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In this paper, the Kalman-Bucy filter is designed for an Tto-Volterra pro-
cess over Ito-Volterra observations that cannot be reduced to the case of a
differential observation equation. The Kalman-Bucy filter is then designed
for an Ito-Volterra process over discontinuous Ito-Volterra observations.
Based on the obtained results, the filtering problem over discrete observa-
tions with delays is solved. Proofs of the theorems substantiating the filter-
ing algorithms are given.
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1. Introduction

Tto-Volterra processes and their applications to the optimal control theory have been
studied from [1, 7]. The first optimal filter for an Tto-Volterra process over scalar ob-
servations given by a differential equation was designed in [8], and then the optimal
filter was obtained [14] over vector observations.

Continuing the research initiated in [8, 14], this paper develops the optimal filter
for an Ito-Volterra process over Tto-Volterra observations that cannot be reduced, un-
like [8, 14], to the case of a differential observation equation. Based on the obtained
filtering equations over continuous observations, the Kalman-Bucy filter is then de-
signed for an Tto-Volterra process over discontinuous Tto-Volterra observations. In
this sense, this paper follows the series of papers [2, 3, 5, 13] devoted to filtering over
discontinuous observations. Some remarks concerning significance and applicability
of these type of observations can be found there. As a consequence of the obtained
filtering equations over discontinuous Tto-Volterra observations, the filtering problem
over discrete observations with delays is also solved.

The paper is divided into two parts describing continuous and discontinuous ob-
servations, respectively. Proofs of theorems are given in the appendix.
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2. Filtering Over Continuous Observations
2.1 Problem Statement

Let (Q, F,P) be a complete probability space with an increasing right-continuous
family of o-algebras F,, t >0, and let (W(t),F,,t>0) and (W2(t),F,,t>0) be
independent Wiener processes. The partly observed F',-measurable random process
(2(t),y(t)) satisfies the Ito-Volterra equations

t t
2= [ (ag(t,s) +alt,)e(s)ds + [ blt,)w(s), (1)
0 0

t t
v(®) = [ (glt,s)+ At s)a(o)ids + [ Bt,s)aW' (). @)

0 0

Here z(t) € R™ is a nonobserved component and y(t) € R™ is an observed one for the
process (z(t),y(t)). Functions ay(t,s), a(t,s), b(t,s) are smooth in ¢ uniformly in s
and continuous in s, and functions Ay(t,s), A(t,s) and B(t,s) are continuous in t,s.
Let A(t,s) be a nonzero matrix and B(t,s)BL(t,s) be a positive definite matrix. All
coefficients in the equations (1) and (2) are considered deterministic functions.

The estimation problem is to find the best estimate for the Ito-Volterra process
z(t) at time t based on the observation process Y(t) = {y(s),0 < s < t}, that is the
conditional expectation m(t) = E(z(t) | F}/) Let P(t) = E((=(t) — m(t)(=(t) -
m(t)7T | F:’) be the correlation function, where the symbol a* means transposition of
a vector (matrix) a.

The above statement generalizes the problem statement given in [8, 14] to the Tto-
Volterra observation equation (2), which cannot be reduced to a differential equation.
As in [8, 14], it is impossible to obtain a closed system of filtering equations for vari-
ables m(t) and P(t) due to the Volterra nature of the equations (1) and (2). Design-
ing a closed filter requires introducing the additional function f(t) characterizing a
deviation of the best estimate m(t) from the real state z(t):

f(t,s) = E((z§ —mi)(z(s) = m(s))" | FY,), )

where
S

= a, T a rje\r ' T 27’
xi—[( o(ts) + a(t,)a(r))d +Zb(t’ YW (r), (1)

F Z , is the o-algebra generated by the stochastic process yi

t ‘s r)e\r /s ‘s 1 T
v = Z (Ag(tr) + A(t, r)z(r))dr + Z B(t, r)dW (r), (5)

and

mt = E(z}| FY ).
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2.2 Optimal Filter

The optimal filter over continuous observations is given by the following theorem.
Theorem 1: The best estimate m(t) of the system state (1) over the observations
(2), its correlation function P(t), and the function f(t) (see (3)) satisfy the following
filtering equations:
t
m(t) = / (ag(t,s) + a(t,s)m(s))ds (6)

0
+ / F(t,s)AT(t,s)(B(t,s)BT(t,5)) ™ dy(s) — (Ap(t,s) + A(t,s)m(s))ds],
0

t
P = [ 1t (t5)+ (69" (1,5) (7)
0

t
+b(t,s)bT(t,5))ds — / F(t,)AT(t,s)(B(t,s)BL (t,5)) ~TA(t,s)f L (t,s)ds,
0

ft,s) = / [a(s,r)fT(t,r) + f(s,r)aT(t,r) (8)
0

+(1/2)(b(t, 7T (s,7) + b(s, )bT (t,7))]dr

L)

_ / LF(t, ) AT (s, 7)(B(s, )BT (5,7)) = 1(5, ) f T (s, )

0
+ f(s,m)AT(t,r)(B(t,r)BT (t,r)) ~ L A(t,r)f L (t,7)
—(1/2)f(t,7)AT (t,r)(B(t, )BT (s,r)) ~ L A(s,7) f L (s, 7)
—(1/2)f(s,m)AT(s,7)(B(s,7) BT (t,7)) ~ L A(t,r) fL (t,7)]dr.

