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1. Introduction

Menger [7] was the first who introduced the notion of probabilistic metric space which is a
generalization of the metric space. The study of this space was expanded rapidly with the
pioneering work of Scherwood [9], Schweizer and Sklar [10] and many others. Recently
Sehgal and Bharucha-Reid [8], Hadzic [5], Cho [3] and Beg, Rehman and Shahzad [1] have
studied fixed point theorems for probabilistic metric spaces. This paper deals with the
problem of showing that certain mappings on probabilistic normed spaces are
homeomorphisms and gives the sufficient conditions under which addition of open mappings
results in open mapping. We also study domain invariance and its applications in
probabilistic normed spaces.

2. Preliminaries

Let D be the set of all left continuous functions defined on R such that for all f € D,
flz)=1,forall z <0; (1)

f(o0) =0; (2)

and f is a nonincreasing function. On D, we consider the natural ordering, that is, f < g
(f,geD)ifandonly if f(z) < g(x) forallz € Rand f < g if f < g and there exists an z

Printed in the U.S.A. ©2002 by North Atlantic Science Publishing Company

29



30 ISMAT BEG and SORIN GAL

such that f(zq) < g(zo). We denote by I the function in D with the property that 7(xz) =0
for x > 0.

Let £ be a subset of D containing I. A triangular function p on £ with values in £ is any
associative and commutative composition law having the following properties: for a,aq, as,b
in&,

na,I) = a; 3)
p(ay,a) < p(ag, a) whenever a; < ao; (4)
M(aa b) S /lfl(aa b), (5)

where p(a,b)(x) = ir%fmin{a(tx)+b[(1 —t)z],1} {here the infimum is taken over all
te0,1]}.
Note that among a number of possible universal choices for p, p(a,b) = max(a,b) is the

strongest possible universal .
A linear space L over R (real field) is called a probabilistic normed space if there exists a

mapping || -; - || : L — & such that the following properties hold:
| ¢; - || =1 ifandonlyif ¢ = 0; (6)
|ag;z| = || ¢; |a| x| foranyz € Randa € R, a # 0; (7)
[ ¢+l <uCll el [ gsal). (8)
The mapping ¢ — || ¢; - || is called a probabilistic norm or a random norm on L. A

sequence (¢,) of points in a probabilistic normed space L is said convergent to a point ¢ if
for any 0<e<1 0<é<oo there exists a positive integer N.s such that
| on — ¢;6 || < eforall n > N,.s. The sequence (¢,) is said Cauchy sequence if for any
0<e<l1l, O0O<z< +o00, there exists a positive integer N, such that
| &nsp— dnsz || <e, forall n> N,.,,peN. A complete probabilistic normed space is
called probabilistic Banach space. Denote U.s(¢) ={¢ € L; || ¢ — ;6 || < e}, where
0<e<land0 <6 < co. Whenever there is no confusion, we write U (¢) for U s(¢).

Let f be a mapping from a probabilistic normed space L; into a probabilistic normed
space Lo, then f is said to be continuous at ¢y € L, if ¢ € U(¢y) implies f(¢) € U(f(¢0))-
Let f be a linear operator from a probabilistic normed space L; into a probabilistic normed
space Lo, then f is called bounded if there exists some m >0 such that
I f(@); - || < || me; - || forall ¢ € Ly, and the probabilistic norm
of fisdefinedas || f;z ] = inf I Il ;x| f(&);2 || . If fisabounded linear

0#¢ €Ly
operator from a probabilistic normed space L; into a probabilistic normed space Lo, then
Nf@y;x|l < |l Il f;z|lo;2| . Let Ly and Ly be two probabilistic normed spaces and
F:L; — Ly be a mapping satisfying || F(¢) — F(¢); - || < || a(¢p —1); - || then the
constant «, is called Lipschitzian. The smallest such « is called Lipschitz constant of £ and
denote it by £(F'). If L(F) < 1 then the map F is called contraction. If £L(F') = 1 then the
map F' is said to be nonexpansive.

