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AutoRegressive Modular (ARM) processes are a new class of nonlinear
stochastic processes, which can accurately model a large class of stochastic
processes, by capturing the empirical distribution and autocorrelation func-
tion simultaneously. Given an empirical sample path, the ARM modeling
procedure consists of two steps: a global search for locating the minima of
a nonlinear objective function over a large parametric space, and a local
optimization of optimal or near optimal models found in the first step. In
particular, since the first task calls for the evaluation of the objective func-
tion at each vector of the search space, the global search is a time consum-

ing procedure. To speed up the computations, parallelization of the global
search can be effectively used by partitioning the search space among
multiple processors, since the requisite communication overhead is negligi-
ble.

This paper describes two space-partitioning methods, called Inter-
leaving and Segmentation, respectively. The speedups resulting from these
methods are compared for their performance in modeling real-life data.
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1. Introduction

AutoRegressive Modular (ARM) processes are a new class of nonlinear stochastic pro-
cesses. ARM processes can accurately model a large class of nonlinear stochastic pro-
cesses, by capturing the empirical distribution and autocorrelation function simultan-
eously [11]. Two subclasses of ARM processes have been studied and exercised on

real-life empirical data. The main class, called TES (Transform Expand Sample),
has been studied in some detail [7, 8, 3, 4, 5, 9], and a software environment called
TEStool, (has been created to support TES modeling [2]. A finite-state variant,
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called QTES (Quantized TES) has been developed recently [10], and work is in
progress to create a modeling environment to support it as well.
ARM can be used whenever one or more empirical sample paths (measurements)

from a stationary stochastic process are available, and the empirical autocorrelation
function exhibits significant autocorrelations. Furthermore, since ARM is non-para-
metric, no assumptions need to be made on the form of the stationary distribution
nor on the shape of the autocorrelation function. This flexibility is useful in many
application areas. For example, modeling traffic on emerging high speed networks
has recently attracted considerable attention. A salient feature of projected major
traffic sources is a high degree of burstiness which manifests itself in high
autocorrelations. Both compressed video and file transfer are cases in point. In order
to obtain good predictions of the performance measures resulting from offering a

bursty traffic stream to a server system, it is important to accurately model both the
marginal distribution and autocorrelation function, a task that the ARM modeling
methodology is designed to carry out for a large variety of stochastic processes.

To this end, [6] proposed a TES fitting algorithm which is a combination of two
stages. The first is a brute force search, to be referred to as the global search, and the
second is a nonlinear optimization, to be referred to as the local optimization. The
global search has an inherent high time complexity and is the subject of the present
paper; the complexity of the local optimization is relatively small. More specifically,
the global search requires the evaluation of a nonlinear objective function over a large
multidimensional discretized parameter space, consisting of high-dimensional
probability vectors (the requisite dimension is around 100). Since the search space
grows explosively in the dimension, the global search is time consuming and real-time
or near real-time searches are currently impossible with desktop computers. On the
other hand, partitioning the search space and distributing the corresponding search
subtasks to parallel processors is a natural avenue for speeding up the search. This is
due to the fact that each search of the partition subspaces is entirely autonomous,
requiring no communication overhead other than task distribution and returning the
corresponding results.

This paper investigates two space-partitioning models, called the Interleaving
method and the Segmentation method, and studies their speedup performance, using
real-life data. Both methods are algorithmic enumerations of search subspaces that
facilitate the global search for an ARM model.

The rest of this paper is organized as follows: Section 2 reviews briefly ARM
processes and the associated modeling methodology. Section 3 describes the search
space of the global search (commensurate with that used in the GSLO algorithm of
[6]). Section 4 discusses the parallelization of ARN model fitting. Section 5 is devot-
ed to the development of the two partitioning methods of the search space. Section 6
compares the performance of the two partitioning methods. Finally, Section 7
concludes the paper.

2. Background

This section provides a brief overview of the ARM processes TES and QTES.
Throughout the paper, we assume that all stochastic processes are defined over some

probability space, (f, 5, P).
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2.1 TES Processes

In order to fix the ideas and keep the presentation concise, we shall focus on the main
type of TES processes, called TES +; the treatment of other types, such as TES-, is
analogous [3, 4, 7, 8]. The construction of TES + models involves two random se-

quences in lockstep. The first sequence, called a background TES + process, serves an

auxiliary role, and is given by

Uo, n 0
U: (U2_ + Vn), rt > 0

(1)

where U0 is distributed uniformly on [0, 1), {Vn}n= is a sequence of iid random
variables, independent of U0, called the innovation sequence, and angular brackets
denote the modulo-1 (fractional part) operator {x}- x- max{integer n" n <_ x}.

