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We start from an earlier paper evaluating the overall sojourn time to de-
rive the local sojourn time in stationary regime, in a single server tandem
queue of (m + 1) stages with renewal input. The successive service times
of a customer may or may not be mutually dependent, and are governed
by a general distribution which may be different at each sage.
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1. Introduction

We consider the stochastic behavior of a single server tandem queue with (m + 1) suc-

cessive queues and with a renewal customer arrival process. For a customer, the suc-
cessive service times may or may not be different and may or may not be mutually
dependent. They are governed, at each stage, by a general distribution which may be
different. Customers enter the queue of a given stage immediately on terminating
their service at the previous stage. No limitation is placed on the length of the wait-
ing time with buffers being supposed of infinite capacity. Service discipline at each
stage is "first come-first served’’ (FC-FS). We wish to derive the distribution func-
tion of the local sojourn time in stationary regime.

For practical applications, we will consider the case of Poisson arrivals at the first
stage. More particularly, we will present the calculations in the case of several packet
traffic streams, with each traffic stream packet length (i.e., service duration) being
constant (i.e., deterministic).

For this paper, we will refer to our earlier publications (see Le Gall [1-3]).
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2. Notation and Assumptions

The number of successive queues is (m + 1). At stage k (k 1,2,...,m + 1), for the
nth customer, we define the following times:

a. queueing delay [due to queueing process): wk.

b. service time: T
Wn -F Tn;c. sojourn time: sn= k k

d. interarrival interval [between customers (n- 1)and hi" Ykn_l; and
e. occasional idle period [during Ynk 1]: en’k
At the first queue, the interarrival interval between arrivals (n-1) and n is:

Y1n -Y The arrival process is a reneival process with successive intervals--1 n--l"

Yn-1 being independent and identically distributed with distribution function Fo(t).
Service times Tkn (for n given) are assumed to be independent of the arrival process
with distribution function Fk(t) at stage k, which is the same for all customers. We
introduce the Laplace-Stieltjes (L-S) transforms, for Re(z) >_ 0:

E exp( z Yn 1) 0(z) / e

0

-zt.dFo(t),
(1)

E exp( z Tkn) pk(z) j e zt. dFk(t)"
0

We may note the relations (at stage k)"

yk
n

k-1 k-1
-1 Tn -Fen

k Max[0, k k k (Tk- 1 k- 1
Wn Sn_l-Yn_ 1]- Max[0, Sn_ 1 -Fen )].

(2)

We let:

Tin +... + Tn T(m);
2 m+l trtsn +... + sn Sn

(3)

Finally, in stationary regime, we let"
a. arrival rate: [EYn_ 1]- 1;
b. load (i.e., traffic intensity)" Pk- " E[Tkn]" (4)

3. Preliminary Results in Tandem Queues

3.1 The General Recurrence Relation

In Le Gall [1], Theorem (A.1), we presented the following properties:
Theorem 1: (Recurrence relation) If at stage k (k- 2...m-F 1) we have the

relation:
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k-1 kTn <- Sn 1’

the following recurrence relation using (3)
processes (excluding simultaneous arrivals):

is then satisfied for arbitrary arrival

2 m m + 1) Max[ (m) m 1(Tln -- Wn) -- -- (Tn + Wn Tn Sn -1 en]" (6)

Property 1: (Busy Period not Broken Up) Equation (5) means that the busy
period is not broken up at stage k, during the busy period at stage (k- 1). It follows

k 1 m + 1 Finally only 1that, for the occasional idle periods en, we have: en --en en
appears in (6).

Property 2: (Includes Intermediate Arrivals) An intermediate arrival at stage k
may be considered as an arrival at stage 1 with T1 k-

n ="" Tn 0. Equation (5)
being satisfied, (6) includes the case of intermediate arrivals.

Property 3: (Includes Successive Service Times Mutually Independent when Heavy
k such thatTraffic) If the load (i.e., traffic intensity) is high enough to increase wn_ 1

(5) is almost always satisfied during busy periods, the above theorem can be applied
to the case of mutually independent successive service times.

Finally, (6) may be of general use.

3.2 The Equivalent Packet Tandem Queue

In Le Gall [1] and [2], we have seen that the local sojourn time distribution is practi-
cally defined by the two first moments, and finally by VarT(m). Consequently, in
Le Gall [2] we introduced the parameter too, with

Var(mo Tnm + 1) VarT(m), (7)

and excluding the case of Tnm + 1 and Tn(m constant. In this way, the local sojourn
distribution is practically the same as for a single server packet tandem queue corres-

ponding to identical, successive service times: Tln- Tm= T + 1, if mo is an

integer. From (7), (6) becomes, with (3):

S0 Max[m0 Tam0 +1, S=O 1--eln]" (8)