Let H(z) denote the distribution function defined as follows:

0 =<0
@ ={] 15}
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A probabilistic metric space (abbreviated as PM-space) is an ordered pair (S, E') where S
is a nonempty set and E is a function defined on S x S into the set

Fo F:R — [0, 1]; F nondecreasing and
~ | leftcontinuouson R, F(—o0) =0,F(+o00)=1 [’

such that if p, g are points of .S, then

qu(O) =0 (qu denotes E(P7 Q))§ (9)

E, (x) = H(z) forall z € R if and only if p = g; (10)
Epg = Egp; (11)

if E,,(z) =1and E,(y) =1,then £, (zr +y) = 1. (12)

A mapping K:[0,1] x [0,1] — [0, 1] is called T-norm if it satisfies:

K(z,1) = z, K(0,0) = 0 (13)
K(z,y) 2 K(u,v) forz > u,y > v; (14)
K(z,y) = K(y, ); (15)
K(K(z,y),u) = K(z, K(y,u)); (16)

forall z, y, u,vin [0,1].
A Menger PM-space is a triplet (S, FE, K) where (S, E) is a PM-space and the T-norm K
is such that the inequality

Ep(z +q) = K(Ep(z), Ey(y)); (12%)

holds for all p,q,rin Sandallz > 0,y > 0.
A sequence (¢,) in the PM-space (S, E, K) is said Cauchy sequence if
o im_Eo 6. () =1,foranyxz >0and p € N.
A mapping F:(S,E,K) — (S,E,K) is called a contraction if there exists « € (0,1)
such that

EF(F)F(Q)(O“) > Epy(x),

foranyx > 0and p,q € S.

Lemma 2.1: [4, Theorem 3.4.12]. Let F' be a linear operator from a probabilistic normed
space L, into a probabilistic normed space L». If F'is bounded then F' is continuous.

Theorem 2.2: [6, Theorem 11.2.2]. Every contraction mapping on a PM-space has at
most one fixed point.

Theorem 2.3: [6, Theorem 11.2.4]. Let (S, E, K) be a complete Menger PM-space and
let £ be a contraction mapping on S. Then F has a unique fixed point where
K(z,y) = min(x,y).

Remark 2.4: Let (L, | ;- ||,n) be a probabilistic Banach space with u(a,b) =
max{a,b}. If (¢,) is a Cauchy sequence in (L, || -; - || ,x) and F' is a contraction on
(L, I -5+ I p), then (L, E, K), with K(z,y) =min{z,y} and Ey(z) =1- [ p—q

x ||, becomes a complete Menger PM-space (i.e., (¢,) becomes a Cauchy sequence in
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(L, E,K) and the convergence of a sequence in (L, || -; - || ,p) is equivalent to the
convergence in (L, E, K)) and F' becomes a contraction on (L, E, K)).

For more details, we refer to Serstnev [12], Istratescu [6], Schweizer and Sklar [11] and
Chang et al [2].

We will prove the following fixed point theorem in probabilistic Banach spaces for
subsequent use in the next sections.

Theorem 2.5: Let

£ f € D; f isnonconvex on [0, + oo) i.e. af(z) + (1 —a)f(y)
N < flaz+ (1 —a)y),Ya € [0,1],Vz,y > 0

and p: € x &€ — & be a triangular function. Also, let (L || -; - || ,x) be a probabilistic
Banach space (Where || La : || Cg) If (Lv ” Ty || 7:“’) - (La ” Tyt H 7/1’) is a
contraction mapping, then F' has a unique fixed point.

Proof: Let ¢y € L be fixed and consider the iterations ¢,.; = F(¢,), n € N. For any
x > 0 we have

| o1 = @iz | = || F(on) = F(¢nr)iz | < | aldn — dna);z ||
<< ookl = Il éi—odu & Il
Then
| nie = dnsx || < plll Gni2 = Gz [ [l Gnir — dus [|)
<plll o= ooz s o= dos 5z 1)
)

<p(llér—dogm s I &1 — do; o

Sl ¢ — oz s || 61— ¢os 25

)

nt 1]{min{ | 61— 60s 2 1l + Il 61— 63 U522 )1}

(because || ¢1 — ¢o; - || is nonconvex)

<inf Amin{ | ¢1 —¢o; = ||, 1)} = || b1 — b0 Z |-

te0,1]

By induction, it easily follows that in general,

l Gntp — Pns T | < Il ¢1— ¢o; (;L_w

,Vne N, peN.
Passing to limit with n — + oo, we obtain that (¢,) is a Cauchy sequence. Because

(L, || -;- |l ,p) is a probabilistic Banach space, therefore there exists ¢* € L, such that
Vo > Qi gmoo Il ¢ —¢*;2 || =0. Because

| ¢* = F(¢);x || <p(|l ¢" = burisz |l | pnir — F(o);2 ||)
=p( | 6" = bnrvsz || || F(pn) — F(9*);2 )
< M( H Q" — Pni1; T || ) H a(¢n - (15*),1‘ H )
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<p(llo" = dnrsz |5 |l @n = 0552 ).