The second sequence, called a foreground TES + process and denoted by
{Xn+ }n 0, is a transformed version of a background TES + process,

Xn+ D(Un+), (2)

where D is a measurable transformation from [0, 1) to the reals, called a distortion.
For technical reasons, we require that f D(x)dx < oc.

An important family of distortions is based on empirical time series, Y-
{Yn}nN= O; these distortions consist of composite transformations of the form

Dy,(x)- V l(s(x)) x e [0, 1). (3)

Here, the inner transformation, S, is a "smoothing" operation, called a stitching
transformation, parameterized by 0

_ _
1, and given by

0 <_ y <_
S(y)-

(1-y)/(1-), (_<y<l.
(4)

The outer transformation, /71, is the inverse of the empirical (histogram) distribu-
tion function computed from an empirical time series, Y {Yn}, as

J wj/ (X) E l[j (x)[lj + (X Cj 1)-j]’ 0 < x < 1, (5)
j=l -I’Cj

where J is the number of histogram cells, [lj, rj) is the support of cell j with width

wj- rj-lj > O, j is the probability estimator of cell j and {i}/J- 0 is the cdf of

{j}Jj-1, i.e., j- = 1i, 1 -< J -< g (0- 0 and j- 1).
Because stitching transformations preserve uniformity [7], the inversion method

can still be applied to stitched background process {S((Un+)}. It follows that any
foreground TES + sequence of the form

(6)
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is guaranteed to have the empirical (histogram) distribution Hy, regardless of the
innovation density fy and stitching parameter selected. The choice of a pair
(,fy) will largely determine the dependence structure of (6) and, in particular, its
autocorrelation function. Thus, TES modeling decouples the fitting of the empirical
distribution from the fitting of the empirical autocorrelation function. Since the
former is guaranteed, one can concentrate on the latter.

In practice, TES modeling has the form of a heuristic search for a suitable pair
(,fy), such that the ensuing TES model approximates well the leading empirical
autocorrelations and gives rise to sample path realizations which adequately resemble
the empirical record. The transition density and autocorrelation functions of TES
processes, required for the purpose of modeling, can be computed from fast and
accurate formulas developed in [3, 4]. In particular, background TES + processes are
stationary Markovian and uniform on [0,1), and the v-step transition density of
{Us+ } is given by [3, 8]

., f[/(i2r’)ei2’(-),

O,

where (s)- fe- sXf(x)dx denotes the Laplace Transform of f.
tion function of the foreground process {X+ } is given by [3, 8]

flX+(7") (7( .= 1

0<_y,x<l

otherwise
(7)

The autocorrela-

(8)

where r is the common (finite) variance of the X +
t

2.2 QTES Processes

Like its continuous analog, TES, the QTES class consists of background and fore-
ground sequences. In analogy to Section 2.1, we focus on QTES + processes.
A background QTES + process is a quantized (discretized) variant of a background

TES + process over a finite state space. To this end, we partition the unit circle (of
circumference 1) into a finite number of subintervals (called slices). Specifically, let

M- {0,1,. M -1}, for some integer M > 0. A quantization of the unit circle,
[0, 1), is a partition

r(M) {r. -[m,(m + 1)5)" m E M}

of the interval [0,1)into M subintervals (slices), Fm, each of length 5-
5(M)- 1/M. The usual integer-valued modulo-M operator from the integers onto
% m
M will be denoted by (m)M m- M[--J.
Let Co be an integer-valued random variable, distributed uniformly over %M, i.e.,

P{Co- m}- l/M, for all m E %M" Let further, {Jn}= be an lid sequence of
integer-valued random variables, independent of Co (the innovation sequence). The
common distribution of the J, is denoted by fj(j)- P{J,- j} tj, j %M" A
background QTES + process is defined by
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c.+ { Co, o
(C& + Jn>M’ t > O.