Finally, due to (5), the local sojourn time distribution is practically given by the equi-
valent packet tandem queue above for (mo-t- 1) stages. When mo is not an integer,
the distribution function may be used with this new value mo.
When service times are highly varying, we have: [ETr f- 112 < < E[Tmn + 112 and

[ET’n(m)]2 < < E[T’n(m)]2. It follows: VarTTM + E[Tn + 112 and VarT(m)
E[T(m)]2. Consequently, (7)yields

m20 E[rnm -t- 112" (9)

3.3 The Agglutination Phenomenon

For the equivalent packet tandem queue, (2) gives:
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m+l m+l 8m’t-ln 1sn -Max[Tn -enm]. (10)

During a busy period, at stages (m + 1) and m, we have enTM --0, and consequently

S + 1 Smn-1+ 1 8mn + 1, where n corresponds to the arbitrary customer
initiating the busy perio at these successive stages. Thus, the local sojourn time
appears to be constant during any busy period, and equal to the sojourn time of the
customer initiating the busy period. In the case of the arrival of a new customer with
a service duration higher than sn + the busy period is broken up, and this new

1customer initiates a new busy period. From stage to stage, busy periods initiated by
long service durations tend to amalgamate, with busy periods initiated by short
service durations, leading to some increase of the sojourn time. Finally, from stage o
stage, the agglutination phenomenon is amplified, with the local sojourn lime of shorl
service durations being equal to long service durations corresponding to customers
with no local queueing delay. As a consequence, with (5) of busy periods not broken
up, the product form theory cannot exist.
We may note that, in Sections 3.1-3.3, the arrival process (at stage 1) is not neces-

sarily restricted to a renewal process. This process may be arbitrary in stationary
regime.

3.4 The Overall Distribution in Case of a Renewal Input

Now, we come back to the case of a renewal input, and we consider only the equiva-
lent packet tandem queue (i.e., Tnm+l= Tan). We let, in stationary regime, for
Re(z) > 0:

1 --0)-Q1,Prob(wn

E exp(- zsln) l(Z), (10)

91 (z; t) / e zc. dE1(0),
o

Prob(Snm < t)- Sm(t),

where SnTM is defined by (3). To present the following expressions, we will use Cauchy
contour integrals along the imaginary axis in the complex plane u. If the contour
(followed from the bottom to the top) is to the right of the imaginary axis (the
contour being closed at infinity to the right), we write f. If the contour is to the
left of the imaginary axis, we write f We introduce: + 0

-0

1-- 9o( U) 9l (u, t)] #}. (11)

In Le Gall [3], and with (5) of busy periods not broken up, we gave the following
expression for the distribution function of the overall sojourn time, from stages 2 to
(m+ 1):
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Sm(_l;) 1 / o 1) (1( 7t
Sm _t t ---,

+o
(12)

with

1-Fl(V).dvv(t, ) xp
QI()

(13)

by using (1), (10) and (11).

3.5 The Unitary Sojourn Time

In the stationary regime, it may be useful to introduce the concept of unitary sojourn
time U(m) (i.e., the overall sojourn time divided by m [number of equivalent stages]).
From (12) and (13), and assuming (5) of busy periods not broken up, the distribution
function of U(m) is:

1 Jf 0( t)" 0l(t) Otto(t, t). du, (14)
+0

with

.(t,) o(t) [(,t, )], (5)

or

um(t,u) ul(t u)" Iv(t, u)]m- 1, (16)

where Vo(t) and Itl(t, lt), defined by (13), relates only to the case m- 1. Here,
um(t,u) is the distribution function of the random variable U(m,u). In other words,
we have the stochastic expression"

1 / 0( 72)" (I)l(t), U(m ). -.U(m)- 2ri" -Q; (17)
+0

We note that Vo(t) and v(t,u) are the distribution functions of Vo and Vj(u),
j- 1,...,m, respectively. From (15), we write:

U(m,u) Mini 1...m[Vo Vj(tt)]. (18)

Finally, from (18) we deduce the stochastic expression giving the overall sojourn
time:

duSn m. U(m) 1 0( t). (I)l(t) [rrt. U(m t)]. t,;
+0

(19)

which has Urn(&) from (14), for its distribution function.
We now consider the case of Poisson input. Since the arrival rate, for an arbitrary
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customer, is A, we have:

(z) A + z’ p A. E(Tn) (p < 1). (20)

In the integrand of (19) there is just one pole for Re(u)> 0"u- A. Equations (14)
and (15) become, for the distribution function of the unitary sojourn time:

Urn(t) ltrn(t )) vo(t Iv(t, ))]rn, with Q1 1 -/9. (21)

4. The Local Sojourn Time in Case of a Renewal Input

rn 4-1 at stageIn stationary regime with renewal input, the local sojourn time sn
(m + 1), may be deduced from stochastic equation (19), assuming (5) of busy periods
not broken up to be able to use the equivalent packet tandem queue [where m is the
value of m0 of (9)]:

m+l m m-1s, S S
+0

(22)

with D(m, u) m U(m, u) (m 1). U(m 1, u).

