices Ro and 11 are diagonalizable, we can greatly reduce the com-

plexity of the iterated Kolmogorov equations (9) and (10) using their eigenvalues and
eigenvectors as in [11, 12]. But there is no evidence that there exist distinct and real
eigenvalues of the matrices Ro and R1, and it is not easy to obtain the eigenvectors
numerically. Therefore, we introduce another algorithm to reduce the complexity of
the iterative Kolmogorov equations (9) and (10). To obtain the performance mea-

sures, we only need to calculate the column vectors Pn(o, io;,i)e in (11) and (2),
and pn-l(o, io;1,B)Gle in (13). Using the fact that P(0, io;0, )-
RoP(0, o 1;0, i) and P(1,io;,i -R.1P(1,io 1;,i), we can reduce the complexity
to obtain P(o, io; (, i)e. First consider the case of 2 <_ o _< M- 1 and o 0. Since
P(0, io; 0, k) Ro, P(0, o 1; 0, k), from (9) we obtain

pn(O, io;,i)e
i0+1
Z P(O, io; O, ])pn 1(0 ]; , i)e

k =max(1,iTl-n)

P(0, io; 0, o -4- 1)pn-1(0, o + 1; ,i)e

o

Z P(0, o 1; 0, k)Pn 1(0, k; , i)e
k=max(1,iA-l-n)

GoP’ (0, o + 1; , i)e + RoP’(O, o 1; , i)e.

Therefore, we can calculate pn(0, io; , i)e iteratively starting with

pn(0, 1; , i)e Rvnop 1(0,1; , i)e -- GoPn 1(0, 2; , i)e,

once we have pn-l(O, io;,i)e for all o and i. Similarly, from (9) and (10) we can

obtain the following"

pn(0, 1; , i)e G0Pn 1(0,2; , i)e + Roltopn 1(0, 1; , i)e

pn(o,M;,i)e Gopn- I(1,M + 1;(,i)e + Ropn(o, M 1; , i)e

pn-l(1 L+ 1;,i)epn(1, L A- 1; i)e GiPn 1(1 L + 2; , i)e + PlG1

+ R12pn(0, L 1; , i)e
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pn(1,io;,i)e G1Pn- 1(1,io + 1; , i)e + R.1Pn(1, io 1; , i)e

for L+2_io_B-1

pn( 1, B; , i)e G1Pn 1( 1, B; , i)e + 1{.1Pn( 1, B 1; , i)e. (14)

Once we obtain Pn-l(o, io;1,B)Gle we can calculate the loss probability
Plnoss(o, io, Jo) from (13). By substituting en-(o, io,i)e for en-(o, io;1,B)Gle
and en(o, io;,i)e for Pn(o, io;1,B)Gle in iteration (14) we can obtain
Pn(o, io 1, B)Gle iteratively starting with

P(o, io; 1, B)Gle
G12e o-B-l,o-1
l1Ge 0 B, 0 1

0 otherwise.

4. Application to SS7 Network

There are three types of congestion controls in SS7 networks such as international
control, national option with congestion priorities, and national option without
congestion priorities [15]. Here we will describe the international control, when a

message signal unit (MSU) is received at a Signaling Transfer Point (STP) for the
congested link whose congestion status is 1, it is passed to Level 2 for transmission
and a Transfer Controlled (TFC) packet is sent back to the originating Signaling
Point (SP) which sent the MSU, for the initial packet and for every m0 packet
(default value of m0 is 1 in this paper, but by a simple modification we can deal with
the model with m0 larger than 1).
We assume there are S identical SPs sending packets to a STP and we consider an

output buffer of the STP and the packets sent to the output buffer (see Figure 2).