(9)

Background QTES + processes of the form (9) are stationary Markovian, and their
marginal distributions are uniform on %M, i.e.,

1-5, mE%MP{Cn+ m) (10)

Their r-step transition probabilities, denoted by hr+ (klJ)- P{C+
j}, have the representation

h+ (k J) _MI )ei2..(k-j)/Mfj(i27ru

where

(11)

M-1
j(i27ru) E fj(m)e-ir.m/M, u e %M, (12)

m--O

is the discrete Fourier transform of fj {r- fj(m): m G M}"
The construction of a foreground QTES-r process associates with each state m

M of the modulating process, {Cn+ }, a random variable with a marginally uniform
distribution on the corresponding slice, Fm -[mS, (m + 1)5). The process {Qn+ } is a

continuous extension of {C+ }, defined by

Q+ E I{C+ m}5(m+W), (13)
m%m

where the sequence {Wn} is iid with uniform marginals on [0, 1), so that 5(m + Wn)
is uniform on rm -[mS, (m + 1)5). In other words, Qn+ is conditionally uniform on

rm, given that C+ -m. Combining (10) and (13), it follows that {Qn+ } is uniform
on [0,1), with r-step transition density

q+ ( x) h+ (Ir(y) lr(z))1/2, (14)

where Iv(z is the (unique) slice index k- k(z)in the partition r, such that z Fk.
Let D be a distortion such that f oD(x)dx < oo, and let {Z_ } be the correspond-

ing QTES + foreground sequence, with elements Zn+ D(Q). Thus, {Z} has
the same marginal distribution as the TES + foreground sequence, {Xn+ }. The auto-
correlation function of the process {Z+ } is given by (see [10] for details)

52 M-1

flZ+ (7") (72Z .--1E 7(i2ru) )(i2ru)12" (15)

A QTES + model can be fitted to empirical data by searching for a pair ((,fj)
analogously to the searches implemented in TEStool. Alternatively, a TES + process
can be readily approximated by a QTES + process, by discretizing fv in a natural
way into a corresponding fj, where

f
fj(m) J fv(x)dx,

rm

O<_m<_M-1. (16)
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2.3 The ARM Modeling Methodology

The ARM modeling methodology produces an exact match to the empirical distribu-
tion, and simultaneously approximates the empirical autocorrelation function. Recall
that a key feature of this methodology is the decoupling of the fitting of these two
empirical statistics. In fact, the underlying theory ensures an automatic matching of
the empirical distribution [3, 8], a fact that allows the modeling procedure to focus on

fitting the empirical autocorrelation function. The latter fit is accomplished by a

search for a suitable innovation density, f, and stitching parameter, . More
specifically, for a given empirical sequence Y {Yn}, we search for a pair (f,) and
the resultant ARM model, such that the empirical autocorrelation function, g, is
adequately approximated by the model autocorrelation function, PI,’ where f fg
for TES processes, and f fj for QTES processes.

In practice, the fitting problem is cast as the following nonlinear optimization
problem: Find an optimal point of innovation density and stitching parameter,
(f*, (*), such that

T
(f*, *) argmin{g(f, () E ar[Pl,(r)- Y(r)]2}’ (17)

(f,)

where T is the maximal lag of the empirical autocorrelation function. To this end,
we select a positive integer K and restrict the search space of f to the parameter
space

K {(P,(): P e PK, e [0, 1]}, (18)

where )K is a set of discrete densities P- (P1, P:,’", PK), E n=lK Pn- 1 (see [6]
for details). This reduces the optimization problem (17) to finding optimal para-
meters, (e*, *)E K, such that

(P*, *) argmin gK(P, ),

where the objective function gK has the form
T

gK(p’) E ar[PP,((v)- Y(r)]2"

(19)

(2o)

To solve the optimization problem (19)-(20), reference [6] proposed the so-called
GLSO algorithm, which consists of two steps:
GS Discretize the parameter space K, into a finite number of points Then, for

each such point, evaluate the objective function gK and keep the best B
points (those points, x E OK, which give rise to the B smallest values of
(x)).

LO Using each of these B points as a starting point, find a local minimum of
gK via a nonlinear programming algorithm. Then, select among them that
point, x*, which gives rise to the smallest local minimum, gK(x*).