Letz >0befixedand 0 < € < % Then there exists N, . > 0 such that for all n > N, ., we
have

| ¢* = ¢nriz || <eand || ¢, — %2 | <e
It follows that
| ¢* = F(o);x || < ple,e) < e, €) < 2,

and e is arbitrary (sufficiently small), we obtain || ¢* — F(¢*);z || =0, Vx >0, i.e.,
9" = F(¢7).

In order to prove the uniqueness, let us suppose that there exist two fixed points
¢ # 1 e L, for F. We get

lo—tiz| = [ Flo)-F@hzll < le—¢:5ll < lo—vsall,

which implies | ¢ —¢;2 | = ||¢—;% |, Vx>0, and taking into account that
Il ¢ —; + 0| =0, weobtain || ¢ —;z || =0, Ve >0, ie., ¢ — =0, which proves
the theorem.

Remark 2.6: For reasons of simplicity, throughout the rest of the paper, a probabilistic
Banach space (L, || -; - ||, ») with u(a,b) = max(a,b) or satisfying the hypothesis in the
statement of Theorem 2.5, will be called of S-type.

3. Invariance of Domain for Contractive Fields
Lemma 3.1: Let L be a probabilistic Banach space of S-type and
Bloo, I(x —7r)] ={¢; | ¢ — bo;z | <I(x—r)}. Let F:B — L be a contraction with
LF)=a<1. If | F(¢o) —¢o;z || <I(xz—(1—)r), then F has a fixed point.
Proof: Choose € < r so that
| F(¢o) — dosz || <I(z—(1—a)e) <I(z—(1-a)r).

The mapping F maps the closed ball D = {¢; || ¢ — ¢o;z || < I(x —¢€)} into itself.
Indeed, if » € D, then

| F(¢) = ¢o;z || = || F(¢) — F(¢o) + F(do) — ¢o; |
< p(l F(@) = F(o)iz |, | F(o) — oz || )
<u(llo =05 I, Iz —(1—a)e)
< pI(5 —e),I(x — (1 - a)e)
=p(z —ae), I(z— (1 - a)e) =I(z — €)
where ae = ¢ <7, ac < ar <rand 0 < ¢ < 1. Thusif ¢ € D then F(¢) € D.

Because L is complete, it is sufficient to prove that D is closed. In this sense, let (¢,,) be
a sequence of points in D, convergent to a point ¢* € L. We obtain
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| 0" —doiz || <p(|| " —dwsz |, || dn—dosx])
<pi( || ¢ =z, || én— o5z ||)

t:e"[](f), 1]{mln{ | ¢* — dnitx || + || ¢n — do; (1 =)z || ,1}}.

We have two cases:
a) x € (—00,€);b)x € (e, + 00)
Case a) obviously I(x — €) = 1 and therefore

| ¢" = dosa || <1=1I(z—e).

b) For each t € [0, 1], fixed, and each 0 < 1 < 1, there exists N;,, € N, such that for
n > Ny, we get || ¢* — ¢yt || <.
It follows

| ¢* — ¢osz || tﬁei% 1]{min{n+ (1 —t)x —€),1}} <,

)

because for t < 1 — < we have I((1 —t)x —¢) = 0. Since 7 is arbitrary (independent of z),
we get

| ¢* = ¢o;z || =0=1I(x—¢€) forz>e

As a conclusion, ¢* € D. Since D is complete, we get that F has a fixed point by Theorem
2.3 and by Theorem 2.5.

Definition 3.2: Let M be a subset of a probabilistic Banach space L. Given a map
F:M — L, the map f: M — L defined by f(¢) = ¢ — F(¢) is called the field associative
with F'. The field f determined by a contraction F' is called a contractive field.

Theorem 3.3: Let L be a probabilistic Banach space of S-type, U C L open, and
F:U — L be a contraction. Let f: U — L be the field associative with F'. Then,

(7) the field f is an open mapping; in particular, f(U) is open in L, and

(1)  the mapping f: U — f(U) is a homeomorphism.

Proof: (i) To show that f is an open mapping, it is enough to show that for any ¢ € U, if
Blo,r] Cc U, then B[f(¢),(1 —a)r] C f(B[o,r]). For this purpose, choose any
o € B[f(¢), (1 — «)r] and define G: B[p,r] — L by G(¢) = o+ F(¢). Then G is a
contraction and

| G(@) =iz || = || Yo+ F(¢) — ¢52 ||
=l vo—flo)iz || <I(z—(1—-a)).
By Lemma 3.1 there exists ¢g€ Blp,r] with &g =1+ F(¢o), therefore
f(do) = o = ¢o — F(¢o). Thus B[f(6), (1 —a)r] C f(B[¢,r]). So f isan open mapping
and, in particular, f(U) is openin L.
(i3) If ¢, € U, then
| f(@) = fW)sa | = [ (¢ —¥) = (F(8) — F(¥));z |

> [ (A=a)(o—9)z|.
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So that f is injective. Since f:U — f(U) is a continuous open bijection, it is a
homeomorphism.