TFC
STP

M

Figure 2. The model of the congestion control in SS7 networks

If an SP receives a TFC packet from the STP, the traffic load toward the STP is
reduced by one step, and two timers T29 and T30 are started where the length of T30
is greater than that of T29. Until T29 times out further TFC packets are ignored in
order not to reduce traffic too rapidly. If a TFC is received after the expiry of T29
but before T30 expires, the traffic load is reduced by one more step and both T29 and

T30 are restarted. This reduction continues until the last step when maximum
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reduction is obtained. If T30 expires, then the traffic load is increased by one step
and Ta0 is restarted. This is repeated until the full load has been resumed. For
simplicity, we assume the length of T29 to be equal to zero. The extension to the
model with nonzero T29 is similar to the modeling in [4]. Even though the lengths of

Tao is deterministic, we assume that the length of T30 has an exponential
distribution with a mean, which is a deterministic value for the analytical modeling
as in [9]. Letr--

E[T30]"
Let K be the maximum reduction step of the traffic load in an SP. Define the

state of an SP as k (0 _< k _< K) if the SP ha8 reduced it8 traffic load k time8 since the
beginning with full load. Assume that each SP whose state is k 8ends packet8
according to a Poisson process with rate $k (0 >--1 -- --"K)" Let Yk(t) be the
number of Sen in state k at time t. When (Y(t),Y2(t),...,YK(t))- (Yl,Y2,’",YK),
s Z k =,lYk 8 the number of SP8 in state 0 and the total arrival rate to the STP i8

0(S E= lYk) -- KE k 1AkYk" Hence, J(t) (Yl(t), Y2(t),..., YK(t)) governs the
arrival rate and so it can be defined as the underlying process of the arrival to the
STP with the state space consisting of (Yl,’",YK) listed in the lexicographic order,

where Yi > 0 and l Yk < S. The total number rn of the states equals K!S!
Let A((Yl,...,yK) (Yl,’",Y’K)) denote the transition rates from the state

(Y, Y2,"’, YK) to the state (y, Y2,’", YX) which are the elements of an m x rn matrix
A. Let y-(Yl,’",YK)" For example, A(y,y) denotes the diagonal elements of
matrix A. Let e be a vector whose elements are all zero except for the ith element

ith

which is 1, i.e., ei-(0,...,1,...,0). Let e0-(0,...,0) and eK+I-eK, for the sake
of convenience. We are ready to find the rate matrices C0, D0, C1 and D1 of the
underlying process {g(t):t >_ 0} for our model in this section. Independently of the
congestion status of the buffer of the STP, if a T30 of an SP whose state is k expires,
the state of the SP will be changed to k- 1. Hence,

Cn(Y, Y ek + ek 1) or. Yk for n O, 1, 1 _< k _< K.

When the congestion status of the buffer of the STP is 0, there is no transition of the
state with an arrival of the underlying process J(t), since there is no TFC generating
from STP.

K K
Do(Y’Y)- 0(S E Yk) + E kYk"

k=l k=l

When the congestion status of the buffer of the STP is 1, each SP who sends a packet
to the STP will receive a TFC and reduce the traffic load by one step and restart

T30. Therefore, if one of yk’s SPs whose states are k sends a packet to the STP, its
state will be changed into k + 1.

D (y, y- ek -t-ek + 1) "kYk for 0 _< k _< K.

The diagonal elements of the matrices CO and C are negative values to make

C0e + Doe 0 and Ce + Die 0, respectively. The elements of the matrices Co,
Do, C and D1 not mentioned above are all zeros.

For all numerical examples, we assume that S- 10, K- 1 and that the time scale
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is normalized by the mean service time of a packet, i.e., #- 1.0. Let the buffer
capacity B be equal to 50. For Figures 3 through Figure 6, we assume A0 0.08 and
A1 0.04.

Figure 3, Figure 4, and Figure 5 display the mean delay and the loss probability of
packets in terms of functions of time, when T30-100. For Figure 3, we let L be
fixed at 25 and the initial state by (0, 25, 0). As M decreases, the congestion control
is triggered earlier and therefore the mean delay and the loss probability of packets
decrease as shown in Figure 3.