The computational bottleneck lies in the execution of the GS step due to its large
size. In fact, the total number, Ntot, of points, x, at which the nonlinear function
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gK(x) has to be evaluated is
/ \

-N(/ Np+K-2
Ntot Np- 1

(21)

where Np and N( are the number of equidistant values that each Pn and can

assume, respectively. If we wish to search over additional ARM classes (e.g., TES +
and TES- or QTES + and TES-), then the value of (21) should be doubled.
Clearly, with the recommended value of K (K 100), even moderate values of Np
and N render the value of Nto in (21) rather large. This calls for speeding up the
GS step. The present paper focuses on achieving this by means of parallelization in a

natural way as follows:
1. Given rn processors, j=0,1,...,m-1, the first processor (j=0) is

designated as master.
2. The master processor partitions the search space, K, into roughly equal-

sized search subspaces, K(1),..., K(m).
3. Each processor j is handed over the corresponding optimization subproblem,

namely, the search for the best B solutions of the optimization problem

argmin gK(P, ). (22)
(P, 5) e K(J)

The mB best solution of all processes are returned to the master processor,
which selects from their union the best B solutions.

3. The Quantized Search Space

The search space (JK in Equation (18) is too broad for a practical global search in the
GS step of the GSLO algorithm. Consequently, we quantize K as follows.

The scalar component, , of stitching parameters is quantized simply by selecting a

finite number of values in the interval [0, 1], and defining

(23)

where L is some selected quantization level, and the i are usually selected equidis-
tant.

The vector component, P, of probability vectors is restricted to lie in a finite
space. To this end, we select an integer K > 0 and a quantization level M > 0, and
define a vector space with integer components

{5K,M- v--(jl,J2,...,jK):0-<ji<-M,1

_
<_ M, ji M (24)

Letting now q- l/M, the quantized search space of probability vectors is defined by

OK {q(Jl, J2,’", JK)" (Jl, J2,’", JK) E K,M}" (25)

It is convenient to partition fK,M into subsets of vectors v with equal element multi-
plicities n -hi(v), where n is the multiplicity of in v, if occurs precisely n times
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in v. Then, the cardinality of tfK, M is

O<_n0 nM<_K
nO+...+nM K

K
1-I 4= 0

(26)

Thus, even for a moderately large K, the cardinality of tK, M is very large.
Evidently, the task of enumerating the elements of K,M or QK and evaluating the
objective function for each element in the latter can be rather time consuming.

4. Search Parallehzation

To speedup the search over tfK, M we employ m parallel processors, taking advan-
tage of the fact that searches on disjoint subsets do not interact, except when the
results are returned. To this end, subdivide K,M into subspaces JgK M(J),

m-1j=0,1,...,m-1, such that K,M--Jj=otfK,M(3), and assign processor j to
search subspace K,M(J)" Obviously, for identical processors, the best speedup is
attained when K,M is partitioned into disjoint pieces of (roughly) equal size.
Partitioning means that K,M(i)fl EK, M(j)- for all i- j, so that processors do
not overlap their searches. The roughly equal size of the K,M(J) balances the
computational load over all processors. In practice, we take

K,M(j)
m l<_j<_m-1

[EK, M[ m j-0,

(27)

where L" J denotes the floor operator, Lxj max{integer n’n <_ x}.
We implemented the parallelization using the PVM (Parallel Virtual Machine)

package in a natural way. Given m > 1 processors, 0,..., m- 1, one of them (say, pro-
cessor 0) is designated the master, and the remaining processors, 1,...,m-1, are
designated slaves. The master processor is responsible for partitioning 3tK, M and
distributing the descriptions of subsearches over the K,M(J) to the slave processors.
Each processor then proceeds to search for the best B models, and the slave
processors return their results to the master processor. The latter completes the
search by selecting the best B models among the mB returned by all subsearches as
well as post-processing the results.

5. Partitioning and Enumeration Methods

The efficacy of parallelization as a speedup approach depends greatly on efficient algo-
rithms for partitioning K,M into subspaces K,M(J), and on enumerating the
members of each NK, M(J)" Let IjgK, M {1,..., K,M } the be index set of the

search space tfK, M under some enumeration, where the cardinality of tfK, M is given

by (26), and recall the notation (n)N- n(modN). This section presents two methods
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of producing balanced partitions and efficient enumerations as per the discussion in
Section 4.