Proofs of this and the following theorems are given in the appendix.

Remark: Let us note that a filtering problem similar to the considered one was
treated in [9] for scalar state and observation equations with all coefficients depending
on the observation process y an coefficient B not depending on ¢. The filtering
equations obtained in [9] compose a system of integral-differential equations with
respect to five filtering variables: two first-order moments (expectations) and three
second-order ones (cross-correlation functions). This paper presents solution to the
filtering problem in a multidimensional case, considering all coefficients dependent on
t but independent of y. The last assumption enables one (as shown by (6)-(8)) to
obtain the optimal filter as a system of integral equations closed with respect to only
two filtering variables: the expectation m(t) and the cross-correlation function
f(t,s), as it was done in [8, 14] for a differential observation equation. In particular,
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this enables one to apply conventional numerical algorithms to solving the obtained
equations (6)-(8) as a regular Kalman-Bucy filter.

3. Filtering Over Discontinuous Observations
3.1 Problem Statement

Consider a generalization of the filtering problem examined in Section 2 to the case of
discontinuous observations. Let the partly observed F,-measurable random process
(z(t),y(t)) be given by the following Ito-Volterra equations:

t t

a(t) = / (ag(t, s) + a(t, s)z(s))ds + / b(1, s)dW(s), )
0

0

t
0= [ (o) + (A(1,5),2(6))du (o)
0

t

+ [ Bi(t,8)dW(us)),i = 1,...,m, (10)
/

where A(t,s) = (A(t,s),..., A (1, 5)), A;(t,8) € R™i=1,...,m; B(t,s) = (By(t,5),..
Bm(t,s))T, B,(t,s) € R* is the ith row of the matrix B(t,s); (a,b) is the scalar
product in R™, and the rest of the notation is the same as previous.

The observation process is characterized by a vector bounded variation function
u(t) = (uy(2),...,u,,(t)) € R™, which is nondecreasing in the following sense: wu(ty) >
u(ty) as t, >ty if u,(t,) > u,(ty) for i = 1,...,m. This model of observations enables
one to consider continuous and discrete observations in the common form: contin-
uous observations correspond to the continuous component of a bounded variation
function u(t), and discrete observations correspond to its function of jumps.

The estimation problem is formulated as in Section 2. All the remarks of Section
2 concerning the possibility of obtaining a closed system of filtering equations remains
valid in this case. We also retain the notation of Section 2 for functions f(t,s), mi,
mi, and yi.

3.2 Optimal Filter

In [13], the filtering procedure is suggested to obtain filtering equations over discontin-
uous observations proceeding from the known filtering equations over continuous
ones. To apply the filtering procedure to the examined problem is to complete the
following actions:

. assuming a vector function u(t) € R™ in an observation equation (10) to be
absolutely continuous, write the Tto-Volterra filtering equations over
continuous observations obtained in Section 2 (see (6)-(8));

. in thus obtained equations, assume a vector bounded variation function
u(t) € R™ to be an arbitrary nondecreasing one again, keeping in mind that
a derivative @(t) can be a generalized function of zero singularity order (for
example, 6-function).
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As a result, the following system of Tto-Volterra equations over discontinuous
observations (10) is obtained:

m(t) = / (ag(t,s) + a(t,s)m(s))ds (11)
0

t
+/f(t,S)AT(t,S)(B(t,S)BT(t,S))_l[dy(S)—(Ao(t,«"‘)+A(t,8)m(8))dU(8)],
0

t

P(t) = / [a(t, ) f (¢, 5) + F(t, 8)aT (1, 8) + b(t, )T (1, )]ds (12)

0

t
= [ £ )AT 15 BE )BT (1) T A T (1 5)duls)
0

flt,s) = / la(s,)FT(t,r) + f(s,r)al (t,7) (13)

0

+(1/2)(b(t, b7 (5,7) + b(s, 7)) (¢, 7))]dr

s

- / [£(t,m)AT (s,7)(B(s,r)BT (s,7)) ~ Y A(s,7)f T (s,7)

0
+ f(s,m) AT (t,7)(B(t,r) BT (t,r)) ~1A(t,r) fT (2,7)
—(1/2)£(t,r) AT (t,r)(B(t,r)BT (5,7)) " *A(s,7) £ T (s,7)
—(1/2)f(s,7) AT (s,7)(B(s,r)BT(t,r)) ~LA(t, ) f L (t,7)]du(r).