From (18) we write:

D(m, u) Minim Vm(u), m U(m 1, u)] (m 1). U(m 1, u)

=Min[m. Vm(u)-(m- 1). U(m- 1,u),U(m- 1, u)].
(23)

The distribution function drn(t, u) of D(m, u) corresponds to the inequalities;

U(m l, u) < t, m Vm(u (m -1) U(m l, u) < t.

These inequalities are satisfied by the expression:

drn(’,.)- i v(t +mW’u)’dwUm-l( rnw- l’U)
0

(24)

where v(t,u) and ttm_l(t, tt) are defined by (13) and (16), respectively. Finally, from
(22) and (24) we can state:

Theorem 2: (Local sojourn time) In stationary regime, with (5) of busy periods
not broken up, and a number (row 1) of equivalent stages [as defined by the value of
rno in (9)], the distribution function of the local sojourn time [at stage (rn + 1)] for
an arbitrary customer is:

s(t, tn + 1)- 1 / ( u) (l(U)dm(t u).-, (25)2a’i" 1"
+0
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where dm(t,u) is given by (24).
It may be very useful to simplify (24) of dm(t,u). When m increases, we have for

t given

Equation (24) becomes:

t+w ) u).v rn , --v(O,

drn(t’u)---v(O’ U) Um- l(m t
1’ u).

We can state"
Corollary 1: (Approximation) When rn increases, expression dm(t,u) in (25) be-

comes:

dm(t,u) - v(O,u) Um_ l(m 1, u), (26)

where v(0,u) and tlrn_l(t, tl) are defined by (13) and (15), respectively. Thus

um 1 m 1 ’u
t

m

with Co(t), as defined by (13), being relaled only o stage 1.
Note: In the numerical example provided below in Section 5.3, we will see that

the approximation is already excellent for m- 2.

5. The Local Sojourn Time in Case of a Poisson Input

5.1 The Distribution Function

In the case of Poisson input, as already noted for (21), we have one pole u- (for
Re(u) > 0)in the integrand of (25). We deduce

(28)

and for (26)

v(0, ). (29)

5.2 Case of Packet Traffics with Poisson Input

As an important example, consider (in stationary regime) the case of a total traffic
stream with N-component, partial Poisson traffic streams labeled j (j- 1...N). For
traffic stream j, packet lengths are constant (i.e., deterministic), and equal to T-
(T < T2 < < TN). The partial arrival rate is ,j, and the total arrival rate (for

N
an arbitrary customer) is" A- Aj. The partial loads are pj-,j..Tj, with a

total load" p- pj. With we achieve, for the distribution of an arbitrary
j=l
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customer (i.e., packet) and for Re(z) >_ O"
N Aj zT.

9l(Z) E--.X-. e ’.
?--1

In Le Gall [1], formula (B.3), we gave the expression"

Ql(t)- 1-A./u.dF
0

l(tt), (l(CX:)) (I(TN) 1 p. (30)

The distribution function of the service times are as follows:
For t < T1"

Fl(t 0, Ql(t) l;

For Tk < t (Tk+ 1"

F(t) At +... + Ak Ql(t)- 1-(ill ’[-’"" q- ilk)"

(31)

a. Exact expression for the mean local sojourn time

From (21), the distribution function of the unitary sojourn time is:

,,,,,(t, ) o(t). [(t, )]", (32)

where Vo(t) and v(t,,) are defined by (13). We deduce for (32)"
For < T1"

For Tic < t < Tk + 1"

,(t, :) o(t). [(t, )]’,

with

Vo(t
A1 if-.., q- Ak 1 p

A 1 (Pl q-.." -ff Pk)’
and

(t, )
(33)

IAk+ 1 +’"+ANExp
1 -(p -t2... + Pk) (Tt: + -t)+...+ __N_ "(T --TN1 (Pl + + fiN- 1) N 1

We deduce the mean overall sojourn time, from stage 2 to stage (m + 1):
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TN

(sT) .. / [ (, )]. dt,
o

(34)

and we deduce the mean local sojourn time at stage (m + 1), for an arbitrary packet:

TN TN

s(rn+l)-rn. / [1-um(t,A)].dt-(rn-1). / [1-um_l(t,A)].dt.
o o

(35)

b. Approximated expression for the local sojourn time distribution

Approximated equation (29) gives for the distribution function of the local sojourn
time [at stage (m q- 1)], for an arbitrary packet:

For t < T1"

s(t,m+l)-O; (36)

For Tk < t < Tk + 1"

s(t,m + 1) v(O,A), vo(t). v rn-t 1’
I

where Vo(t) and v(t,A)are given by (33); and
For t > TN:

s(t, rn + 1)- 1.