5.1 The Interleaving Method

The Interleaving method partitions 3[K, M into subsets K,M(J) given by

3GK, M(j) {v(i) E 3gK, M: (i)m j), j O, 1,...,rn-- 1. (28)

Thus, the corresponding index set I consists of the elements {j,j + rn
K,M(J)

j + 2rn,...}. The term ’interleaving’ is inspired by this construction.
The Interleaving method has two main advantages. First, it is conceptually

extremely simple, once an enumeration method has been selected. And second, it
works for any enumeration. Its main disadvantage is the "wasted" enumeration work
performed by processor j when fetching the next element of EK, M(J)" To this end,
processor j "skips" all indices following j+irnE IK,M(j up until index

j + (i + 1)rn I Since every such fetch operation (beyond the first one)K,M(J)"
requires rn iterations of the enumeration algorithm, this operation gets even more
"wasteful" as the number of parallel processors, rn, increases.

5.2 The Segmentation Method

The Segmentation method enjoys a major advantage in that it provides an explicit
mapping, e(n), from IK to K,M" Since the index domain, IK is trivial

,M ,M
to partition and the resulting index sets IK,M(j are trivial to enumerate (as sets

of consecutive integers), the mapping e(n) induces a partition of 3fOK, M as well as
enumerations of the resulting K,M(J) in a natural way. Unlike the Interleaving
method, the Segmentation method performs efficient enumeration, since the mapping
e(n) obviates any need for "skipping". However, enumeration via the Segmentation
method is conceptually more complex than in the Interleaving method.
We begin with definitions of various types of circulant matrices (see [1] for more

details.)
Definition 1: A K x K matrix C is a circulant matrix, if its elements satisfy the

relation

1 < i, j _< K, (29)ci, j =Cl,(j-i}K+l,

where ci, j is the (i, j)-th element of the matrix C.
It follows that in a circulant matrix, each row can be obtained by a circular right

shift operation on the preceding row, so that a circulant matrix has the form
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c c2 cK

CK Cl CK 1

c c3 c12

Definition 2: The basic circulant matrix of order K is the K K circulant matrix

0 1 0 0 0 h

0 0 1 0 0

1 0 0 0 0

(30)

Definition 3:
K x K matrix

c1

C(K-s+I)K
C(K- 2s + 1)K

The s-circulant matrix of a circulant matrix C of order K is the

c2 cK

C(g_s+2)g C(K_s)g
C(K_2s+2)K C(K_2s)K

c(s + 1)K C(s + 2)K C(s)K

(31)

The next definition is a notion of decomposition of a positive integer into all poss-
ible vectors of positive addends.

Definition 4: For a given integer M > 0, a decomposition set M is defined as

M {d (dl,...,dnd)’O < dj

_
M, dj >_ dj + 1, Edj-M

j=l
(32)

Thus, a decomposition vector d E M consists of a monotonically decreasing sequence
of positive integers that sum to M.

Finally, the last definition groups together circulant matrices that are related via a
common decomposition vector, d.
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Definition 5: Let d E M be a decomposition vector, and let K > M be a given
integer. The Similarity class YK(d) is the set of all K K circulant matrices whose
non-zero row elements coincide with the elements of d.

Note that the above definition is well-defined due to the 1-1 correspondence

(K, d)-YK(d (33)

Henceforth, we let IM and IYK.(d denote index sets corresponding to the sets in

the respective subscripts. The selection of the corresponding set enumerations are

immaterial, unless otherwise specified.

5.2.1 Generating decomposition vectors

This subsection presents an algorithm for generating and enumerating all decomposi-
tion vectors d E M, for a given M > 0. It will be used later on to enumerate the
search space K,M and its subspaces K,M(J), J- 0,1,. rn --1. In the algorithm
to follow, concat(v,a) concatenates a vector v (Vl,... Vn) of arbitrary length n > 0
with the scalar a, returning the vector (Vl,...,vn, a). The procedure below is invoked
by decompose(null,M, M), where null denotes the null vector.

Decomposition Vectors Enumeration Algorithm

Input: quantization level M > 0
Output: an enumeration of the set M
procedure decompose(vector v, integer l, integer r)

if/>r

output concat(v, r);
end if
for n 1,..., min(/, r 1)

decompose(concat(v, n), n, r n);
end for

end decompose

5.2.2 Construction and enumeration of similarity classes

Similarity classes are fundamental to the enumeration of vectors in search space. In
this subsection we construct and enumerate the members of a given similarity class.