Here, multiplication by an m-dimensional measure du(t) should be regarded in the
componentwise sense, as in the observation equation (10).

The obtained equations (11)-(13) are integral equations with integration w.r.t. a
vector discontinuous measure generated by a nondecreasing bounded variation func-
tion u(t). Further investigation will follow the standard scheme suggested in [13]. It
will be specified how to understand the solution of these equations and how to com-
pute jumps of the solution at the discontinuity points of u(¢). Actually, these jumps
reflect reaction of the filtering variables (the estimate m(t) and its characteristics
P(t) and f(t,s)) to appearance of discrete measurements in the environment of a con-
tinuous signal. The final step is to prove that the introduced solution of the system
(11)-(13) really yields the optimal estimate and its correlation characteristics.
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3.3 Solution and Jumps: Theoretical Background

To avoid unnecessary complication of formulas, let us study an integral equation with
integration w.r.t. a vector discontinuous measure generated by a nondecreasing
bounded variation function in the general form and develop theoretical constructions
for it. Namely, consider an integral equation in the form

t
z(t) = z(ty) + / f(z,u,t,s)ds + b(z,u,t,s)du(s), (14)
t

where functions f(z,u,t,s) and b(z,u,t,s) are continuous in z, u, t, s; u(t) = (uy(2),
..nU,(t)) €ER™ is a nondecreasing bounded variation function.  The set of
discontinuity points of u(t) is considered a countable set of isolated points.

The solution of the equation (14) is introduced as follows (cf. [13]).

Definition: The left-continuous function z(t) is said to be a vibrosolution of the
equation (14), if the *-weak convergence (see [10]) of an arbitrary sequence of ab-
solutely continuous nondecreasing functions u*(t) € R™ to a nondecreasing function
u(t) € R™ in the bounded variation functions space

* — limu®(t) = u(t)
implies the analogous convergence
* —limz®(t) = z(t)

of corresponding solutions z¥(t) of the equation

t

2k (1) = 2(t,) + / F(z®,uk t,5)ds + b(zF,uk, 1, 5)duF(s),
t
0

and the unique limit z(t) is regardless of a choice of an approximating sequence
{uk(®)}, k=1,2,...

The existence and uniqueness conditions for the vibrosolution of the equation (14)
are given in the next theorem. Let us note that a vibrosolution is expected to be a
function discontinuous at discontinuity points of u(t).

Theorem 2: Let

(1)  functions f(z,u,t,s), b(z,u,t,s), Ob(z,u,t,s)/0z, 0Ob(z,u,t,s)/ot,

0b(z, u,t,5)/0s be continuous in x,u,t,s;

(2)  functions f(z,u,t,s), b(z,u,t,s) satisfy the Lipschitz condition in z;

(3)  the nxm-dimensional system of differential equations in differentials

9 —beutt), €w) =7 (15)

is solvable on the cone of positive directions K ={u€ R™u; > w,,
i =1,..,m} with arbitrary initial values w € R™, w > u(t,), and z € R™.
Then there exists the unique vibrosolution of the equation (14).
Jumps of the vibrosolution of the equation (14) at the discontinuity points of the
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function u(t) can be computed using the following equivalent equation with a mea-
sure.

Theorem 3: Let the conditions of Theorem 2 hold. Then the integral equation (14)
and the equivalent equation with a measure

t
x(t) = z(ty) + / f(z,u,t,s)ds + b(z,u,t,s)du’(s)
to
+ Z G(m(ti - )’ u(ti - )a Au(ti)’ ti)dX(t - ti)’
T.

)

have the same unique solution regarded for the equation (14) as a vibrosolution. Here
G(z,w,u,t) = &(z,w,w+u,t) —z and &(z,w,u,t) is the solution of the system in
differentials (15); x(t;—) and x(t; +) are values of the function z(t) at a discontin-
uity point t; from the left and right, respectively; u(t) is the continuous component
of a nondecreasing function u(t), Au(t;) = u(t;+)—u(t,—) is the jump of a function
u(t) at t;, t; are the discontinuity points of a function u(t), £(t—t;) is a Heaviside
function.