22

20

18

16

M=45
M=40
M=35
M=30

0 50 100 150 200 250 300 350 400 450 500
Time (in packets)

0.0001

le-05

e-06

le-07

e-08

e-09

le-10

le-ll

le-12

M=45
M=40
M=35
M=30

0 50 100 150 200 250 300 350 400 450 500
Time (in packets)

Figure 3. The mean delay and the loss probability of packets for the case of

T30- 100,L- 25 and that the initial state equals to (0, 25, 0)

In Figure 4, we consider an epoch when the queue length exceeds the onset
threshold M as the initial epoch, i.e., X0 (1, M + 1, 1). Since the congestion control
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is triggered from the initial epoch, each SP receives a TFC packet when it sends a

packet until the queue length crosses the abatement threshold L. SPs receiving a

TFC packet reduce their traffic load and therefore the total offered load until the
buffer decreases and the mean delay of packets decreases as shown in Figure 4. The
loss probability of packets increases initially but it begins to decrease soon since the
congestion control is triggered. After a time interval, the mean delay and the loss
probability increase slightly as in Figure 4. This is because the total offered load in-
creases again after the queue length crosses L.

40

35

3O

25

2o

15

0

L=35
L=30
L=25
L=20

0 50 O0 150 200 250 300 350 400 450 500
Time (in packets)

0.001

0.0001

e-05

’ e-06

e-07

e-08

e-09

le-10

L=35
L=30
L=25
L=20

50 O0 150 200 250 300
Time (in packets)

350 400 450 500

Figure 4. The mean delay and the loss probability of packets for the case of

T30- 100, M 40 and that the initial state equals to (1,M + 1, 1)
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In Figure 5, we compare the loss probabilities with different M and different initial
state X0 for a fixed L (L- 25). Figure 5 shows that the loss probabilities converge
to the same value for the same M independently of the initial value as the time
increases.

0.001

0.0001

e-05

le-06 iO 25

e-07

e-08 iO 41

e-09
io 25

’-,...
le-10

le-ll

le-12

iO 41, M 40
iO 25, M 40
iO= 31, M=30
iO 25, M=30

=40

""-. M=30

.... iO 31 .--....- _____.’_’_.:’.’7.’.-.’7-’:--’---’---"-"’-":-------

0 50 oo 150 200 250 300 350 400 450 500
Time (in packets)

Figure 5. The mean delay and the loss probability of packets for the case
of T30- 100, L- 25

Define Fn(io, Jo,o) as the mean number of SPs, which send packets in their full
traffic load at time n (in packets). Then Fn(io, Jo,o)is calculated by PU(o, io;,i
as

Fn(io, Jo, o) S ejoPn((o, io; (, i)e*,

where e* (0, 1,2,..., S). As in the case of plrss(io, Jo, (o), Pn((0, i0; (, i)e* can be
evaluated iteratively by substituting pn- l((o, io;(,i)e and Pn((o, io;(,i)e for
pn- 1((o, io; (,i)e* and pn- 1((o, io; (, i)e* in (14), respectively. Figure 6 displays
Fn(O,L,O) and Fn(1,M + 1,1) in terms of functions of time. For a fixed L, as M
decreases and for a fixed M, as L decreases, the mean number of SPs with full traffic
load decreases as in Figure 6. Hence there is trade-off between the loss probability
(and the mean delay) and the throughput in terms of Fn(io, Jo, o)"
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Figure 6. The mean number of SPs with their full traffic load for the case T30- 100,
L 25, M 40 and that the initial states equal to (0, L, 0)

and (1, M + 1, 1), respectively.

In Figures 7 and 8, we consider the control of SP with traffic reduction and the
timer. We consider the case of M- 40 and L- 25. Figure 7 shows the impact of
the length of the timer T30 on the transient performance. As T30 increases, the time
of resuming full traffic load of each SP is delayed and therefore the loss probability
and the mean delay of packets decrease as in Figure 7. We assume that each SP

dreceiving TFC only send d% of its full packets. Then A1 -]-0--6A0. We consider two
cases: A0 0.08 and A0 0.12. As d decreases, the total offered load decreases and
therefore the mean delay decreases as shown in Figure 8.
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Figure 7. The mean delay and the loss probability of packets for the case of L 25,
M 40 and that the initial state equal to (1, M + 1, 1)