From (36), we get an approximated value for the mean local sojourn time at stage
(m + 1)" TN

sl(m+l)- / [1-s(t, rn+l)].dt. (37)
o

In the same way, we get the second moment"

TN

rn2rn+ 1)- 2. / t.[1-s(t, rn+ 1)]. dt,
o

the variance

(38)

vl(m q- 1) m2(m + 1)- [sl(m q- 1)] 2,

and the standard deviation

Ol(rrt -}- 1) 4Vl(rrt -q-- 1). (39)

To evaluate the accuracy of (36), we compare (35) for s(m-b 1), and (37) for
sl(m + 1) with numerical values.
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5.3 An Example of Three Packet Traffic Streams

For numerical calculations, we will consider the case of three Poisson packet traffic
streams. Here Vo(t) and v(t,i), used in (36), become"

For T1 < t < T2"

v0(t) 1 1 p
A l-p1

v(t,,) Exp - _- p- (T2 t) + A3 .(T3 T2)]};1.-(Pl q- P2)

For T2 < t < T3:

v0(t) )1 q- )2 1-p
1 -(Pl + P2)’

t)}.1 -(Pl P2)

(40)

Table 1 gives s(m + 1), 81(m -1) and l(m--1), related to (35), (37), and (39)
respectively, for rn 1,2,3,5, 10 and 15. We observe that sl(m + 1)is approximately
equal to the exact value s(m + 1) for rn > 1, and equal for rn 1. When m increases,
rl(m+ 1)--,D, and consequently s(m+ 1)-T3, as explained by the agglutination
phenomenon (see Section 3.3).

m

10

15

exact

s(m+ 1)
14.7

18.9

21.8

25.5

28.9

29.7

approximated

sl(m + 1)
14.7

19.2

22.4

26.1

29.3

29.9

rl(rn + 1

12.8

12.6

11.6

9.0

4.1

1.8

Table 1" Local Queue Distribution [at stage (m + 1)] for an Arbitrary Packet
1st approximation" formulae (40).

Example: (3 packet traffic streams)" N-3;T1 -1,T2 5, IT3=301; Pl-
P2 P3 0.2 (p 0.6).

Mean local queue: Exact value: s(m + 1), Equation (35);
Approximated value: sl(m + 1), Equation (37).

Standard deviation: Approximated value: al(m + 1), Equation (39).



The Stationary Local Sojourn Time 427

6. A General Approximation in Case of Poisson Input

In (36) we may write, for the long service durations"
For Tn 1 < t < TN"

s.(t,m + l) 1-
l (p pN)

For t > TN:

"N _t )}1-- (p pN) (1 rnTN (41)

s2(t, rn + 1)- 1,

where the set (AN, PN, TN) relates to the longest packets.
In Table 2, we use this approximated distribution function for 0 < t < TN, inde-

pendent of T1 and T2. We observe the accuracy of this approximation by comparing
the exact value s(m / 1), and the new approximated value s2(m + 1) deduced from
(37) by using (41):

TN

s2(rn+ 1)- f
0

[1 s2(t, rn + 1)] dt. (42)

m

10

15

exact

s(rn + 1)
21.8

25.5

28.9

29.7

approximated

s2(rn + 1)
21.5

25.6

29.2

29.8

r2(rn + 1)
13.0

10.2

4.8

2.1

Table 2: Local Queue Distribution [at stage (m + 1)] for an Arbitrary Packet
2nd approximation: (41), using Example of Table 1.

Mean local queue:

Standard deviation:

Exact value: s(m + 1), Equation (35);
Approximated value" s:a(m + 1), Equation (42).
Approximated value" a:a(m + 1).

In the same way, an analogous expression to (39) gives the standard deviation

a2(rn + 1). In Table 2, the accuracy of s2(m-I-1) is good for m > 2, but the relative
error of a2(rn + 1) stands between 10% and 15%. For a first use, it is sufficient. The
agglutination phenomenon, presented in Section 3.3, explains that the value TN
alone appears: we have seen that busy periods initiated by TN tend to amalgamate
busy periods initiated by Tj (j < N). We state for any distribution function of the
service durations, in case of a finite support"

Property 4: (Impact of longest service times) In stationary regime and in case of
Poisson input with (5) of busy periods not broken up, and a number (m + 1) of
equivalent stages as defined by (9), the distribution function of the local sojourn time
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[at stage (m + 1)] for an arbitrary customer can be approximated (for 0 < < TN) by
(41), when the support of this distribution is finite.

7. Conclusion

Finally, Equation (5) of busy periods not broken up leads us to a general simplified
(41) to easily evaluate the distribution of the local sojourn time in tandem queues, in
the case of a finite support for the distribution of the successive service times of a cus-
tomer (services which are different and which may or may not be mutually depen-
dent).
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