3.4 Equivalent Form of Filtering Equations

Thus, Theorem 2 yields existence and uniqueness of the vibrosolution
{m(t), P(t), f(t,s)} to the system of filtering equations (11)-(13), and Theorem 3
brings out the method for computing jumps of the vibrosolution {m(t), P(t), f(¢,s)}
at the discontinuity points of the function u(t) (i.e., at the discontinuity points of
observations). Indeed, in view of Theorem 3, the equivalent equations with a
measure for the filtering equations (11)-(13) take the form

t

m(t) = / (ag(t,s) + a(t,s)m(s))ds (16)

0

t
+ / f(ts =)+ AT(1,5)(B(t,5)BT (1,5)) 7"
0

x A(t,8)f(t,s — )Au(s)] = 1AT(t,s)(B(t,s)BT (t,5)) ™1

x [dy(s) — (Ag(t: 5) + A(t, s)m(s — ))du(s)],

t

PO = [ lolt )" (t9) + Flt,)aT (1,5 (1

0
t
+ 5t )T (¢, 5)]ds — / F(tys =)+ AT(t,5)
0

x (B(t,s)BT(t,s)) ~1A(t,s)f(t,s — )Au(s)] ~ !
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x AT(t,8)(B(t, )BT (t,5)) ~LA(t,s)f L (t,5 — )du(s),

S

f(t,s) = / [a(s,r)fT(t,r) +f(s,r)aT(t,r) (18)

0

+(1/2)(b(t, 7 )T (5,7) + b(s, )b (,7)]dr
- / [f(t,T' - )[I + (AT(S’T)(B(S’ T)BT(S,T)) - lA(s7 r)f(S,T‘ - )
0

+ AT(t,7)(B(t, )BT (t,7)) “ A(t,r)f(t,r —)
—(1/2)AT(s,7)(B(s,7) BT (t,7)) ~ YA(t,r) f(t, 7 — )
= (1/2)AT (&, r)(B(t,r)BT (s,7) ~ 1 A(s,)f (5,7 = ) Au(r)]
x AT (s,7)(B(s,r) B (s,7)) "V A(s,r)fT(s,7 =)
+ f(s,7 =)L + (AT (5,r)(B(s,r) BT (5,r)) = LA(s,7) f (5,7 - )
+ AT (4,7)(B(t, )BT (t,7)) " A(t,r)f(t,r —)
= (1/2)AT(s,7)(B(s,)BT (t,r)) " P A(t, 1) f(t,7 =)
— (1/2) A" (t,r)(B(t,)BT (s,7)) = A(s,7)f(5,7 = ) Au(r)] ~!
x AT(t,r)(B(t,7)BT(t,r)) ~ L A(t,r)fL(t,r )
= (1/2)f (s, =) + (AT (s,7)(B(s,r)B” (5,7)) ~ " A(s,7)f (s, —)
+ AT(t,7)(B(t, )BT (t,7)) ~A(t,r) f(t,r —)
= (1/2)AT(s,7)(B(s,r)BT (t,r)) " P A(t, 1) f(t, =)
— (1/2)AT(t,r)(B(t,r)BT (s,r)) " A(s,) f(s,7 = ))Au(r)]

x AL (s,r)(B(s,r)BT(t,7)) Y A(t,r) fT(t,r — )
—(1/2)f(t,r = I + (AT (s,r)(B(s,r)BT (s,7)) = A(s, ) f(s,7 =)
+ AT(t,7)(B(t, )BT (t,7)) L A(t,r) f(t,r —)

— (1/2)AT (5,7)(B(s,7)BT (t,7)) " A(t,r) f (2,7 — )

— (1/2)AT(t,r)(B(t,r)BT (5,7)) ~ L A(s,m)f(s,7 = )) Au(r)] !

x AT (t,7)(B(t,7)BT (s,7)) ~ L A(s,7) f L (5,7 = )]du(r),
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where I is the n x n-dimensional identity matrix. The function f(t,s) is continuous
in t.

It is readily verified that jumps of the filtering variables m(¢), P(t), and f(t,s) at
a discontinuity point ¢; of u(t) are equal to the expressions under the integral signs in
the right-hand sides of (16)-(18), upon substituting the jumps Au(t;) and Ay(t;) for
differentials du(t) and dy(t), respectively.

The equations with a measure (16)-(18) completely determine the behavior of the
filtering variables m(t), P(t) and f(t,s), i.e., the complete reaction of the filtering
variables to a composition of continuous and discrete measurements. The next
optimality theorem is the final step in solution of the filtering problem for an Tto-
Volterra process over Ito-Volterra discontinuous observations.

Theorem 4: The solutions m(t), P(t) and f(t,s) of the equations (16)-(18) are the
optimal estimate in the filtering problem (9), (10), its correlation function, and its
correlation characteristic (3), respectively.