Corollary 3.4: Let L be a probabilistic Banach space of S-type and F: L — L be a
contraction. Then the corresponding field f = Id — F' is a homeomorphism.

Proof: Let )y € L, define G: L — L by G(¢) = g + F(¢). Then G is a contraction, so
G has a fixed point ¢y = vy + F (o), therefore f(py) = 1bg. Thus f(L) = L.

4. Domain Invariance and Invertibility of Linear Operators

Proposition 4.1: Let F' be a linear operator on a probabilistic Banach space L of S-type. If
| Id — F;1 || =0, then F'is invertible.
Proof: The map Id — F: L — L is a contraction. Indeed,

| Td=F)(¢—vhz| < | | (Id=F)zll(6—v)z|
= (¢ =)z, aec(0,1).

Corollary 3.4 further implies that Id — (Id — F) = F is a homeomorphism. Thus F' is
invertible.
Lemma 4.2: Let L; and L, be two probabilistic normed spaces and F: L, — L; and
G: Ly — L be two bounded linear operators. Then || FG;z | < || F || Gz | ;2 | -
Proof: We have

| FG;x IIOjé 'ggfe I I I g2 || (FG)(¢); ||

o2 I FC G GOYal < I F Gz lsz

Remark 4.3: Let L; and L, be two probabilistic Banach spaces and S: L; — L be a
linear operator. If there is some m > 0 such that || S(¢);z || > || m¢;x || for ¢ € Ly,
then S is injective; if such an S is also surjective, then it is invertible because
| S7Y(@);z || < | %,x | for € Ly. Therefore S~ is continuous by Lemma 2.1.

Theorem 4.4: [Schauder Invertibility Theorem] Let L; and L, be two probabilistic
Banach spaces of S-type and S,T: L, — Lo be two linear operators, with S invertible.
Assume that there is an m >0 such that, for each 0<t¢ <1, the operator
E, = (1—1t)S+1tT satisfies || Ey¢);z || > || me;z| for all ¢ € Ly. Then E; is
invertible for all 0 < ¢ < 1, and in particular, T is invertible.

Proof: If an operator E; is invertible, then for each ¢ in the open interval
Js={t: |t—s]| < m} the operator E is invertible or equivalently,

E;'Ey;: Ly — Ly isinvertible for each ¢ € J,. For this purpose, note that

Ei=S+s(T—8)+(t—s)(T-S)
= E,+ (t—s)(T - S).
So that,
E;'E, =1+ (t—s)E;(T - 9).

Because
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| Esgsz || = [ mgsz ||,
so for t € J,, we have
| ==s)E;NT = S)z|l = | E;NT - 8); = |
SNESNT =Sz s = |

< B ey | T = Six || | < I(a — 1),

Therefore
| Id — E;'Ey 2 || < I(x—1).

Proposition 4.1 further implies that E; ! E; is invertible. Thus E; is invertible. Now assume
that 7 = {t € [0, 1]: E; is invertible}, then F is an open set. If ¢ ¢ F, then the operator E
with s € J; is not invertible. So that [0,1] — F is also an open set. Because [0,1] is
connected and F is nonempty, we get 7 = [0, 1] and the proof is complete.

5. Stability of Open Embeddings

Theorem 5.1: Let L be a probabilistic normed space, M be a probabilistic Banach space of
S-type and F: L — M be an open embedding of L onto an open subset U C M. Let
G: L — M be a map such that G o F~1:U — L is a contraction. Then ¢ — F(¢) + G(¢)
is also an open embedding of L into M.

Proof:  Consider h=(F+G)oF!'=Id+GF U — M. By the domain
invariance, this A maps U homeomorphically onto an open h(U)C M. Since
F+G=hoF=(F+G)oFoF,itfollows that h o F is an open embedding of L into
M.

Theorem 5.2: Let L be a probabilistic metric space, M be a probabilistic Banach space
of S-type and F:L — M be an open embedding such that F~! is Lipschitzian. Let
G: L — M be a Lipschitzian map such that £(G)L(F~!) < 1. Then ¢ — F(¢) + G(¢) is
also an open embedding of L into M.

Proof: Since £(G o F~') < L(G)L(F~') < 1, we get that G o F'~! is a contraction. By
Theorem 5.1, F' + G is also an open embedding of L into M.
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