For given d (dl,...,dn ) M and K > M, we now show how to construct the
this construction includes an enumeration of the elements ofsimilarity class YK(d); .d

YK(d). Observe that the vectors in YK(d) correspond to all possible arrangements, in
K positions, of elements from a set consisting of the elements of d and zero. Conse-
quently,

ig(d)
(K- 1)! (34)

where for > 0, m is the multiplicity of the i-th element in the vector d, and m0
K- = lmj, i.e., the multiplicity of 0. We can now define similarity classes and
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enumerate their elements (circulants) as follows:

YK(d)-- C(s)-dlIK+ EdjB+J-3): s- 1,2,..., lYK(d)
j-2

(35)

where IK is the KxK identity matrix, and B is the s-circulant matrix (see
Definition 3) of the basic circulant matrix BK (see Definition 2).
We are now in a position to make a key observation, namely, that the search space

K,M can be represented as the collection of all row vectors from circulants
matrices, as the circulant matrices range over all similarity classes. Formally, for
integers M > 0 and K >_ M, we can write

JK,M { [’j/(C): C ( YK(d), d E M}, (36)

where R is the operator that unravels a matrix C into the set of all its row vectors.

5.2.3 Enumerating search spaces

We are now in a position to enumerate the search space :}[K,M and its component
to asubspaces, }gK, M(J) by exhibiting the mapping from an index iE I}gK, M

corresponding vector v(i) 3{;K,M, with the aid of the representation (36) and the
enumeration of M from Section 5.2.1. The enumeration mapping i---+v(i) will be
constructed in a three-step algorithm as follows.

Search Space Enumeration Algorithm

1. Select a similarity class.
Given an index IK,M map to the index n(i) IM that satisfies

n(i)- 1 n(i)
YK(d(j))I < i_< YK(d(j))I.

j=0 3=0
(37)

The index n(i) specifies an index of a decomposition vector, d(n(i)), in the
enumeration of Section 5.2.1, as well as the corresponding similarity class,
K(d(n(i))), given in Equation (35), with the convention YK(d(0))- (I).

2. Select a circulant matrix from the similarity class.
Map the pair (i,n(i)) to the index s s(i,n) IK(d(n(i))), given by

l/i’+i- 1- E(i)0-1= SK(d(J))l] (38)s(i, n) It"

The index s(i,n) specifies a circulant matrix C(s(i, n)) in the enumeration of
K(d(n(i))), given in Equation (35).

3. Select a row vector from the circulant matrix.
Map the index s- s(i, n) to the vector v(i) with elements vj(i), given by

vj(i) ct(i) j(s), (39)
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where

l(i)=(i+U-1)K+l. (40)

Thus, the vector v(i) coincides with the vector in row l(i) of the circulant matrix

C(s(i,n)). More specifically,

vj(i)-cl(i),j(s)-

b(S + k 3) l(i) 5 jdk(n(i)) l(i), j
k=2

"d()
M- E dk(n(i)), 1(i) j

k=2

(41)

where dk(n(i)) is the k-th element of the decomposition vector d(n(i)), rid(k) is the

b(+k-3) is thenumber of elements in the decomposition vector d(k), and l(i),j

l( i), j)-th element of the matrix B. + k-3), defined as the (s + k- 3)-th circulant
matrix (Definition 3) of the basic circulant matrix Bg (Definition 2).
We remark that the enumeration algorithm above need not be used to enumerate

all vectors, v(i). Since the enumeration yields successive row vectors within each
circulant matrix, it suffices to use the circulant property to enumerate vectors that
belong to the same circulant matrix. More specifically, if the successive indices and
+ 1 in I]tK,M map to row vectors of the same circulant matrix, then v(i + 1) can

be obtained recursively from v(i) from the relation

vj(i + 1) v<j_l>K(i), j 1,2,...,K. (42)

Equation (42) results in a considerable computational saving, as compared to the
preceding full-blown search space enumeration algorithm.

5.3 Partitioning into Search Subspaces

Partitioning the search space ]K,M into load-balanced search subspaces, K,M(J),
is straight-forward. To this end, just partition the index set IK,M into subsets

I (j), j-0,1,...,m-1; this induces a partition of [}@K M into subsets

%K,M(J) in a natural way. Thus, the fist index in each subset I%g (j),
j 0, 1,...,m-- 1, is M

m + 1. (43)

Note that all the subspaces are of equal size, except possibly for 3tK,M(O), which
may be slightly larger. However, the magnitude of the imbalance does not exceed m.