3.5 Filtering Over Discrete Observations with Delays

Finally, consider the filtering problem for an Tto-Volterra process over discrete
observations with delays, whose general solution has not been published previously.
Let the state equation be the same as (9) and the observation equation be as follows:

Y(t)) = Agltyts) + Aty t)a(8) + B(tj,t)%(t,),

where y(t;) € R™ are discrete observations at time moments t;, j =0,1,...,2(¢,) are
values of the system state as moments ¢; available at the observatlon moments ts
At t) € R™X™ are transition matrices, ‘and Y(t;) are independent Gaussian noises
acting at the moments ¢, We consider the model of discrete observations with one
time delay t =t although the observation equation (10) allows a set of delays up
to the power of continuum.

In view of the equations (16)-(18), the optimal estimate m(t), correlation function
P(t), and correlation characteristic (3) f(t,s) satisfy the following equations between
the observation moments ¢ j

t
m(t) =m(t;+)+ / (ag(t,s) + a(t,s)m(s))ds,
ti+
t
P(t) = P(t;+) + / [a(t, )17 (t,5) + f(t,5)a” (1,5) + b(t, )b (2, 5)lds,
ti+

ft,s) = f(t,tj +)+ / [a(s,r)fT(t,r) + f(s,r)aT(t,T')

ti+
+ (1/2)(b(t, )T (s,7) + b(s, r)bT (t,7))]dr,

and their jumps at the moments t; of discrete observations are equal to
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Am(t;) = f(t,t;— )T+ AT(t;,t;)(B(t,t )BT (t,1,)) !
x A(tj,t)f (8t —=)) 7 TAT(8,1)(B(tj, )B4 ,15)) ~ My(t))
= f(tjot; =T+ AT (2,,1,)(B(t;, )BT (15,8,) ™!

x At t:) f(tt =) VAT (85, 1)(B(t; )BT (¢,1,)) 7!

x (Ao(tot;) + A(t;t,)m(t; —)),

AP(t)) = f(tjt; = T+ AT(¢;t)

x (B(t;,t;)BT (t;,1,)) " A(t;,t) f(t;t,—)] 71
x AT(t,t,)(B(t;, ;)BT (t;,t,)) " VAt t) fT (158 ),

Af(tt) = [f(tt;= )T+ (AT (5, t)(B(tj 1) BT (t5,1,)) ~ LAt ) f (25t =)
+ AT(4,1,)(B(t,t,) BT (1,1,)) “1A(t, 1) f (1, ¢, —)
—(1/2)AT(t,,1,)(B(t,,t;)BT (t,4;)) “ At ) f (1, t; — )

— (1/2)AT (2, ;) (B(t, ;)BT (15,1,)) TP A(j, 1) (¢t = )] 7
x AT(t;,t)(B(t,t)BT (,1,)) "1 A(t,, 1) fT (t;,t,—)

+ f(tjty =+ (AT (1) (B(t, )BT (t,1,)) ~YA(t,,) f (2,1 —)
+ AT(t,,)(B(t,t,) BT (t,t,)) ~TA(t, 1) f(t,t; —)
—(1/2)AT(t,,1,)(B(t,,t;)BT (t,4;)) ~ At t)) f(t,t; — )

— (1/2)AT (1, 8,)(B(t,t,)BT (1,1,) T At 1) (258, =))] 7
x AT(t,¢,)(B(t,t,)BY(t,t,)) ~LA(t, ) f T (,¢; )
= (1/2)f (5, t; = T + (AT (25, 6,)(B(t,t)BT (15,1,)) TP A(tj, 1) f (5,8, )
+ AT (4,1,)(B(t, ;)BT (t,1,)) “YA(t, 1) f (¢, 1, —)

— (1/2)AT(t;,1,)(B(t;,t,) BT (t,1,)) ~ At t) f (.1, —)

— (1/2)AT (1, 8,)(B(t,t,) BT (1,1,) T VAt 1) (25,4, = )] 7
x AT (5, t)(B(t; )BT (t,1,) ~ 1At 1) fT (2,1, -)
—(1/2)f(tt; = UL + (AT (t,)(B(t;t,)BT (¢ ,1,) TP Aty 8)f (258 —)

+ AT(4,1)(B(t, ;)BT (1,4,)) T 1At ) f (1,4, —)
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— (1/2)AT(tj,1,)(B(t; 1) BT (,1,)) T VAL ) F (8,1, —)
~ (1/2)AT (4, t)(B(t, 1) BT (t;,1,)) ~ YAt j, t) f (258, —))] ™!
x AT (t,1,)(B(t, t)BT(151) T VAt 1) FT (Lot =)

Thus, the solution of the filtering problem for an Tto-Volterra process over discrete
observations with delays readily follows from the solution of the filtering problem
over discontinuous observations. This gives us one more point for significance of the
model of discontinuous observations (10).