Transient Analysis of a Queue with Queue-Length Dependent MAP 389

40

o

o

is

lO

,.... .2::::---

0 50 100 150 200 250 300
Time (in packets)

d= 100%
d= 75%
d= 50% --d= 25%
d= 0%

lambdaO 0.08

350 400 450 500

45

Ji:i’,,,, "-..... d= 0%

35

30

" 25

eo

15

10

5

0
0 50 100 150 200 250 300 350 400 450 500

Time (in packets)

Figure 8. The mean delay of packets for the case of L 25, M 40 and that the
initial state equal to (1, M + 1, 1) with "o 0.08 and ’o 0.12, respectively
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5. Appendix

5.1 The Proof of Lemma 1

For 0 >_ 1, define

pjo, j(s) A_ Pr{S > s,X(s) (io, j) X(O -(i0, J0)}"

Then we have the following Chapman-Kolmogorov equations:

Pjo, j(s + As) Pr{S > s + As, X(s + As) (io, j) X(O (i0, J0)}

m

E Pr{S > s, X(s)- (io, k) lx(o -(io, J0)}
k=l
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Pr{S > s + As, X(s + As) (io, j)[X(O (io, Jo),S > s,X(s) (i0, k)}

m

E PJo, k(s)Pr{S > s + As, X(s + As) (io, j) lS > s,X(s) (io, k)},
k=l

where the last equality follows from the Markov property. By subtracting P. .(s)30,3
from both sides of the above equation and dividing both sides by the equation ZXs, we

get

P.o,( + ZX)- Po, ()
As

E Pjo, k(s)Pr{S > s + As, X(s + As) -As(i0, j) lS > s,X(s) (io, k)}

:i0, j(s) As
Pr{S > s + As, X(s + As) (io, j) S > s,X(s) (i0, j)}- 1

By passing to the limit As--O in both sides of the above equation and using the
definition of the matrix C- #I we can obtain

ds 3o, J (s) E PJo, t:(s)(C- #I)/,j
k=l

The above equation can be rewritten in matrix form as

dfl-P(s) P(s)(C- #I),

where P(s)= [P; ,j(s)]. By integrating both sides of the above equation and using
P(0) I and P(c -0, we can obtain P(oe)- P(0)- -|- f P(s)ds(C- #I), i.e.,

P(s)ds (#I- C)-
0

(15)

For 0 0, we can obtain the result similarly to the above

5.2 The Proof of Lemma 2

For o > 1, define

Rjo, j(t) zx Pr{S <_ t,X(S) (io- 1,j)]X(0)- (io, Jo)}"

Note that R..= lim- R..(t). From the definition of Rio j(t) we have the
30,3 cx) 30,3

following Chapman-Kolmogorov equation:
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0,
+ at)-

m

E Pr{S > t,X(t) (io, k) lX(O (io, Jo)}
k=l

Pr(t < S <_ t + At, X(S) (io- 1,j) IS > t,X(t) (io, k),X(O (io, Jo)}

E Pr{S > t,X(t)- (io, k)]X(O -(io, Jo)}
k=l

Pr{t < S <_ t + At, X(S) (io- 1,j) IS > t,X(t) (io, k)},

where the last equality follows from the Markov property of {X(t)’t >_ 0}. Dividing
both sides of the above equation by At and taking the limit At-0, we obtain

m

dt 3o, J(t) E Pr{S > t,X(t) (io, k) X(O (io, jo)}(#I)k, j.
k=l

The above equation can be rewritten in matrix form as

dR(t)- P(t)#I,

where R(t) -In..(t)]. Since R(0) 0, by integrating both sides of the above equa-
30,

tion, we can obtain

It(t)- / P(s)ds#I.
0

(16)

Hence from (16) and (15), we have

It --t-limR(t) / P(s)ds#l (#I- C)- 1#I.
0

Similarly, we can get G- (#I-C)- 1D, ]]- (- C)- 1D, whose proof is omitted.