Thus, Equation (43) provides for an optimal load balancing.
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6. Comparison of the Interleaving and Segmentation Methods

This section compares the speed of the two partitioning methods, Interleaving and
Segmentation, in terms of elapsed time on Unix machines with the Solaris 2
operating system running the parallelization platform PVM version 3.0. Because the
parallelization was run on public computers with variable load, the comparison here
is statistical in the sense that we ran three replications of each problem and measured
the average elapsed times.

Number of
innovation atoms

40

60

80

Partitioning
method

Interleaving
Segmentation
Interleaving
Segmentation

Number of processors
1 2 3 4

223 181 151 124
230 179 145 115
904 564 393 314
911 535 340 269

Interleaving
Segmentation

2692 2199 1792 1496
2699 2101 1667 1365

Table 1" Comparison of average elapsed time (in seconds) in the Interleaving and
Segmentation methods for laser data

Numberof
innovation atoms

40

60

Partitioning
method

Interleaving
Segmentation
Interleaving
Segmentation

Number of processors
1 2 3 4

462 406 380 363
469 400 368 350

1357 1202 1001 879
1365 1150 905 790

80 Interleaving
Segmentation

3365 2611 2015 1653
3380 2381 1701 1251

Table 2: Comparison of average elapsed time (in seconds) in the Interleaving and
Segmentation methods for football data

Number of
innovation atoms

40

60

80

Partitioning
method

Interleaving
Segmentation
Interleaving
Segmentation

Number of processors
1 2 3 4

435 389 345 325
438 378 333 312

1328 1055 886 806
1331 987 799 732

Interleaving
Segmentation

3299 2279 1933 1661
3307 2056 1698 1336

Table 3: Comparison of average elapsed time (in seconds) in the Interleaving and
Segmentation methods for financial data

Comparisons were made for three sets of empirical data:
1. Time series of 1000 data points of laser (random) brightness.
2. Time series of 210 data points of the bit rate (picture size) of compressed

video, using the H.261 compression standard. The video scene depicted a
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few seconds of a football game.
3. Time series of 168 data points of security prices, adjusted for inflation.
The experiments conducted varied the number of processors (rn 1,2,3,4), and

the number of innovation atoms (K 40,60,80) in the fitted QTES models. The
average elapsed time (of 3 replications per setting of rn and K) are displayed in Table
1-3, for the laser data, football data and financial data, respectively.
A pictorial representation of each table is depicted in the corresponding Figures 1-

3.

3500

3000

2500

"-2000

1500

1000

500

Laser data

Interleaving
Segmentation

atoms 40

0
2 3 4

Number of processors

Figure 1: Comparison of the Interleaving and Segmentation methods
for laser data
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Figure 2: Comparison of the Interleaving and Segmentation methods
for football data
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Figure 3: Comparison of the Interleaving and Segmentation method
for financial data

Tables 1-3 and Figures 1-3 consistently show that the Segmentation method is
faster than the Interleaving method, when more than one processor is used. In fact,
the difference in speedup became more pronounced as the load increased due to a

corresponding increase in the number of innovation atoms. The superiority of the
Segmentation method lies in the effectiveness of the mapping from indices to vectors,
employed by this method. This enables each processor to start directly from the first
vector of the subspace assigned to it for global search. Furthermore, the fast Segmen-
tation algorithm makes it possible to quickly enumerate the first and subsequent
vectors belonging to each subspace, directly from vector indices. In contrast, the
Interleaving method for each subspace requires the enumeration of all vectors, includ-
ing those which do not belong to the subspace.

The Segmentation method was, however, a bit slower when only one processor was

employed (i.e., when no parallelization took place). In this case, the two methods
give rise to identical enumerations, but the Segmentation method has more overhead.
Thus, it is advisable to employ the Interleaving method when parallelization is not
available (m 1), and the Segmentation method when it is (m > 1).
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7. Conclusion

This paper has presented two partitioning methods, Interleaving and Segmentation,
and the corresponding enumeration procedures for the quantized search space employ-
ed in the parallelization of ARM modeling. It compared these methods via three
search examples drawn from various application domains. The examples confirm
that parallelization is highly efficacious in speeding up the search. The low
communication overhead among processors renders the speedup in the global search
nearly linear in the number of processors. Finally, the Segmentation method has
been demonstrated to be faster than the Interleaving method when parallelization is
available, and that its speed advantage increases as the size of the space search grows.
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