4. Conclusion

This paper presents an addition to the Kalman-Bucy filtering theory, which is related
to filtering over observations given by Ito-Volterra equations. The filtering equations
have been obtained first over continuous observations, then over discontinuous ones,
for the model of discontinuous observations enables one to consider continuous and
discrete observations in the common form. Solution of the filtering problem over dis-
continuous observations has allowed us to solve the filtering problem over discrete ob-
servations with delays, whose general solution has not been previously published.

5. Appendix

Proof of Theorem 1: Let us consider the filtering problem for the state z! over the ob-
servation process yi. The equation (4) for xi and the equation (5) for y, are actually
differential equations with respect to s, where ¢ is the parameter. Therefore, the
principal filtering theorem (the correlation theorem for conditionally Gaussian process-
es, see Theorem 8.6 in [11]) is applicable, and we obtain

s

mi = / (ag(t,r) + a(t,r)m(r))dr

0
s

+ / E(zla®(r) = mimT(r) | FY AT (t,r)(B(t,r) BT (t,r)) !
0

X [dyi — (Ay(t,r) + A(t,m)m(r))dr].

In view of nonstochastic coefficients in the observation equation, the innovations

process dy! — A(t,s)ds — A(t,s)m(s)ds generates the same o-algebra for any ¢, and,

therefore, can be replaced by the innovations process dy(s)— Ay(t,s)ds—

A(t,s)m(s)ds. Thus, equating s = ¢ yields, in view of (3), the equations (6) for m(¢).
Let us now prove the equation (8) for f(¢,s). The Ito formula yields

d(ri - mﬁ) =[a(t,r) - (2, r)AT(t, r)(B(t, r)BT(t, r)~ 1A(t, )]

x (z(r) —m(r))dr + b(t, r)dW2(r)
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— f(t,»)AT(t,7)(B(t,7)BT (t,7)) ~ 1 B(t,r)dW(r),

and
d((zt — mi)(z¥ — m#)T) = (2t — mt)(2(r) — m(r))T

x [a(u, ) = f(u,7)AT (u,7)(B(u,7) BT (u, 7)) L A(u, )| Tdr
+[a(t,r) = f(t,r)AT(t,r)(B(t,r)BL (t,r)) ~*
x A(t,r))(a(r) = m(r))(z} — m)Tdr
+ (1/2)(b(t,r)bT (u, ) + b(u, )T (¢, 7))dr

+(1/2)f(t,r) AT (t,7)(B(t,r) BT (u,r)) ~ Y A(u,r) f T (u,r)dr

+(1/2)f (u,m) AT (u,r)(B(u,m)BY(t,7)) " P A(t r)fT (8, 7)]dr
— (@h = mD)f (u,r) AT (u,r)(B(u, )BT (u,7)) = B(u,r)dW (1) — b(u, r)dW2(r)]"
—[f(t, ") AT (t,7)(B(t,r) BT (t,7)) "1 B(t,r)dW(r) — b(t,r)dW?(r)](z¥ — m*)T.

Integrating with » from 0 to s, equating u = s, and using Theorem 8.6 in [11], we
obtain

E((at - mi)(z(s) —m(s))T | FY )

s

= [ (Bt = mi)a(r) = mr))T | FY o (s,r)

0
+a(t,r) B((z(r) = m(r))(ws —m3)T | FY )
+(1/2)(b(t,r)bT (s,7) + b(s,7)bT (¢, 7))
+(1/2)£(t,r) AT (¢,r)(B(t, )BT (s,7)) =L A(s,7) T (s, 7)
+(1/2)f(s,7) A (s,r)(B(s,7)BT (t,7)) ~ 1 A(t,r) f T (t,7)
= E((zy = mp)(z(r) =m(r))T | FY )AT(s,r)(B(s,r)BT (s,7)) = ' A(s,7)  (s,7)

— f(t,)AT(t,r)(B(t,r) BT (t,r)) " 1A(t,r) E((2(r) — m(r))(af = m$)T | FY )]dr

+ / [B((at = mt)(&2 = m®)T (a(r) = m(r)) | FY )]
0

x AT(t,r)(B(t,r)BT(t,r)) ~ [dy! — (Ay(t,7) + A(t,r)m(r))dr].

Let us note that the latter term is equal to zero because all the processes under the
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expectation sign are zero mean conditionally Gaussian. Thus, in view of (3), the last
equation yields the equation (8). Finally, the equation (7) follows from (8), because
P(t) = f(t,1).

Proof of Theorem 2: By virtue of the theorem conditions, the equation (14) has
the unique absolutely continuous solution on the continuity intervals of the function
u(t) (see [7]). Moreover, this absolutely continuous solution is a vibrosolution, in
view of the Lebesgue bounded convergence theorem (see [10]) which yields existence
of the limit required in the definition of a vibrosolution on the continuity intervals of
u(t). Thus, it remains to prove existence of the vibrosolution of (14) only in neighbor-
hoods of the isolated discontinuity points ¢;, i = 1,2,..., of the function wu(t).

In accordance with the theorem conditions, the system (15) has the solution
&(z,w,u,t;) on the cone K, where t; is an isolated discontinuity point of u(t). Let us
seek the solution of (14) corresponding to a nondecreasing function u(t) in the form

2(t) = £(=(1), uy u(t), t,), (19)

where u; = u(t,).
In accordance with the definition of a solution of the system in differentials (15),
the expression (19) implies the representation

u(t)
z(t) = 2(t) + / b(&(v),v,t;,t;)dy,
or -
2(t) =50+ [ Ba(0) +y(r)u;+ w0, 1t i), (20)

0

where T is the time, for which the trajectory of (15) reaches the point z(t), and y(r)
is the solution of (15) corresponding to the nondecreasing function w(r) = u(r) — u;.

The solvability of the system in differentials (15) on the cone K implies (see [6] for
further details) that the integral form

Tl

/ b(z(t) + y(r), u; + w(r), t;, t,)w(r)dr (21)
0
is equal to zero for any nonnegative function w(r) in R™:w(r) € R™, wy(r) >0,
Jj=1,...,m, which is piecewise smooth on the interval [0,7"] and equal to zero at its
terminal points 0 and 7". In other words, the integral form (21) is equal to zero for
any piecewise smooth loop w(r) € R™ inside the nonnegative orthant of R™, which
starts and ends at zero. Here, T" is the time of passing the loop.
Let w(r) be such a piecewise smooth loop in R™ that the corresponding solution of
(15) with the initial value 2(¢t) reaches the point z(t) for the time 7', where w(r) > 0.
Then, the equality (21) takes the form

T

/ b(2(t) + y(r), u; + w(r), t;, t,)w(r)dr

0
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T/
+ / b(z(t) + y(r), u; + w(r), t;, t;)w(r)dr
T

T
= / b(z(t) -+ y(r), u; + w(r), tia ti)d)(r)dr'
0

T'-T
+ / b(z(t) + y(r),u(t) + w(r),t;, t;)w(r)dr =0, (22)
0

where u(t) = u; + w(T).
Upon substituting the representation (20) into (22), we obtain

T -T

z(t) — 2(t) + / b(x(t) + y(r), u(t) + w(r), t;, t;)w(r)dr =0,
0
ie., -
2(t) = z(t) + / b(z(t) + y(r), u(t) + w(r), t;, t,)w(r)dr,
0
z(t) = z(t) + / b(&(v),v,t;,t,)dv. (23)
u(t)

The representation (23) implies that the inversion formula

2(t) = &(a(1), u(t), u;t;) (24)

is valid for u(t) > u;. In particular, 2(t;) = 2(t,).

Based on the existence of the derivatives 0¢/0z, 0¢/0t, 0€/0v, and solvability of
the system in differentials (15) (the first and third conditions of this theorem), we
obtain, using the transforming technique from [12], that z(t) satisfies the equation
with a discontinuous right-hand side

2(t) = So(z(t)’“i) u(t)a ti)’ z(ti - ) = z(ti - ) (25)
where

0&(&(zyuyuyt), u,u;,t
ety - et )

X f(ﬁ(z, U;y U, t), u, t) + 66(5(2, Ui’gt, t)a U, U;, t).

The function ¢(z,u;,u,t) is continuous as a combination of the continuous
functions 0€/0z, f, and 0€/0t. Thus, a solution of the equation (25) exists.

Let uk(t), k=1,2,..., where *—limuk(t) =u(t), k—ooc, t>1t, be a sequence of
absolutely continuous nondecreasing functions converging to u(t) in the *-weak topolo-
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gy of the bounded variation functions space. The equation (14) with functions u¥(t)
in the right-hand side becomes an ordinary integral equation without integration
w.r.t. a discontinuous measure

eF(t) = e(t;— ) + / F(@*,up, t,5)ds + b(z*,uF 1, 5)duk(s), (26)

In view of the first and second conditions of this theorem, there exists the umque
solution of the equation (26). The inverse formula (24) implies that &(z¥(t),u®(t),
t,) = z¥(t) is the unique solution of the equation

R () = (2R (t), up ug(0), 1)), 2Rt =) = 2(t; —). (27)

Let * —limu(t) = u(t), k—oo, t > t;. Based on the continuous dependence of a
solution of a differential equation on its right-hand side, we obtain that
% —limz*(t) = *(t), k—oo, t >t,, where z*(t) is a solution of the equation (25).
This solution is unlque due to unlqueness of the solutions z¥(t) of (27) for pre-
limiting functions u¥(t). Thus, z*(t) is the vibrosolution of (25). Based on the
continuity and one-to-one correspondence of the relation (19), we conclude that

x*(t) = €(2*(t),u;,u(t),t;) is the desired vibrosolution of the equation (14).
Moreover, supVar[t t]m’c(t) < oo for t>t,, in view of uniform boundedness of the

z’z

variations of the functions zk(t) and u(t), k=1,2,.... Uniform boundedness of the
variations of the functions z¥(¢) and u®(t) follows from the convergence

* = limuk(t) = u(t), *—limzF(t) = 2*(t), k—oo, t > 178

in the x-weak topology of the bounded variation functions space.

Proof of Theorem 3: A proposition similar to Theorem 3 is proved in [12] for a
vibrosolution of an ordinary differential equation in distributions. This proof can be
repeated here using the existence and uniqueness theorem for a solution of an integral
Volterra equation (see [7]), instead of that for a solution of an ordinary differential
one. The rest of the proof can be carried over from [12].

Proof of Theorem 4: The last step is to prove optimality of the solutions of the
equations (16)-(18) as filtering variables.

Define the functions «(t), 8(s), v(s) by:

a(t) =t+ [[u(t) = u(0) ||, A(r)=inf{t:a(t) >r},
v(r) = u(t =) +[Au(t)/ || Au(t) || [r —a(t )], if B(r) =t ¢ D,
¥(r) = u(B(r)), if B(r) € D,

where D is set of continuity points of the function u(t), Awu(t) is the jump of the
nondecreasing bounded variation function u(¢) at its discontinuity point ¢, and the
symbol || - || denotes the Euclidean norm in R™. Note that the functions y(r), B(r)
are absolutely continuous in r. Introduce a state vector z"(r) and an observation
process y"(r) as solutions of the equations
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2'(r)= [ (ao(r,B(@) + alr, S@)e" @)B(a)d
0

+ [ b @)W 6, (28)

0

i) = [ (Aol B(0) + (A, B@)," @) )
0

r

+ [ Bs@IW G0, (29)

0

The functions z"(a(t)),y"(a(t)) obviously satisfy the equations (9), (10), and there-
fore the following equalities hold:

z(t) = 2"(a(t)), y(t) = y"(a(?))-

Hence, the filtering variables m”(a(t)),P"(a(t)), and f"(t,a(s)) should be the
optimal filtering variables in the initial filtering problem (9), (10).

Since functions f3(r), y(r) are absolutely continuous in r, the right-hand sides of
the equations (28), (29) contain only continuous functions. Thus, the filtering
equations for the state z”(r) over the continuous observations y"(r), which were
obtained in Section 2 (see (6), (8)) take the form

mt'(r) = [ (aglr, @) +alr @) (0))dg (30)
0

+ [ 100 (BB, BB @)

0

x [dy"(q) — (Ag(r, B(q)) + A(r, B(g))m"(9))¥(g)dq],
f(r,p) = / la(p, B(0))F" T (ryq) + £ (pya)aT (r, B(g)) (31)
0

+(1/2)(b(r, B(2))6” (p, B(2)) + b(p, B(0))bT (v, B())))dr

p

= [ 04T (0, 8@ B, S B (5, B0))

0

x A(p, B@) "I (p,q) + f"(p,0)AT (v, B(a))(B(r, B(q))
x BT(r, B(2))) ~* A(r, B(0)) f"T (r ) — (1/2)f"(r, ) AT (r, B(a))
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x (B(r, 8(2))B (p, #(0))) ~ *A(p, B(2))F" T (p,q)
—(1/2)£"(p,9) AT (p, B(2))(B(p, B(2)) BT (r, B(g))) !
x A(r, B()) " (r, )17 (a)da,

where m'(s) is the optimal estimate (conditional expectation) of the state z"(r) over
the continuous observations y''(r) and f"(r,p) is its correlation characteristic (3).
(The equation for P"(r) is not used here.)

In view of the equations (30), (31), the variables m"(«(t)) and f"(t,a(s)) satisfy
the equations (16), (18) in the continuity intervals of u(t). Moreover, if r €
[a(t; —),(t; 4+ )] and p € [a(s; —),a(s; + )], where t; and s, are discontinuity points
of the function u(t), then, in view of Theorem 3, jumps m"(a(t; +)) —m"(a(t; —))
and f'(t;,a(s;+)) — f"(t;,a(s; —)) of the variables m"(a(t)) and f"(¢,a(s)) respec-
tively coincide with jumps m(t;+)—m(t,—) and f(t,,s,+)— f(t;;s;,—) of the
solutions m(t) and f(¢,s) of (16), (18). Thus, the optimal filtering variables
m"(a(t)) and f"(t,a(s)) are solutions of (16), (18) everywhere. Finally, the equation
(17) follows from the equation (18) because P(t) = f(t,1).
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